JP3841770B2 - Neutral solidified material and soil treatment method using the same - Google Patents

Neutral solidified material and soil treatment method using the same

Info

Publication number
JP3841770B2
JP3841770B2 JP2003150136A JP2003150136A JP3841770B2 JP 3841770 B2 JP3841770 B2 JP 3841770B2 JP 2003150136 A JP2003150136 A JP 2003150136A JP 2003150136 A JP2003150136 A JP 2003150136A JP 3841770 B2 JP3841770 B2 JP 3841770B2
Authority
JP
Japan
Prior art keywords
blast furnace
soil
slag
neutral
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003150136A
Other languages
Japanese (ja)
Other versions
JP2004351282A (en
Inventor
実 盛岡
隆行 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003150136A priority Critical patent/JP3841770B2/en
Publication of JP2004351282A publication Critical patent/JP2004351282A/en
Application granted granted Critical
Publication of JP3841770B2 publication Critical patent/JP3841770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、有害物質で汚染された土壌の浄化において炭酸成分とともに使用される中性固化材と、それを用いた土壌の処理方法に関する。なお、本発明における部や%は特に規定しない限り質量基準で示す。
【0002】
【従来の技術とその課題】
環境問題が顕在化している。特に、土壌中の有害物質、例えば、クロム、セレン、ヒ素等の重金属、硝酸態窒素や亜硝酸態窒素、フッ素、ホウ素、ダイオキシン類、トリクロロエチレンやテトラクロロエチレン等の揮発性有機化合物類等は、環境基本法に基づく環境基準が定められ、この基準値以下の水準を保つことが必要とされている。
【0003】
これらの有害物質を低減する材料としては、活性炭を用いる方法(特許文献1、2等参照)、ゼオライト類を用いる方法(特許文献3等参照)、ハイドロタルサイト類やハイドロカルマイトを用いる方法(特許文献4、5等参照)、還元性鉄粉により還元や分解して処理する方法(特許文献6等参照)、硫酸第一鉄を用いる方法(特許文献7、8等参照)、アパタイト類を用いる方法(特許文献9等参照)、カルシウムサルホアルミネート水和物やカルシウムアルミネート水和物の加熱脱水物を用いる方法(特許文献10等参照)等が挙げられる。
【0004】
また、産業副産物である高炉徐冷スラグを利用する方法も提案されている(特許文献11参照)。特許文献11には、クロム酸化物含有土壌の処理方法として、高炉徐冷スラグ及び/又は高炉徐冷スラグ溶出水を土壌と接触せしめる方法が開示されており、アルカリ性物質を併用することによって土壌のpHを7よりも高いアルカリ性に調整することが効果的であると記載されている。
【0005】
しかしながら、実際の土壌の汚染では、六価クロムのみならず、様々な有害物質が複数共存している、いわゆる複合汚染の場合が多い。このため、複合汚染に対応可能な、多くの有害物質を一度に低減できる材料の開発が強く求められていた。特に、六価クロム、セレン、ヒ素等の有害重金属類と、トリクロロエチレン等の揮発性有機化合物やPCB等によって複合的に汚染された土壌の浄化が必要とされている。
【0006】
なお、特許文献11の方法では、処理後の土壌がアルカリ性となるため、処理後の土壌の利用方法が限定されてしまうという課題もあった。すなわち、アルカリ性土壌では植生等が制限されるためである。そして、なにより、高炉徐冷スラグは水硬性をもたないため、炭酸成分を併用しない場合は、固化しないので固化材とはなりえなかった。
【0007】
また、中性固化材も数多く提案されている。その代表としては、セッコウ系のものやマグネシア系のものが知られている(特許文献12〜23等参照)。しかしながら、セッコウ系の中性固化材は固化力が充分でなく、また、その強度発現性も緩やかであり、材齢28日程度の長期的な時間を必要とするものであった。そして、マグネシア系は比較的早期に強度を発現するが、非常に高価なものであり、ほとんど使用されていなかった。また、これらの中性固化材は有害物質低減効果がなかった。
【0008】
本発明者らは、鋭意努力を重ねた結果、特定の成分を特定量含有する高炉徐冷スラグを中性固化材とし、該中性固化材と炭酸成分とを土壤中で反応させて固化させることにより、土壤中の有害物質を低減できることを見出した。また、本発明者らは、本発明の中性固化材が六価クロムばかりでなく、セレンやヒ素等の六価クロム以外の重金属類や、トリクロロエチレン等の揮発性有機化合物等の多様な有害物質の低減効果や、これらの有害物質によって複合的に汚染された土壌中の有害物質の低減効果もあることを見出した。しかも、該中性固化材を炭酸成分とともに土壌中で反応させて固化させることにより、処理後の土壌のpHを中性領域に調整することができるため、浄化処理後の土壤の用途が制限されないこと等を知見し、本発明を完成するに至った。
【0009】
【特許文献1】
特開平05-76619号公報
【特許文献2】
特開2002-239347号公報
【特許文献3】
特開2001-238980号公報
【特許文献4】
特開平10-128313号公報
【特許文献5】
特開2001-252675号公報
【特許文献6】
特開平07-108280号公報
【特許文献7】
特開平09-85224号公報
【特許文献8】
特開平10-34124号公報
【特許文献9】
特開平08-182984号公報
【特許文献10】
特開2001-70926号公報
【特許文献11】
特開2000-93934号公報
【特許文献12】
特開平10-316967号公報
【特許文献13】
特開2000-109829号公報
【特許文献14】
特開2000-109830号公報
【特許文献15】
特開2000-239660号公報
【特許文献16】
特開2001-200252号公報
【特許文献17】
特開2002-167582号公報
【特許文献18】
特開2002-206090号公報
【特許文献19】
特開2002-241154号公報
【特許文献20】
特開2002-249774号公報
【特許文献21】
特開2002-255602号公報
【特許文献22】
特開2003-13063号公報
【特許文献23】
特開2003-20478号公報
【0010】
【課題を解決するための手段】
すなわち、本発明は、ガラス化率が 30 %以下、ブレーン比表面積が 2,000cm 2 /g 以上で、非硫酸態イオウとして存在するイオウを0.3%以上含み、かつ、鉄分をFe2O3換算で0.5%以上含むことを特徴とする高炉徐冷スラグを含有してなり、炭酸成分とともに使用される中性固化材であり、該中性固化材及び土壤に、炭酸成分を接触又は混合することを特徴とする土壌の処理方法である。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0012】
本発明の中性固化材は、非硫酸態イオウ及び鉄分を所定量以上含む高炉徐冷スラグを主体とするものであり、炭酸成分と混合又は接触することにより反応して固化し、同時に炭酸成分で土壤を中性化すること等を特徴とするものである。
【0013】
本発明で使用する高炉徐冷スラグは、徐冷されて結晶化した高炉スラグである。高炉徐冷スラグの成分は高炉水砕スラグと同様の組成を有しており、具体的には、SiO2、CaO、Al2O3、及びMgO等を主要な化学成分とし、その他、TiO2、MnO、Na2O、S、P2O5、及びFe2O3等が挙げられる。
【0014】
また、ゲーレナイト2CaO・Al2O3・SiO2とアケルマナイト2CaO・MgO・2SiO2の混晶である、いわゆるメリライトを主成分とし、その他、ダイカルシウムシリケート2CaO・SiO2やランキナイト3CaO・2SiO2やワラストナイトCaO・SiO2等のカルシウムシリケート、メルビナイト3CaO・MgO・2SiO2やモンチセライトCaO・MgO・SiO2等のカルシウムマグネシウムシリケート、アノーサイトCaO・Al2O3・2SiO2、リューサイト(K2O、Na2O)・Al2O3・SiO2、スピネルMgO・Al2O3、硫化カルシウムCaSや硫化鉄FeS等の硫化物、ウスタイトFeO、及びマグネタイトFe3O4(FeO・Fe2O3)等の化合物や純鉄を含む場合がある。
【0015】
本発明では、高炉徐冷スラグのうち、非硫酸態イオウを0.3%以上含み、かつ、鉄分をFe2O3換算で0.5%以上含むものを用いる。また、高炉徐冷スラグは粉末化して用いることが好ましい。
【0016】
非硫酸態イオウは、0.3%以上であり、0.5%以上が好ましく、0.7%以上がより好ましい。非硫酸態イオウが0.3%未満では、六価クロム、セレン酸、ヒ酸、及び亜ヒ酸等が充分に還元されず、これらの有害物質の低減効果が不足することがある。
【0017】
非硫酸態イオウ量は、全イオウ量、単体イオウ量、硫化物態イオウ量、チオ硫酸態イオウ量、硫酸態イオウ(三酸化イオウ)量を定量することによって求められる。これら状態の異なるイオウの定量方法は、山口と小野の方法によって求めることができる。これは、「高炉スラグ中硫黄の状態分析」と題する論文に詳細に記載されている(山口直治、小野昭紘:製鉄研究、第301号、pp.37-40、1980)。また、硫酸態イオウ量(三酸化イオウ)と硫化物イオウ量については、JIS R 5202に定められた方法によっても求めることができる。
【0018】
本発明で使用する高炉徐冷スラグは、前述の非硫酸態イオウとともに、鉄分をFe2O3換算で0.5%以上含むことを特徴とする。鉄分が0.5%未満であると、有害物質、特に、トリクロロエチレン等の揮発性有機化合物(別名:VOC,Volatile Organic Compounds)の低減効果が充分でない場合がある。鉄分は、JIS R 5202の方法によって定量することができる。
【0019】
本発明の高炉徐冷スラグ中に含まれる鉄分は、市販されている鉄分、例えば、還元性鉄粉、FeO、マグネタイト等とは異なるものである。すなわち、鉄分を実質的に含まない高炉徐冷スラグに還元性鉄粉やFeOやマグネタイト等の公知の鉄分を混合しても、本発明のような優れた効果は得られない。その原因は定かではないが、高炉徐冷スラグ中の鉄分と、高炉徐冷スラグの主成分であるメリライトや、その他の成分との相互作用によるものと考えられる。
【0020】
本発明で使用する高炉徐冷スラグのガラス化率は30%以下が好ましく、10%以下がより好ましい。ガラス化率が30%を超えると、本発明の効果、すなわち、有害物質の低減性能が充分に得られない場合がある。
【0021】
本発明で言うガラス化率(X)は
ガラス化率 X(%)=(1−S/S0)×100
として求められる。ここで、Sは粉末X線回折法により求められる徐冷スラグ中の主要な結晶性化合物であるメリライト(ゲーレナイト2CaO・Al2O3・SiO2とアケルマナイト2CaO・MgO・2SiO2の混晶)のメインピークの面積であり、S0は徐冷スラグを1,000℃で3時間加熱し、その後、5℃/分の冷却速度で冷却したもののメリライトのメインピークの面積を表す。
【0022】
本発明の高炉徐冷スラグの粒度は、特に限定されるものではないが、通常、ブレーン比表面積値で2,000cm/g以上が好ましく、3,000〜8,000cm/gがより好ましい。2,000cm/g未満では有害物質の低減効果が充分でない場合があり、8,000cm/gを超えると取扱いが困難になり、また品質の経時的な劣化が大きくなる場合がある。
【0023】
本発明の中性固化材は、炭酸成分と土壤中で混合又は接触させ、反応させて固化材として使用する。本発明で言う炭酸成分とは、CO2成分及び/又はCO3 2-成分を供給し、高炉徐冷スラグを炭酸化せしめる物質の総称であり、特に限定されるものではない。その具体例としては、例えば、炭酸ガス、超臨界二酸化炭素、ドライアイス、炭酸ナトリウムや炭酸カリウム等の炭酸塩、重炭酸ナトリウムや重炭酸カリウム等の重炭酸塩、及び炭酸水等が挙げられる。
【0024】
本発明の中性固化材と炭酸成分と土壤とを混合する方法は特に限定されないが、中性固化材や炭酸成分を土壤と一度に混合して固化させる方法や、中性固化材と土壤とをあらかじめ混合して炭酸ガスと接触させて固化する方法や、土壤と中性固化材を混合する前に炭酸成分を土壤と接触させて固化させる方法等が挙げられるが、有害物質低減効果の観点から、本発明の中性固化材と土壤とをあらかじめ混合して炭酸ガスと接触させる方法が好ましい。この際、土壌のpHが4〜10程度に調整されることが好ましく、5〜9程度の中性領域がより好ましい。
【0025】
炭酸成分の混合方法は特に限定されるものではなく、注入工法や強制攪拌工法等の工法によって行うことができる。
【0026】
本発明の中性固化材は、土壤1m3あたり100〜1000kg添加して用いることが好ましく、150〜500kgがより好ましい。土壤1m3あたり200kg未満では強度不足となる場合があり、500kgを超えると更なる効果が得られない。また、炭酸成分の使用量は、炭酸成分の添加形態等によって異なるため、特に限定されないが、固化材100部に対して1部以上、好ましくは5部以上とすることが好ましい。
【0027】
本発明の中性固化材は、酸性物質を併用することが、有害物質低減効果を促進する観点等から好ましい。本発明で言う酸性物質とは、特に限定されるものではないが、その具体例としては、例えば、硫酸、リン酸、硝酸、塩酸等の鉱酸、これらの鉱酸の鉄、アルミニウム、4A族等の塩や、有機酸等が挙げられる。鉱酸の塩としては、硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄、硝酸第一鉄、硝酸第二鉄、硫酸アンモニウム鉄、ポリ鉄(ポリ硫酸第二鉄)、硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム、硝酸アルミニウム、硫酸チタン、硫酸チタニル、塩化チタン、塩化チタニル等が挙げられる。また、有機酸としては、クエン酸、酒石酸、リンゴ酸、及び酢酸等の有機酸が挙げられる。
【0028】
本発明で言う有害物質とは、特に限定されるものではないが、例えば、環境基準が定められている、クロム、セレン、ヒ素、カドミウム、鉛、水銀等の重金属、全シアン、フッ素、ホウ素、さらに、有機系物質としては、ダイオキシン類、トリクロロエチレンやテトラクロロエチレン等の揮発性有機化合物類、PCB、ジクロロメタン、四塩化炭素、1,2-ジクロロエタン、1,1-ジクロロエチレン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、ベンゼン、有機リン等が挙げられる。また、環境基準が定められていないものとしては、例えば、銅、亜鉛、モリブデン、アミン系化合物、各種の環境ホルモンや内分泌かく乱物質等が挙げられる。
【0029】
本発明では、各種ポルトランドセメント、石灰石粉末等を混合したフィラーセメント、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント、いわゆるエコセメント、酸化カルシウム、高炉水砕スラグ、フライアッシュの粉末、これらの水硬性材料や潜在水硬性物質あるいはポゾラン物質から生成するあらゆる水和物類、転炉スラグや精錬スラグ等の製鋼スラグ、電気炉還元期スラグ、電気炉酸化期スラグ等の粉末、酸化マグネシウムや水酸化マグネシウム、ドロマイト、ハイドロタルサイト類等のマグネシウム化合物、活性炭等の炭素質物質、モンモリロナイトやカオリナイト等に代表される層状化合物である、いわゆるベントナイト類、ゼオライト類、セピオライト、アパタイト、リン酸ジルコニウム等のリン酸塩、三酸化アンチモンや五酸化アンチモン等のアンチモン酸塩、多硫化物、硫化物、チオ硫酸塩類、亜硫酸塩類等のイオウ化合物、チオ尿素、アマルガム、還元鉄粉、セルロース類やポリビニルアルコール、キトサン等の水溶性高分子類、ジアルキルジチオカルバミン酸類、キノリン化合物類、ポリアミン類、糖類等の添加材料のうちの一種又は二種以上の添加材料を本発明の目的を実質的に阻害しない範囲で併用可能である。
【0030】
また、上記の添加材料は本発明の中性固化材と併用しても良いし、別々に使用しても何ら差し支えない。例えば、本発明の中性固化材で一次処理を行った後、二次処理を上記の添加材料で行うことも可能である。このような、二重の有害物質の処理を施すことは、有害物質を多面的に、かつ、確実に低減する観点からはむしろ好ましいと考えられる。
【0031】
【実施例】
以下、本発明の実験例に基づいてさらに説明する。
【0032】
実験例1
表1に示す高炉スラグを粉砕してブレーン比表面積4,000cm2/gの粉末とし、有害物質低減効果を有する中性固化材を調製した。クロム、セレン、ヒ素、ジクロロメタン、トリクロロエチレンを含み、環境庁告示第46号法に基づく溶出試験の結果、前記有害物質の溶出量が環境基準値を上回る酸性土壌について、該中性固化材を用いて、土壌の有害物質低減効果を確認した。土壌1m3に対して、表1に示す中性固化材を250kg添加し、強制攪拌工法にて混合し、次いで、炭酸ガスを吹き込みながら再度攪拌処理し、処理土とした。処理後28日目に処理土を用いて再度、環境庁告示第46号法に基づく溶出試験を行い、固化の有無やpHも確認した。処理後28日目の評価結果を表1に示す。なお、比較例として、普通ポルトランドセメントや、従来の固化材であるセッコウ系固化材やマグネシア系固化材等を用いて環境庁告示第46号法に基づく溶出試験を行った場合の結果も併記した。
【0033】
<使用材料>
高炉スラグA :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.9%、鉄分(Fe2O3換算)0.7%。
高炉スラグB :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.7%、鉄分(Fe2O3換算)0.7%。
高炉スラグC :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.5%、鉄分(Fe2O3換算)0.7%。
高炉スラグD :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.3%、鉄分(Fe2O3換算)0.7%。
高炉スラグE :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.1%、鉄分(Fe2O3換算)0.7%。
高炉スラグF :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.7%、鉄分(Fe2O3換算)1.1%。
高炉スラグG :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.7%、鉄分(Fe2O3換算)0.9%。
高炉スラグH :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.7%、鉄分(Fe2O3換算)0.5%。
高炉スラグI :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.7%、鉄分(Fe2O3換算)0.3%。
高炉スラグJ :高炉徐冷スラグ、ガラス化率5%、比重3.00、非硫酸態イオウ0.1%、鉄分(Fe2O3換算)0.3%。
高炉スラグK :高炉徐冷スラグ、ガラス化率10%、比重2.97、非硫酸態イオウ0.7%、鉄分(Fe2O3換算)0.7%。
高炉スラグL :高炉徐冷スラグ、ガラス化率30%、比重2.94、非硫酸態イオウ0.5%、鉄分(Fe2O3換算)0.7%。
高炉スラグM :高炉水砕スラグ、ガラス化率95%、比重2.90、非硫酸態イオウ0.7%、鉄分(Fe2O3換算)0.7%。
炭酸成分イ :炭酸ガス。
炭酸成分ロ :ドライアイス。
土壌 :有害物質で汚染された関東ローム土。有害物質含有量は、クロム30mg/リットル、セレン5mg/リットル、ヒ素5mg/リットル、ジクロロメタン1mg/リットル、トリクロロエタン1mg/リットル。
普通ポルトランドセメント(OPC):市販品の3種類を等量づつ混合したもの。
セッコウ系中性固化材 :市販品、半水セッコウを主成分とするもの。
マグネシア系中性固化材:市販品、酸化マグネシウムとリン酸マグネシウムを主成分とするもの。
水 :水道水。
【0034】
<測定方法>
有害物質の溶出量:環境庁告示第46号法に準じて測定。
土壤のpH :市販のpH電極を土壤中に挿入して測定。
固化の有無:処理土を10cmφ×20cmの型枠に詰めて供試体を作製し、材齢28日に評価した。×印は固化せず、△印は脱型時に一部破損、○印は脱型強度を発現、◎印は圧縮強度1.5N/mm2以上であったことを示す。
【0035】
【表1】

Figure 0003841770
Figure 0003841770
【0036】
実験例2
高炉スラグBを粉砕し、表2に示す所定の粒度としてなる中性固化材としたこと以外は実験例1と同様に行った。結果を表2に併記する。
【0037】
【表2】
Figure 0003841770
Figure 0003841770
【0038】
【発明の効果】
本発明の中性固化材は、土壌中で炭酸と接触又は混合させることにより固化するものであり、土壤中の有害物質、例えば、クロム、セレン、ヒ素等の重金属、硝酸態窒素や亜硝酸態窒素、フッ素、ホウ素、ダイオキシン類、トリクロロエチレンやテトラクロロエチレン等の揮発性有機化合物類等を低減することができ、しかも有害物質低減能力が非常に大きい等の効果を奏する。また、処理後の土壌は本来の土壌のpHに近似した中性領域であるため、浄化処理後の土壤の用途が制限されない等の効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a neutral solidifying material used together with a carbonic acid component in purification of soil contaminated with harmful substances, and a soil treatment method using the same. In the present invention, “parts” and “%” are based on mass unless otherwise specified.
[0002]
[Prior art and its problems]
Environmental problems are becoming apparent. In particular, hazardous substances in the soil, such as heavy metals such as chromium, selenium and arsenic, nitrate nitrogen and nitrite nitrogen, fluorine, boron, dioxins, volatile organic compounds such as trichlorethylene and tetrachloroethylene, etc. Environmental standards based on the standards are established, and it is necessary to maintain a level below this standard value.
[0003]
As a material for reducing these harmful substances, a method using activated carbon (see Patent Documents 1 and 2, etc.), a method using zeolites (see Patent Document 3 etc.), a method using hydrotalcites and hydrocalumite ( Patent Documents 4, 5, etc.), a method of reducing and decomposing with reducing iron powder (see Patent Document 6, etc.), a method using ferrous sulfate (see Patent Documents 7, 8, etc.), apatites Examples thereof include a method of using (see Patent Document 9 and the like), a method of using calcium sulfoaluminate hydrate and a heated dehydrated product of calcium aluminate hydrate (see Patent Document 10 and the like), and the like.
[0004]
Moreover, the method of utilizing the blast furnace slow cooling slag which is an industrial by-product is also proposed (refer patent document 11). Patent Document 11 discloses a method of bringing blast furnace slow-cooled slag and / or blast furnace slow-cooled slag elution water into contact with soil as a method for treating chromium oxide-containing soil. By using an alkaline substance in combination with the soil, It is described that it is effective to adjust the pH to an alkalinity higher than 7.
[0005]
However, in actual soil pollution, there are many cases of so-called complex pollution in which not only hexavalent chromium but also various harmful substances coexist. For this reason, there has been a strong demand for the development of a material that can cope with complex contamination and can reduce many harmful substances at once. In particular, it is necessary to purify soil contaminated with toxic heavy metals such as hexavalent chromium, selenium, and arsenic, and volatile organic compounds such as trichlorethylene, PCB, and the like.
[0006]
In addition, in the method of patent document 11, since the soil after a process became alkaline, the subject that the utilization method of the soil after a process would be limited also occurred. That is, vegetation is limited in alkaline soil. And above all, since the blast furnace slow cooling slag does not have hydraulic property, when it does not use a carbonic acid component together, it does not solidify and cannot become a solidified material.
[0007]
Many neutral solidifying materials have also been proposed. As representatives thereof, gypsum and magnesia are known (see Patent Documents 12 to 23, etc.). However, the gypsum-based neutral solidified material does not have sufficient solidifying power, and its strength development is moderate, requiring a long time of about 28 days. And although a magnesia type | system | group expresses intensity | strength comparatively early, it was very expensive and was hardly used. Moreover, these neutral solidification materials had no harmful substance reducing effect.
[0008]
As a result of intensive efforts, the inventors of the present invention have used a blast furnace slow-cooled slag containing a specific amount of a specific component as a neutral solidification material, and reacts the neutral solidification material and a carbonic acid component in a soil to solidify them. It was found that harmful substances in the soil can be reduced. Further, the inventors of the present invention are not limited to the hexavalent chromium of the neutral solidification material of the present invention, but also a variety of harmful substances such as heavy metals other than hexavalent chromium such as selenium and arsenic, and volatile organic compounds such as trichlorethylene. It has also been found that there is also an effect of reducing toxic substances in soil contaminated by these toxic substances. Moreover, by reacting and solidifying the neutral solidifying material in the soil together with the carbonic acid component, the pH of the soil after the treatment can be adjusted to a neutral region, so that the use of the soil after the purification treatment is not limited. As a result, the present invention has been completed.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 05-76619 [Patent Document 2]
JP 2002-239347 A [Patent Document 3]
JP 2001-238980 [Patent Document 4]
Japanese Patent Laid-Open No. 10-128313 [Patent Document 5]
JP 2001-252675 A [Patent Document 6]
Japanese Patent Laid-Open No. 07-108280 [Patent Document 7]
Japanese Patent Laid-Open No. 09-85224 [Patent Document 8]
Japanese Patent Laid-Open No. 10-34124 [Patent Document 9]
Japanese Patent Laid-Open No. 08-182984 [Patent Document 10]
JP 2001-70926 A [Patent Document 11]
JP 2000-93934 A [Patent Document 12]
Japanese Patent Laid-Open No. 10-316967 [Patent Document 13]
JP 2000-109829 A [Patent Document 14]
JP 2000-109830 A [Patent Document 15]
JP 2000-239660 [Patent Document 16]
JP 2001-200252 [Patent Document 17]
JP 2002-167582 A [Patent Document 18]
Japanese Patent Laid-Open No. 2002-206090 [Patent Document 19]
Japanese Patent Laid-Open No. 2002-241154 [Patent Document 20]
JP 2002-249774 A [Patent Document 21]
Japanese Patent Laid-Open No. 2002-255602 [Patent Document 22]
JP 2003-13063 A [Patent Document 23]
JP 2003-20478 A [0010]
[Means for Solving the Problems]
That is, the present invention has a vitrification rate of 30 % or less, a brain specific surface area of 2,000 cm 2 / g or more, contains 0.3% or more of sulfur present as non-sulfuric sulfur, and contains iron in terms of Fe 2 O 3 . and also contains a slowly cooled blast furnace slag, characterized in that it comprises 0.5% or more, neutral solidifying material for use with carbon dioxide component to the neutral solidifying material and soil, to contact or intermixing carbonate component A feature of the soil treatment method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
The neutral solidified material of the present invention is mainly composed of blast furnace slow-cooled slag containing a predetermined amount or more of non-sulfuric sulfur and iron, and reacts and solidifies by mixing or contacting with the carbonic acid component, and at the same time the carbonic acid component. It is characterized by neutralizing the soil.
[0013]
The blast furnace slow-cooled slag used in the present invention is a blast furnace slag that has been cooled and crystallized. The components of the blast furnace slow-cooled slag have the same composition as the granulated blast furnace slag. Specifically, SiO 2 , CaO, Al 2 O 3 , MgO, etc. are the main chemical components, and in addition, TiO 2 , MnO, Na 2 O, S, P 2 O 5 , Fe 2 O 3 and the like.
[0014]
Further, a mixed crystal of gehlenite 2CaO · Al 2 O 3 · SiO 2 and Akerumanaito 2CaO · MgO · 2SiO 2, a so-called melilite as the main component, other, dicalcium silicate 2CaO · SiO 2 and rankinite night 3CaO · 2SiO 2 Ya Calcium silicates such as wollastonite CaO · SiO 2 , melvinite 3CaO · MgO · 2SiO 2 and calcium magnesium silicates such as monticite CaO · MgO · SiO 2 , anorthite CaO · Al 2 O 3 · 2SiO 2 , leucite (K 2 O, Na 2 O) · Al 2 O 3 · SiO 2 , Spinel MgO · Al 2 O 3 , sulfides such as calcium sulfide CaS and iron sulfide FeS, wustite FeO, and magnetite Fe 3 O 4 (FeO · Fe 2 O 3 ) and other compounds and pure iron may be included.
[0015]
In the present invention, among the blast furnace annealed slag, one containing 0.3% or more of non-sulfuric sulfur and 0.5% or more of iron in terms of Fe 2 O 3 is used. Moreover, it is preferable to use the blast furnace chilled slag in a powder form.
[0016]
Non-sulfuric sulfur is 0.3% or more, preferably 0.5% or more, and more preferably 0.7% or more. If non-sulfuric sulfur is less than 0.3%, hexavalent chromium, selenic acid, arsenic acid, arsenous acid, and the like are not sufficiently reduced, and the effect of reducing these harmful substances may be insufficient.
[0017]
The amount of non-sulfuric sulfur is determined by quantifying the amount of total sulfur, the amount of elemental sulfur, the amount of sulfide sulfur, the amount of thiosulfuric sulfur, and the amount of sulfuric sulfur (sulfur trioxide). The method for quantifying sulfur in different states can be obtained by the method of Yamaguchi and Ono. This is described in detail in a paper entitled “Analysis of Sulfur State in Blast Furnace Slag” (Naoji Yamaguchi, Shogo Ono: Steel Research, No. 301, pp. 37-40, 1980). Further, the amount of sulfate sulfur (sulfur trioxide) and the amount of sulfide sulfur can also be obtained by the method defined in JIS R 5202.
[0018]
The blast furnace slow-cooled slag used in the present invention is characterized by containing iron in an amount of 0.5% or more in terms of Fe 2 O 3 together with the non-sulfate sulfur. If the iron content is less than 0.5%, the effect of reducing harmful substances, particularly volatile organic compounds such as trichlorethylene (also called VOC, volatile organic compounds) may not be sufficient. Iron content can be quantified by the method of JIS R 5202.
[0019]
The iron contained in the blast furnace slow-cooled slag of the present invention is different from commercially available iron, such as reducing iron powder, FeO, magnetite and the like. That is, even if a known iron content such as reducing iron powder, FeO, or magnetite is mixed with a blast furnace slow-cooled slag substantially free of iron, the excellent effect as in the present invention cannot be obtained. Although the cause is not clear, it is thought to be due to the interaction between the iron content in the blast furnace annealed slag and melilite, which is the main component of the blast furnace annealed slag, and other components.
[0020]
The vitrification rate of the blast furnace annealed slag used in the present invention is preferably 30% or less, and more preferably 10% or less. When the vitrification rate exceeds 30%, the effects of the present invention, that is, the harmful substance reducing performance may not be sufficiently obtained.
[0021]
The vitrification rate (X) referred to in the present invention is the vitrification rate X (%) = (1−S / S 0 ) × 100.
As required. Here, S is the main crystalline compound in the slow-cooled slag obtained by powder X-ray diffractometry (mixed crystal of gelenite 2CaO · Al 2 O 3 · SiO 2 and akermanite 2CaO · MgO · 2SiO 2 ). The area of the main peak, S 0 represents the area of the main peak of melilite after the slow-cooled slag was heated at 1,000 ° C. for 3 hours and then cooled at a cooling rate of 5 ° C./min.
[0022]
The particle size of the slowly cooled blast furnace slag of the present invention, but are not particularly limited, preferably 2,000 cm 2 / g or more in Blaine specific surface area value, 3,000~8,000cm 2 / g is more preferable. If it is less than 2,000 cm 2 / g, the effect of reducing harmful substances may not be sufficient, and if it exceeds 8,000 cm 2 / g, handling becomes difficult, and deterioration over time may increase.
[0023]
The neutral solidifying material of the present invention is used as a solidifying material by mixing or contacting with a carbonic acid component in soil and reacting. The carbonic acid component referred to in the present invention is a general term for substances that supply a CO 2 component and / or a CO 3 2- component to carbonize blast furnace slow-cooled slag, and are not particularly limited. Specific examples thereof include carbon dioxide gas, supercritical carbon dioxide, dry ice, carbonates such as sodium carbonate and potassium carbonate, bicarbonates such as sodium bicarbonate and potassium bicarbonate, and carbonated water.
[0024]
The method of mixing the neutral solidifying material of the present invention with the carbonic acid component and the earthen is not particularly limited, but the method of mixing the solidified solidification material and the carbonic acid component with the earthen at once to solidify, or the neutral solidifying material and the earthen earthen Are mixed in advance with carbon dioxide gas and solidified, and before mixing the soil and the neutral solidifying material, the carbonic acid component is brought into contact with the soil and solidified. Therefore, the method of previously mixing the neutral solidifying material of the present invention with earthen soil and bringing it into contact with carbon dioxide gas is preferable. At this time, the pH of the soil is preferably adjusted to about 4 to 10, more preferably a neutral region of about 5 to 9.
[0025]
The mixing method of a carbonic acid component is not specifically limited, It can carry out by construction methods, such as an injection construction method and a forced stirring construction method.
[0026]
The neutral solidifying material of the present invention is preferably used by adding 100 to 1000 kg per 1 m 3 of soil, more preferably 150 to 500 kg. If it is less than 200 kg per 1 m 3 of soil, strength may be insufficient, and if it exceeds 500 kg, further effects cannot be obtained. The amount of the carbonic acid component used is not particularly limited because it varies depending on the addition form of the carbonic acid component and the like, but it is preferably 1 part or more, preferably 5 parts or more with respect to 100 parts of the solidified material.
[0027]
The neutral solidifying material of the present invention is preferably used in combination with an acidic substance from the viewpoint of promoting the harmful substance reducing effect. Although the acidic substance said by this invention is not specifically limited, As the specific example, for example, mineral acids, such as a sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, iron, aluminum, 4A group of these mineral acids And salts such as organic acids. Mineral acid salts include ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, ferrous nitrate, ferric nitrate, ammonium iron sulfate, polyiron (polyferric sulfate), Examples include aluminum sulfate, aluminum chloride, polyaluminum chloride, aluminum nitrate, titanium sulfate, titanyl sulfate, titanium chloride, and titanyl chloride. Moreover, organic acids, such as a citric acid, tartaric acid, malic acid, and an acetic acid, are mentioned as an organic acid.
[0028]
The harmful substance referred to in the present invention is not particularly limited, but, for example, heavy metals such as chromium, selenium, arsenic, cadmium, lead, mercury, etc. for which environmental standards are defined, all cyanide, fluorine, boron, Further, organic substances include dioxins, volatile organic compounds such as trichlorethylene and tetrachloroethylene, PCB, dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, 1,1,1-trichloroethane, Examples include 1,1,2-trichloroethane, benzene, and organic phosphorus. Examples of environmental standards not defined include copper, zinc, molybdenum, amine compounds, various environmental hormones, endocrine disrupting substances, and the like.
[0029]
In the present invention, various portland cements, filler cements mixed with limestone powder, etc., environmentally friendly cements made from municipal waste incineration ash and sewage sludge incineration ash, so-called eco cement, calcium oxide, blast furnace granulated slag, fly Ash powder, all hydrates produced from these hydraulic materials, latent hydraulic materials or pozzolanic materials, steelmaking slag such as converter slag and refining slag, electric furnace reduction period slag, electric furnace oxidation period slag, etc. Powders, magnesium compounds such as magnesium oxide, magnesium hydroxide, dolomite, hydrotalcite, carbonaceous materials such as activated carbon, layered compounds represented by montmorillonite and kaolinite, so-called bentonites, zeolites, sepiolite, Phosphoric acid such as apatite and zirconium phosphate Antimonates such as antimony trioxide and antimony pentoxide, polysulfides, sulfides, sulfur compounds such as thiosulfates, sulfites, thiourea, amalgam, reduced iron powder, celluloses, polyvinyl alcohol, chitosan, etc. One or two or more additive materials such as water-soluble polymers, dialkyldithiocarbamic acids, quinoline compounds, polyamines and saccharides can be used in combination as long as the object of the present invention is not substantially impaired. .
[0030]
Moreover, said additive material may be used together with the neutral solidification material of this invention, and even if it uses separately, it does not interfere. For example, after the primary treatment is performed with the neutral solidifying material of the present invention, the secondary treatment can be performed with the above-described additive material. It is considered preferable to perform such treatment of double harmful substances from the viewpoint of reducing harmful substances in a multifaceted and reliable manner.
[0031]
【Example】
Hereinafter, further description will be given based on experimental examples of the present invention.
[0032]
Experimental example 1
Blast furnace slag shown in Table 1 was pulverized into powder having a specific surface area of 4,000 cm 2 / g, and a neutral solidified material having an effect of reducing harmful substances was prepared. For acidic soil containing chromium, selenium, arsenic, dichloromethane, and trichlorethylene, and as a result of the dissolution test based on the Environmental Agency Notification No. 46, the amount of the toxic substance elution exceeds the environmental standard value. The effect of reducing harmful substances in soil was confirmed. To 1 m 3 of soil, 250 kg of the neutral solidifying material shown in Table 1 was added, mixed by a forced stirring method, and then stirred again while blowing carbon dioxide gas to obtain treated soil. On the 28th day after the treatment, the dissolution test was performed again using the treated soil, and the presence or absence of solidification and the pH were also confirmed. The evaluation results on the 28th day after treatment are shown in Table 1. In addition, as a comparative example, the results of conducting a dissolution test based on the Environmental Agency Notification No. 46 using ordinary Portland cement, a conventional solidified gypsum-based solidified material, or a magnesia-based solidified material are also shown. .
[0033]
<Materials used>
Blast furnace slag A: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfate sulfur 0.9%, iron content (Fe 2 O 3 conversion) 0.7%.
Blast furnace slag B: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.7%, iron content (Fe 2 O 3 conversion) 0.7%.
Blast furnace slag C: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.5%, iron content (Fe 2 O 3 conversion) 0.7%.
Blast furnace slag D: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.3%, iron content (Fe 2 O 3 conversion) 0.7%.
Blast furnace slag E: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.1%, iron content (Fe 2 O 3 conversion) 0.7%.
Blast furnace slag F: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.7%, iron content (Fe 2 O 3 conversion) 1.1%.
Blast furnace slag G: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.7%, iron content (Fe 2 O 3 conversion) 0.9%.
Blast furnace slag H: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.7%, iron content (Fe 2 O 3 conversion) 0.5%.
Blast furnace slag I: Blast furnace slow-cooled slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.7%, iron content (Fe 2 O 3 conversion) 0.3%.
Blast furnace slag J: Blast furnace annealing slag, vitrification rate 5%, specific gravity 3.00, non-sulfuric sulfur 0.1%, iron content (Fe 2 O 3 conversion) 0.3%.
Blast furnace slag K: Blast furnace slow-cooled slag, vitrification rate 10%, specific gravity 2.97, non-sulfuric sulfur 0.7%, iron content (Fe 2 O 3 conversion) 0.7%.
Blast furnace slag L: Blast furnace slow-cooled slag, vitrification rate 30%, specific gravity 2.94, non-sulfuric sulfur 0.5%, iron content (Fe 2 O 3 conversion) 0.7%.
Blast furnace slag M: Granulated blast furnace slag, 95% vitrification, specific gravity 2.90, non-sulfuric sulfur 0.7%, iron content (Fe 2 O 3 conversion) 0.7%.
Carbonic acid component a: Carbon dioxide gas.
Carbonic acid component b: dry ice.
Soil: Kanto loam soil contaminated with harmful substances. Hazardous substance content is chromium 30mg / liter, selenium 5mg / liter, arsenic 5mg / liter, dichloromethane 1mg / liter, trichloroethane 1mg / liter.
Ordinary Portland cement (OPC): A mixture of three commercial products in equal amounts.
Gypsum-based neutral solidifying material: Commercially available product, mainly composed of half-water gypsum.
Magnesia-based neutral solidifying material: Commercial product, mainly composed of magnesium oxide and magnesium phosphate.
Water: Tap water.
[0034]
<Measurement method>
Hazardous substance elution amount: Measured according to the Environmental Agency Notification No. 46.
Earth pH: Measured by inserting a commercially available pH electrode into the earth.
Presence / absence of solidification: Samples were prepared by filling the treated soil into a 10 cmφ × 20 cm mold and evaluated on the age of 28 days. The symbol “X” indicates no solidification, the symbol “Δ” indicates partial breakage during demolding, the symbol “◯” indicates the demolding strength, and the symbol “◎” indicates that the compressive strength is 1.5 N / mm 2 or more.
[0035]
[Table 1]
Figure 0003841770
Figure 0003841770
[0036]
Experimental example 2
The test was performed in the same manner as in Experimental Example 1 except that the blast furnace slag B was pulverized to obtain a neutral solidified material having a predetermined particle size shown in Table 2. The results are also shown in Table 2.
[0037]
[Table 2]
Figure 0003841770
Figure 0003841770
[0038]
【The invention's effect】
The neutral solidifying material of the present invention is solidified by contacting or mixing with carbonic acid in the soil, and harmful substances in the soil, for example, heavy metals such as chromium, selenium and arsenic, nitrate nitrogen and nitrite Nitrogen, fluorine, boron, dioxins, volatile organic compounds such as trichloroethylene and tetrachloroethylene, and the like can be reduced, and the harmful substance reducing ability is very large. In addition, since the soil after the treatment is a neutral region that approximates the pH of the original soil, there is an effect that the use of the soil after the purification treatment is not limited.

Claims (2)

ガラス化率が 30 %以下、ブレーン比表面積が 2,000cm 2 /g 以上で、非硫酸態イオウとして存在するイオウを0.3%以上含み、かつ、鉄分をFe2O3換算で0.5%以上含むことを特徴とする高炉徐冷スラグを含有してなり、炭酸成分とともに使用される中性固化材。 Vitrification rate is 30 % or less, Blaine specific surface area is 2,000cm 2 / g or more, sulfur present as non-sulfate sulfur is 0.3% or more, and iron content is 0.5% or more in terms of Fe 2 O 3 Neutral solidified material that contains the characteristic blast furnace slow-cooled slag and is used with the carbonic acid component. 請求項1記載の中性固化材及び土壤に、炭酸成分を接触又は混合することを特徴とする土壌の処理方法。To claim 1 Symbol placing neutral solidifying material and soil, processing method of soil, which comprises contacting or mixing the carbonate component.
JP2003150136A 2003-05-28 2003-05-28 Neutral solidified material and soil treatment method using the same Expired - Fee Related JP3841770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150136A JP3841770B2 (en) 2003-05-28 2003-05-28 Neutral solidified material and soil treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150136A JP3841770B2 (en) 2003-05-28 2003-05-28 Neutral solidified material and soil treatment method using the same

Publications (2)

Publication Number Publication Date
JP2004351282A JP2004351282A (en) 2004-12-16
JP3841770B2 true JP3841770B2 (en) 2006-11-01

Family

ID=34046025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150136A Expired - Fee Related JP3841770B2 (en) 2003-05-28 2003-05-28 Neutral solidified material and soil treatment method using the same

Country Status (1)

Country Link
JP (1) JP3841770B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5092203B2 (en) * 2005-04-13 2012-12-05 英昭 水渡 Method for suppressing elution of fluorine and heavy metals from waste
JP2009270059A (en) * 2008-05-09 2009-11-19 Tokyo Metropolitan Sewerage Service Corp Burned ash granulated material and method for producing it
JP2019047861A (en) * 2017-09-08 2019-03-28 Jfeミネラル株式会社 Selenium elution suppression method

Also Published As

Publication number Publication date
JP2004351282A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4531362B2 (en) Hazardous substance reducing material and method for treating sewage and soil using the same
JP4264523B2 (en) Hazardous substance reducing material and method for reducing harmful substances
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP3752980B2 (en) Technology for stabilizing industrial waste containing chromium
JP3841770B2 (en) Neutral solidified material and soil treatment method using the same
JP4068532B2 (en) Method for treating sewage containing hazardous substances
JP3919648B2 (en) Hazardous heavy metal collector
JP4712290B2 (en) Hazardous material collecting material and method of treating sewage and soil using the same
JP3844456B2 (en) Solidification material and method for purification of contaminated soil using the same
JP4634060B2 (en) Soil treatment method
JP3897727B2 (en) Hazardous material collector
JP3960947B2 (en) Hazardous substance reducing material and method for reducing harmful substance using the same
JP4712291B2 (en) Hazardous material trapping material and method of treating sewage and soil using the same
JP4400732B2 (en) Soil toxic substance elution reducing material and soil treatment method using the same
JP4148912B2 (en) Water treatment material and water treatment method
JP3939274B2 (en) Hazardous material collecting material and method of treating sewage and soil using the same
JP4497775B2 (en) Solidified material
JP4036723B2 (en) Hazardous heavy metal reducing material
JP2003190779A (en) Harmful heavy metal reducing agent
JP2005066424A (en) Harmful substance collecting material and water treatment method using the same
JP4179604B2 (en) Hazardous substance reducing material and water quality and soil treatment method using the same
JP4441225B2 (en) Exhaust gas treatment material, gas filter, and exhaust gas treatment method
JP3841738B2 (en) Hazardous heavy metal reducing material
JP3725068B2 (en) Waste water treatment material for cement concrete and waste water treatment method using the same
JP4312011B2 (en) Exhaust gas treatment material, gas filter, and exhaust gas treatment method using them

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Ref document number: 3841770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees