JP4585328B2 - Solidifying material composition - Google Patents

Solidifying material composition Download PDF

Info

Publication number
JP4585328B2
JP4585328B2 JP2005032004A JP2005032004A JP4585328B2 JP 4585328 B2 JP4585328 B2 JP 4585328B2 JP 2005032004 A JP2005032004 A JP 2005032004A JP 2005032004 A JP2005032004 A JP 2005032004A JP 4585328 B2 JP4585328 B2 JP 4585328B2
Authority
JP
Japan
Prior art keywords
material composition
chlorine
solidified material
blast furnace
furnace slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005032004A
Other languages
Japanese (ja)
Other versions
JP2006219312A (en
Inventor
昌巳 岡田
行雄 田坂
祐夫 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Ube Corp
Original Assignee
Mitsubishi Materials Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Ube Industries Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2005032004A priority Critical patent/JP4585328B2/en
Publication of JP2006219312A publication Critical patent/JP2006219312A/en
Application granted granted Critical
Publication of JP4585328B2 publication Critical patent/JP4585328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、塩素バイパス装置を備えたセメント製造プラントにおいて回収される塩素バイパスダストを有効利用した固化材組成物に関するものである。   The present invention relates to a solidified material composition that effectively uses chlorine bypass dust recovered in a cement manufacturing plant equipped with a chlorine bypass device.

従来より、塩素バイパス装置を備えたセメント製造プラントにおいて回収された塩素バイパスダストの固化材への利用方法が検討されている。   Conventionally, a method of using chlorine bypass dust recovered in a cement manufacturing plant equipped with a chlorine bypass device as a solidified material has been studied.

例えば、特許文献1に示されるセメント原料焼成装置のように、塩素バイパス装置によってセメントキルン内の排ガスの一部を抽気した後、その排ガスに含まれる塩化アルカリ等の揮発性成分を系外で固化処理して、セメント原料焼成系内における塩化アルカリ等の量を低減させる技術がある。この塩素バイパス装置は、セメント原料焼成系内におけるコーチングトラブルを防止したり、セメントクリンカー中の塩素などを抜き出したりする目的で、セメントキルンに付加的に設置されている。   For example, like the cement raw material firing apparatus shown in Patent Document 1, after extracting a part of the exhaust gas in the cement kiln with a chlorine bypass device, volatile components such as alkali chloride contained in the exhaust gas are solidified outside the system. There is a technique for reducing the amount of alkali chloride and the like in the cement raw material firing system by processing. This chlorine bypass device is additionally installed in the cement kiln for the purpose of preventing coating troubles in the cement raw material firing system and extracting chlorine and the like in the cement clinker.

この塩素バイパス装置によって抽気されたガス成分は、集塵機を経て再びセメント原料系内に戻されたり大気中に放出されたりするが、窯尻で1000℃以上の熱履歴を経たKCl等の塩化物やセメント原料の仮焼物とそれらの硫酸塩等から成る固形物が発生する。この固形物のことを塩素バイパスダストといい、水洗処理することにより塩基度を低減してスラッジ等にする場合もある。   The gas component extracted by the chlorine bypass device is returned to the cement raw material system again through the dust collector or released into the atmosphere. Solid materials composed of calcined cement raw materials and sulfates thereof are generated. This solid matter is called chlorine bypass dust, and may be made sludge or the like by reducing the basicity by washing with water.

また、特許文献2には、高炉スラグまたはフライアッシュを含むセメント90質量%〜99.7質量%と塩素バイパスダスト0.3質量%〜10質量%からなるセメント組成物とその製造方法が開示されている。この製造方法によれば、塩素バイパスダストを混合することにより、材齢3日および7日の初期強度を増大させる効果があり、初期強度改善剤の欠点である材齢28日強度の低下がないことが示されている。
特開平10−330136号公報 特開平10−218657号公報
Patent Document 2 discloses a cement composition comprising 90% by mass to 99.7% by mass of cement containing blast furnace slag or fly ash and 0.3% by mass to 10% by mass of chlorine bypass dust and a method for producing the same. ing. According to this production method, by mixing chlorine bypass dust, there is an effect of increasing the initial strength of 3 days and 7 days of age, and there is no decrease in the strength of 28 days of age, which is a drawback of the initial strength improver. It has been shown.
Japanese Patent Laid-Open No. 10-330136 JP-A-10-218657

本発明者らは、塩素バイパスダストの有効利用の一環として、塩素バイパスダストを添加した固化材組成物の開発を進めている。この分野では、塩素バイパスダストを含み、かつ、塩素バイパスダストを用いない固化材組成物と同等以上の強度発現性を有する固化材組成物が求められている。しかしながら、上記文献には、塩素バイパスダストを用いた固化材組成物は一切開示されていない。   As a part of effective utilization of chlorine bypass dust, the present inventors are proceeding with development of a solidifying material composition to which chlorine bypass dust is added. In this field, there is a demand for a solidified material composition that contains chlorine bypass dust and has a strength development equal to or higher than that of a solidified material composition that does not use chlorine bypass dust. However, the above-mentioned document does not disclose any solidifying material composition using chlorine bypass dust.

そこで、本発明は、塩素バイパスダストを用いた、強度発現性に優れた固化材組成物を提供することを目的とする。   Then, an object of this invention is to provide the solidification material composition excellent in intensity | strength expression using the chlorine bypass dust.

本発明者らは、固化材組成物における、塩素含有量と、高炉スラグ含有量と、ブレーン比表面積とがこの固化材組成物の強度発現性に及ぼす影響を鋭意研究した結果、これらが所定の範囲内の場合に強度発現性に優れた固化材組成物が得られることを見出し、本発明を完成するに至った。   As a result of earnestly studying the influence of the chlorine content, the blast furnace slag content, and the Blaine specific surface area on the strength development of the solidified material composition in the solidified material composition, When it was within the range, it was found that a solidified material composition excellent in strength development was obtained, and the present invention was completed.

本発明に係る固化材組成物は、セメントクリンカーと、高炉スラグと、塩素を含有する塩素バイパスダストと、を組成成分とする固化材組成物である。そして、この固化材組成物における塩素含有量X質量%と、固化材組成物における高炉スラグ含有量Y質量%と、固化材組成物のブレーン比表面積Zcm/gとの関係が式(1)を満足する。
0<Y≦−4.375X+38.75または583X+2834≦Z≦6000…(1)
The solidifying material composition according to the present invention is a solidifying material composition comprising a cement clinker, blast furnace slag, and chlorine bypass dust containing chlorine as composition components. The relationship between the chlorine content X mass% in the solidified material composition, the blast furnace slag content Y mass% in the solidified material composition, and the Blaine specific surface area Zcm 2 / g of the solidified material composition is expressed by the formula (1). the satisfaction of the.
0 <Y ≦ −4.375X + 38.75 or 583X + 2834 ≦ Z ≦ 6000 (1)

ここで、上記固化材組成物において、この固化材組成物における塩素含有量X質量%と、固化材組成物における高炉スラグ含有量Y質量%と、固化材組成物のブレーン比表面積Zcm/gとの関係が、さらに式(2)又は式(3)を満足することが好ましい。
0<X≦2の場合、0<Y≦30、または、4000≦Z≦6000…(2)
2≦Xの場合、0<Y≦−4.375X+38.75、または、583X+2834≦Z≦6000…(3)
Here, in the solidified material composition, the chlorine content X mass% in the solidified material composition, the blast furnace slag content Y mass% in the solidified material composition, and the Blaine specific surface area Zcm 2 / g of the solidified material composition. It is preferable that the relationship between and further satisfies the formula (2) or the formula (3).
In the case of 0 <X ≦ 2, 0 <Y ≦ 30, or 4000 ≦ Z ≦ 6000 (2)
In the case of 2 ≦ X, 0 <Y ≦ −4.375X + 38.75, or 583X + 2834 ≦ Z ≦ 6000 (3)

本発明に係る固化材組成物によれば、塩素バイパスダストを用いて、強度発現性に優れた固化材組成物を得ることができる。   According to the solidifying material composition of the present invention, it is possible to obtain a solidifying material composition excellent in strength development by using chlorine bypass dust.

以下、本発明に係るセメント系の固化材組成物の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the cement-based solidifying material composition according to the present invention will be described in detail.

本発明に係る固化材組成物は、セメントクリンカーと、高炉スラグと、石膏と、塩素バイパスダストとを含む。   The solidifying material composition according to the present invention includes cement clinker, blast furnace slag, gypsum, and chlorine bypass dust.

セメントクリンカーとしては、例えば、普通ポルトランドセメントクリンカー及び早強ポルトランドセメントクリンカー等を挙げることができる。   Examples of the cement clinker include ordinary Portland cement clinker and early-strength Portland cement clinker.

高炉スラグは特に限定されないが、急冷砕されたものであることが好ましい。また、高炉スラグの塩基度は1.4以上であるものが好ましい。ここで塩基度とはCaO含有量、MgO含有量、Al含有量の合計量をSiO量で割って算出される。なお、これらの含有量はJIS R 5202「ポルトランドセメントの化学分析方法」に準じて測定される。 The blast furnace slag is not particularly limited, but is preferably rapidly crushed. The basicity of the blast furnace slag is preferably 1.4 or more. Here, the basicity is calculated by dividing the total amount of CaO content, MgO content, and Al 2 O 5 content by the amount of SiO 2 . These contents are measured according to JIS R 5202 “Chemical analysis method of Portland cement”.

石膏としては、例えば、天然石膏、排脱石膏及びフッ酸石膏等が挙げられ、これらの石膏形態は、二水石膏、半水石膏、無水石膏の何れの形態であっても良い。また、三酸化硫黄の含有量で表した石膏の固化材組成物中の含有量は、6質量%〜15質量%が特に好ましい。この範囲を外れると強度発現性が低下し、多すぎると固化処理土の膨張破壊を生じる傾向がある。   Examples of gypsum include natural gypsum, drainage gypsum, hydrofluoric gypsum, and the like, and these gypsum forms may be any of dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum. Moreover, as for content in the solidification material composition of the gypsum represented with content of sulfur trioxide, 6 mass%-15 mass% are especially preferable. If it is out of this range, the strength developability is lowered, and if it is too much, the solidified soil tends to be expanded and broken.

塩素バイパスダストは、KCl等の塩化物やセメント原料の仮焼物、それらの硫酸塩等から成る固形物である。この固化材組成物は、セメントキルン内の排ガスの一部を抽気する塩素バイパス装置から得られる。固化材組成物に用いる塩素バイパスダストは、水洗処理される前の固形物であっても良く、水洗処理されて塩素濃度が低減されたスラッジ等であってもよい。   Chlorine bypass dust is a solid material composed of chlorides such as KCl, calcined cement raw materials, sulfates thereof, and the like. This solidifying material composition is obtained from a chlorine bypass device that extracts a part of the exhaust gas in the cement kiln. The chlorine bypass dust used in the solidifying material composition may be a solid before being washed with water, or may be sludge or the like that has been washed with water to reduce the chlorine concentration.

固化材組成物は、さらに混合剤として、高炉スラグ以外の無機成分も適宜含むことができ、例えば、フライアッシュ、石灰石及びシリカフューム等が挙げられる。混合材の配合量は固化材組成物中の塩素含有量から決定される。塩素分は塩素バイパスダストに由来する。なお、固化材組成物中の塩素含有量はJIS R 5202「ポルトランドセメントの化学分析方法」に準じて測定される。   The solidifying material composition can further contain inorganic components other than the blast furnace slag as a mixture, and examples thereof include fly ash, limestone, and silica fume. The blending amount of the mixed material is determined from the chlorine content in the solidifying material composition. Chlorine is derived from chlorine bypass dust. The chlorine content in the solidifying material composition is measured according to JIS R 5202 “Chemical analysis method for Portland cement”.

そして、本実施形態に係る固化材組成物は、固化材組成物における塩素含有量X質量%と、固化材組成物における高炉スラグ含有量Y質量%と、固化材組成物のブレーン比表面積Zcm2/gとが、式(1)の関係を満足する。
0<Y≦−4.375X+38.75または583X+2834≦Z≦6000…(1)
Then, the solidified material composition according to the present embodiment includes a chlorine content X wt% in solidifying material composition, and blast furnace slag content Y wt% in solidifying material composition, Blaine specific surface area ZCM 2 of solidified material composition / g satisfies the relationship of the formula (1).
0 <Y ≦ −4.375X + 38.75 or 583X + 2834 ≦ Z ≦ 6000 (1)

塩素含有量X質量%と、高炉スラグ含有量Y質量%と、ブレーン比表面積Zcm2/gが、式(1)を満足すると、固化材組成物を用いて固化処理された土壌の一軸圧縮強度が充分に確保される。ここで、ブレーン比表面積は、JIS R 5201 「セメントの物理試験方法」に準じて測定される。 When the chlorine content X mass%, the blast furnace slag content Y mass%, and the Blaine specific surface area Zcm 2 / g satisfy the formula (1), the uniaxial compressive strength of the soil solidified using the solidified material composition Is sufficiently secured. Here, the Blaine specific surface area is measured according to JIS R 5201 “Physical Test Method for Cement”.

ここで、本実施形態に係る固化材組成物は、固化材組成物における塩素含有量X質量%と、固化材組成物における高炉スラグ含有量Y質量%と、固化材組成物のブレーン比表面積Zcm/gとが、さらに式(2)又は式(3)の関係を満足することが好ましい。
0<X≦2の場合、0<Y≦30、または、4000≦Z≦6000…(2)
2≦Xの場合、0<Y≦−4.375X+38.75、または、583X+2834≦Z≦6000…(3)
Here, the solidified material composition according to the present embodiment includes a chlorine content X mass% in the solidified material composition, a blast furnace slag content Y mass% in the solidified material composition, and a brain specific surface area Zcm of the solidified material composition. It is preferable that 2 / g further satisfies the relationship of the formula (2) or the formula (3).
In the case of 0 <X ≦ 2, 0 <Y ≦ 30 or 4000 ≦ Z ≦ 6000 (2)
In the case of 2 ≦ X, 0 <Y ≦ −4.375X + 38.75, or 583X + 2834 ≦ Z ≦ 6000 (3)

高炉スラグ含有量Yが0<Y≦30であると、一般土の固化だけでなく高有機質土のような軟弱土の固化に優れる。また、ブレーン比表面積Zが4000cm/g以上であると固化物の強度発現性に優れ、ブレーン比表面積が6000cm/g以下であると固化材組成物の製造コストを抑制できる。 When the blast furnace slag content Y is 0 <Y ≦ 30, not only solid soil is solidified but also soft soil such as highly organic soil is solidified. Also, excellent strength development of the solidified material Blaine specific surface area Z is 4000 cm 2 / g or more, Blaine specific surface area can be suppressed manufacturing cost of the solidifying material composition is less than 6000 cm 2 / g.

このような固化材組成物は、例えば、セメントクリンカー、高炉スラグ、石膏、及び、塩素バイパスダストを混合粉砕することによって製造することができる。ここで、各材料の配合量は、混合後の固化材組成物における塩素含有量X質量%、固化材組成物における高炉スラグ含有量Y質量%、及び、固化材組成物のブレーン比表面積Zcm/gが式(1)、又は、式(若しくは式()の組み合わせを満足するように、例えば、各材料の組成を測定しこの測定値に応じて設定したり、試行錯誤法により設定したりすればよい。
Such a solidifying material composition can be produced, for example, by mixing and grinding cement clinker, blast furnace slag, gypsum, and chlorine bypass dust. Here, the compounding amount of each material is the chlorine content X mass% in the solidified composition after mixing, the blast furnace slag content Y mass% in the solidified composition, and the Blaine specific surface area Zcm 2 of the solidified composition. For example, the composition of each material is measured and set according to this measured value so that / g satisfies the formula (1), or the combination of the formula ( 2 ) or the formula ( 3 ), or by trial and error. You can set it.

各材料の混合の順序は任意であり、例えば、セメントクリンカーと塩素バイパスダストとをあらかじめ混合した後にこの混合物に高炉スラグ等を後から添加しても良く、また、塩素パイパスダスト以外の材料をあらかじめ混合した後にこの混合物に塩素バイパスダストを混合しても良い。なお、塩素バイパスダストを用いた本発明に係る固化材組成物の製造は、塩素バイパス装置を備えたセメント製造プラントにおいて行うことが好ましい。   The order of mixing the respective materials is arbitrary. For example, after mixing cement clinker and chlorine bypass dust in advance, blast furnace slag or the like may be added to the mixture later, and materials other than chlorine bypass dust may be added in advance. After mixing, chlorine bypass dust may be mixed with this mixture. In addition, it is preferable to perform manufacture of the solidification material composition which concerns on this invention using chlorine bypass dust in the cement manufacturing plant provided with the chlorine bypass apparatus.

本発明の固化材組成物は、一般の固化材と同様に使用できる。すなわち、本固化材組成物と、処理対象土と、必要に応じた量の水と、を混合すればよい。固化材組成物の処理対象土との混合量は、対象土の含水比や土質、有機物の含有量などによって当然異なる。例えば、通常、対象土1mあたりの固化材組成物の必要量は、砂質系の土で50〜200kg、粘土質系の土で50〜300kg、高含水土や高有機質土で100〜500kg程度の範囲で選択して使用する。 The solidifying material composition of the present invention can be used in the same manner as a general solidifying material. That is, what is necessary is just to mix this solidification material composition, process target soil, and the quantity of water as needed. The amount of the solidifying material composition mixed with the soil to be treated naturally varies depending on the water content ratio, soil quality, organic matter content, and the like of the target soil. For example, the required amount of the solidifying material composition per 1 m 3 of the target soil is usually 50 to 200 kg for sandy soil, 50 to 300 kg for clay soil, and 100 to 500 kg for highly hydrous soil or highly organic soil. Select and use within a range.

また、固化材組成物を使用して軟弱土の改良を行うにあたっては、固化材組成物を粉体のまま対象土と混合する乾式工法、あらかじめ固化材組成物と水とを混合してスラリー状とした後に土と混合する湿式工法などがあるが、本発明の固化材組成物はいずれの工法でも使用できる。   In addition, when improving the soft soil using the solidifying material composition, a dry method in which the solidifying material composition is mixed with the target soil as a powder, the solidifying material composition and water are mixed in advance to form a slurry. However, the solidifying material composition of the present invention can be used in any method.

以下、実施例を用いて、本発明の内容をより具体的に説明するが、本発明は下記実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

ここでは、あらかじめ混合された種々のセメント系固化材に対して、塩素バイパスダストを添加することにより、各種の固化材組成物を作成した。   Here, various solidifying material compositions were prepared by adding chlorine bypass dust to various cement-based solidifying materials mixed in advance.

[使用材料]
使用した材料を以下に示す。
(1)セメント系固化材A〜H
宇部興産(株)製の早強ポルトランドセメントクリンカーと排脱石膏と高炉スラグとを、所定の割合で混合して仕上げミルで粉砕することによってセメント系固化材を製造した。セメント系固化材の製造条件を表1に示す。表1に示すように、A〜Hの8種類のセメント系固化材を製造した。
[Materials used]
The materials used are shown below.
(1) Cement-based solidifying materials A to H
A cement-based solidified material was manufactured by mixing early strong Portland cement clinker, waste gypsum and blast furnace slag manufactured by Ube Industries, Ltd. at a predetermined ratio and pulverizing with a finishing mill. Table 1 shows the production conditions for the cement-based solidified material. As shown in Table 1, 8 types of cementitious solidified materials A to H were produced.

Figure 0004585328
Figure 0004585328

ここで、早強ポルトランドセメントクリンカーはCSの鉱物組成量が69%のものを用いた。なお、早強ポルトランドセメントクリンカーのCSの鉱物組成量は、JIS R 5202「ポルトランドセメントの化学分析方法」に準じて化学成分を測定し、次のボーグ式により求めた。
S量=4.071×CaO量−7.600×SiO量−6.718×Al
−1.430×Fe量−2.852×SO
Here, as the early strong Portland cement clinker, a C 3 S mineral composition amount of 69% was used. The C 3 S mineral composition amount of the early strong Portland cement clinker was obtained by measuring the chemical component according to JIS R 5202 “Method for chemical analysis of Portland cement” and by the following Borg equation.
C 3 S content = 4.071 × CaO amount -7.600 × SiO 2 amount -6.718 × Al 2 O 3 amount
−1.430 × Fe 2 O 3 amount−2.852 × SO 3 amount

石膏の化学成分はJIS R 9101「セッコウの分析方法」に準じ、高炉スラグの化学成分はJIS R 5202「ポルトランドセメントの化学分析方法」に準じて測定した。   The chemical composition of gypsum was measured according to JIS R 9101 “Analytical method of gypsum”, and the chemical composition of blast furnace slag was measured according to JIS R 5202 “Chemical analysis method of Portland cement”.

次に、早強ポルトランドセメントクリンカーと混合した石膏及び高炉スラグの化学成分を表2に示す。

Figure 0004585328
Next, Table 2 shows chemical components of gypsum and blast furnace slag mixed with early-strength Portland cement clinker.
Figure 0004585328

(2)塩素バイパスダスト
セメント系固化材A〜Hと混合する塩素バイパスダストとして、塩素含有量の異なるa、bの2種類を用いた。各塩素バイパスダストa、bの化学成分を表3に示す。なお、塩素バイパスダストの塩素含有量を除く化学成分はJIS R 8853「セラミックス用アルミノけい酸塩質原料の化学分析方法」に準じて測定した。塩素含有量はJIS R 5202「ポルトランドセメントの化学分析方法」に準じて測定した。

Figure 0004585328
(2) Chlorine bypass dust As the chlorine bypass dust mixed with the cement-based solidifying materials A to H, two types a and b having different chlorine contents were used. Table 3 shows chemical components of the chlorine bypass dusts a and b. The chemical components excluding the chlorine content of the chlorine bypass dust were measured according to JIS R 8853 “Chemical analysis method of aluminosilicate materials for ceramics”. The chlorine content was measured according to JIS R 5202 “Chemical analysis method for Portland cement”.
Figure 0004585328

[固化材組成物の調製]
セメント系固化材A〜Hのいずれかに、塩素バイパスダストa,bのいずれかを所定割合添加して、塩素含有量X、高炉スラグ含有量Y、ブレーン比表面積Zの組み合わせが互いに異なる参考例1〜7及び実施例1〜の固化材組成物を作製した。ここで、参考例1〜7及び実施例1〜は、塩素含有量X、高炉スラグ含有量Y、及びブレーン比表面積Zの関係が上述の式(1)を満たし、さらに式(2)若しくは式(3)の組み合わせも満たしている。参考例1〜7及び実施例1〜の固化材組成物の三酸化硫黄含有量、塩素含有量X、高炉スラグ含有量Y、ブレーン比表面積Z、について表4に示す。
また、比較例1として、塩素バイパスダストを含まない、すなわち、塩素含有量が0の固化材組成物を比較例1として製造した。さらに、塩素バイパスダストを含むもののX,Y、Zが式(1)を満たさず、さらに式(2)又は式(3)の組み合わせも満たさない固化材組成物を比較例2〜7として製造した。比較例1〜7の固化材組成物の三酸化硫黄含有量、塩素含有量X、高炉スラグ含有量Y、ブレーン比表面積Zを表4に示す。

Figure 0004585328

[Preparation of solidifying material composition]
To any of the cement solidifying material A to H, chlorine bypass dust a, and any of b is added a predetermined ratio, the reference example chlorine content X, blast furnace slag content Y, a combination of Blaine specific surface area Z different Solidified material compositions of 1 to 7 and Examples 1 to 5 were produced. Here, in Reference Examples 1 to 7 and Examples 1 to 5 , the relationship among the chlorine content X, the blast furnace slag content Y, and the Blaine specific surface area Z satisfies the above formula (1), and further, the formula (2) or The combination of formula (3) is also satisfied. Table 4 shows the sulfur trioxide content, chlorine content X, blast furnace slag content Y, and brain specific surface area Z of the solidified material compositions of Reference Examples 1 to 7 and Examples 1 to 5 .
Further, as Comparative Example 1, a solidified material composition containing no chlorine bypass dust, that is, having a chlorine content of 0 was produced as Comparative Example 1. Furthermore, solidified material compositions that contained chlorine bypass dust but did not satisfy Formula (1), and further did not satisfy the combination of Formula (2) or Formula (3) were produced as Comparative Examples 2-7. . Table 4 shows the sulfur trioxide content, chlorine content X, blast furnace slag content Y, and Blaine specific surface area Z of the solidified material compositions of Comparative Examples 1 to 7.
Figure 0004585328

[土壌固化処理試験とその評価]
含水比93.6質量%、湿潤密度1.425g/cmの対象土としての黒ぼくと、上記方法で調製した各固化材組成物を200kg/m混合した場合について、養生期間7日での一軸圧縮強さを測定した。ここで、対象土の含水比はJIS A 1203「土の含水量試験方法」に準じ、湿潤密度はJIS A 1202「土粒子の密度試験方法」に準じ測定した。また一軸圧縮強さは、対象土と所定量の固化材組成物を混合し、ホバートミキサーで5分間混練し、径5cm×長さ10cmの供試体を作製した。 供試体は7日間20℃で密封養生した後、JIS A 1216「土の一軸圧縮試験方法」に準じ、一軸圧縮強さを測定した。その結果を表4に示す。
また、一軸圧縮強さについて、塩素含有量が0.00質量%である比較例1を基準とし、その基準の一軸圧縮強さに対する一軸圧縮強さ変化の比率(百分率)を各実施例、参考例及び比較例について示した。そして、一軸圧縮強さ変化比が95%以上となる場合を良好(○)、一軸圧縮強さ変化比が95%未満となる場合を不良(×)と判定した。
また、水/固化材組成物比60%のスラリーを調整し、共軸二重円筒型回転粘度計(Haake社製Rotovisco RV1)を用いて、剪断速度(γ100)が100s−1における剪断応力(τ100)を測定し、次式から見掛け粘度(η)を算出した。
η=τ100/γ100
なお、剪断応力(τ100)の測定は、スラリー調整し15分後で、スラリー温度は35℃とした。
[Soil solidification test and its evaluation]
When the black soil as the target soil having a water content ratio of 93.6% by mass and a wet density of 1.425 g / cm 3 was mixed with each solidifying material composition prepared by the above method at 200 kg / m 3 , the curing period was 7 days. The uniaxial compressive strength was measured. Here, the water content ratio of the target soil was measured according to JIS A 1203 “Method for testing water content of soil”, and the wet density was measured according to JIS A 1202 “Method for testing density of soil particles”. In addition, the uniaxial compressive strength was obtained by mixing a target soil and a predetermined amount of a solidifying material composition and kneading for 5 minutes with a Hobart mixer to prepare a specimen having a diameter of 5 cm and a length of 10 cm. The specimen was hermetically sealed at 20 ° C. for 7 days, and then the uniaxial compressive strength was measured according to JIS A 1216 “Soil Uniaxial Compression Test Method”. The results are shown in Table 4.
Moreover, about the uniaxial compressive strength, on the basis of the comparative example 1 whose chlorine content is 0.00 mass%, the ratio (percentage) of the change of the uniaxial compressive strength with respect to the uniaxial compressive strength of the reference is shown in each example and reference. Examples and comparative examples are shown. Then, the case where the uniaxial compression strength change ratio was 95% or more was judged as good (O), and the case where the uniaxial compression strength change ratio was less than 95% was judged as poor (X).
Further, by adjusting the water / solidification agent composition ratio of 60% slurry, using coaxial double cylinder rotational viscometer (Haake Co. Rotovisco RV1), shear stress at a shear rate (gamma 100) is 100s -1100 ) was measured, and the apparent viscosity (η a ) was calculated from the following equation.
η a = τ 100 / γ 100
The measurement of the shear stress (τ 100 ) was 15 minutes after adjusting the slurry, and the slurry temperature was set to 35 ° C.

表4における判定結果に基づいて、ブレーン比表面積Zが4000cm/gのときの塩素含有量X質量%と高炉スラグ含有量Y質量%との関係を図1に、高炉スラグ含有量Yが30質量%のときの塩素含有量X質量%とブレーン比表面積Zcm2/gとの関係を図2に示す。 Based on the determination results in Table 4, the relation between the chlorine content X wt% and blast furnace slag content Y wt% when the Blaine specific surface area Z is 4000 cm 2 / g in FIG. 1, blast furnace slag content Y is 30 FIG. 2 shows the relationship between the chlorine content X mass% and the Blaine specific surface area Zcm 2 / g when the mass%.

本実施例、参考例及び比較例によれば、例えば、図1及び図2における参考例1〜3,5〜7及び実施例2,5のように、式(1)、又は、式(2)若しくは式(3)の組み合わせを満たせば、一軸圧縮強さ変化比は95%以上となることが分かった。
また、式(1)、又は、式(2)若しくは式(3)の組み合わせの範囲内では、固化材組成物のスラリーの流動性は実用上問題ない流動性を示した。
According to the present example , reference example and comparative example, for example, as in reference examples 1 to 3, 5 to 7 and examples 2 and 5 in FIG. 1 and FIG. ) Or the combination of formula (3), it was found that the uniaxial compressive strength change ratio was 95% or more.
Further, within the range of the formula (1), or the combination of the formula (2) or the formula (3), the fluidity of the slurry of the solidifying material composition showed fluidity that was not a problem in practice.

本発明によれば、塩素バイパスダストを用いた強度発現性に優れた固化材組成物が実現するので、塩素バイパスダストの利用拡大を図ることができる。   According to the present invention, since the solidified material composition having excellent strength development using chlorine bypass dust is realized, the use of chlorine bypass dust can be expanded.

図1は、ブレーン比表面積が4000cm/gの場合の、塩素量と高炉スラグ量、及び一軸圧縮強さ試験の判定結果との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of chlorine, the amount of blast furnace slag, and the determination result of the uniaxial compressive strength test when the specific surface area of the brain is 4000 cm 2 / g. 図2は、高炉スラグ量が30質量%の場合の、塩素量とブレーン比表面積、及び一軸圧縮強さ試験の判定結果との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the chlorine content, the Blaine specific surface area, and the determination result of the uniaxial compressive strength test when the blast furnace slag amount is 30% by mass.

Claims (6)

セメントクリンカーと、高炉スラグと、塩素を含有する塩素バイパスダストとを組成成分とする固化材組成物であって、
前記固化材組成物における塩素含有量X質量%と、前記固化材組成物における高炉スラグ含有量Y質量%とが、下記の式(A)〜(C)を満足する固化材組成物。
0<Y≦−4.375X+38.7…(
3.43≦X≦5.14…(B)
15≦Y≦20…(C)
A solidifying material composition comprising a cement clinker, a blast furnace slag, and chlorine bypass dust containing chlorine,
The solidified material composition in which the chlorine content X mass% in the solidified material composition and the blast furnace slag content Y mass% in the solidified material composition satisfy the following formulas (A) to (C) .
0 <Y ≦ −4.375X + 38.7 5 ( A )
3.43 ≦ X ≦ 5.14 (B)
15 ≦ Y ≦ 20 (C)
セメントクリンカーと、高炉スラグと、塩素を含有する塩素バイパスダストとを組成成分とする固化材組成物であって、  A solidifying material composition comprising a cement clinker, a blast furnace slag, and chlorine bypass dust containing chlorine,
前記固化材組成物における塩素含有量X質量%と、前記固化材組成物のブレーン比表面積Zcm  The chlorine content X mass% in the solidified material composition and the Blaine specific surface area Zcm of the solidified material composition 2 /gとが、下記の式(D)〜(F)を満足する、固化材組成物。/ G satisfies the following formulas (D) to (F).
583X+2834≦Z≦6000…(D)  583X + 2834 ≦ Z ≦ 6000 (D)
3.43≦X≦5.14…(E)  3.43 ≦ X ≦ 5.14 (E)
5000≦Z≦6000…(F)  5000 ≦ Z ≦ 6000 (F)
セメントクリンカーと、高炉スラグと、塩素を含有する塩素バイパスダストとを組成成分とする固化材組成物を、高有機質土1m  A solidified material composition comprising a cement clinker, blast furnace slag, and chlorine bypass dust containing chlorine as a component, high organic soil 1 m 3 あたり100kg〜500kg混合して、軟弱土の改良を行う方法であって、A method for improving soft soil by mixing 100 kg to 500 kg per unit,
前記固化材組成物における塩素含有量X質量%と、前記固化材組成物における高炉スラグ含有量Y質量%とが、下記の式(A)〜(C)を満足する、方法。  A method in which the chlorine content X mass% in the solidified material composition and the blast furnace slag content Y mass% in the solidified material composition satisfy the following formulas (A) to (C).
0<Y≦−4.375X+38.75…(A)  0 <Y ≦ −4.375X + 38.75 (A)
3.43≦X≦5.14…(B)  3.43 ≦ X ≦ 5.14 (B)
15≦Y≦20…(C)  15 ≦ Y ≦ 20 (C)
セメントクリンカーと、高炉スラグと、塩素を含有する塩素バイパスダストとを組成成分とする固化材組成物を、高有機質土1m  A solidified material composition comprising a cement clinker, blast furnace slag, and chlorine bypass dust containing chlorine as a component, high organic soil 1 m 3 あたり100kg〜500kg混合して、軟弱土の改良を行う方法であって、A method for improving soft soil by mixing 100 kg to 500 kg per unit,
前記固化材組成物における塩素含有量X質量%と、前記固化材組成物のブレーン比表面積Zcm  The chlorine content X mass% in the solidified material composition and the Blaine specific surface area Zcm of the solidified material composition 2 /gとが、下記の式(D)〜(F)を満足する、方法。/ G satisfies the following formulas (D) to (F).
583X+2834≦Z≦6000…(D)  583X + 2834 ≦ Z ≦ 6000 (D)
3.43≦X≦5.14…(E)  3.43 ≦ X ≦ 5.14 (E)
5000≦Z≦6000…(F)  5000 ≦ Z ≦ 6000 (F)
セメントクリンカーと、高炉スラグと、塩素を含有する塩素バイパスダストとを混合粉砕することによって、前記セメントクリンカーと、前記高炉スラグと、前記塩素バイパスダストとを組成成分とする固化材組成物を製造する方法であって、  Cement clinker, blast furnace slag, and chlorine bypass dust containing chlorine are mixed and pulverized to produce a solidified material composition containing the cement clinker, the blast furnace slag, and the chlorine bypass dust as composition components. A method,
前記固化材組成物における塩素含有量X質量%と、前記固化材組成物における高炉スラグ含有量Y質量%とが、下記の式(A)〜(C)を満足する、固化材組成物の製造方法。  Production of solidified material composition, wherein the chlorine content X mass% in the solidified material composition and the blast furnace slag content Y mass% in the solidified material composition satisfy the following formulas (A) to (C). Method.
0<Y≦−4.375X+38.75…(A)  0 <Y ≦ −4.375X + 38.75 (A)
3.43≦X≦5.14…(B)  3.43 ≦ X ≦ 5.14 (B)
15≦Y≦20…(C)  15 ≦ Y ≦ 20 (C)
セメントクリンカーと、高炉スラグと、塩素を含有する塩素バイパスダストとを混合粉砕することによって、前記セメントクリンカーと、前記高炉スラグと、前記塩素バイパスダストとを組成成分とする固化材組成物を製造する方法であって、  Cement clinker, blast furnace slag, and chlorine bypass dust containing chlorine are mixed and pulverized to produce a solidified material composition containing the cement clinker, the blast furnace slag, and the chlorine bypass dust as composition components. A method,
前記固化材組成物における塩素含有量X質量%と、前記固化材組成物のブレーン比表面積Zcm  The chlorine content X mass% in the solidified material composition and the Blaine specific surface area Zcm of the solidified material composition 2 /gとが、下記の式(D)〜(F)を満足する、固化材組成物の製造方法。/ G satisfies the following formulas (D) to (F).
583X+2834≦Z≦6000…(D)  583X + 2834 ≦ Z ≦ 6000 (D)
3.43≦X≦5.14…(E)  3.43 ≦ X ≦ 5.14 (E)
5000≦Z≦6000…(F)  5000 ≦ Z ≦ 6000 (F)
JP2005032004A 2005-02-08 2005-02-08 Solidifying material composition Active JP4585328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032004A JP4585328B2 (en) 2005-02-08 2005-02-08 Solidifying material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032004A JP4585328B2 (en) 2005-02-08 2005-02-08 Solidifying material composition

Publications (2)

Publication Number Publication Date
JP2006219312A JP2006219312A (en) 2006-08-24
JP4585328B2 true JP4585328B2 (en) 2010-11-24

Family

ID=36981865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032004A Active JP4585328B2 (en) 2005-02-08 2005-02-08 Solidifying material composition

Country Status (1)

Country Link
JP (1) JP4585328B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546714B2 (en) * 2006-10-26 2014-07-09 宇部興産株式会社 Cement-based solidified material and method for producing the same
JP5368675B2 (en) * 2007-01-17 2013-12-18 宇部興産株式会社 Method for producing cement-based solidified material
JP5415718B2 (en) * 2007-08-10 2014-02-12 宇部興産株式会社 Cement composition and cement-based solidifying material
JP5682607B2 (en) * 2012-10-02 2015-03-11 宇部興産株式会社 Cement-based solidifying material
US20150344363A1 (en) * 2013-01-07 2015-12-03 Sachtleben Chemie Gmbh Titanium-Containing Aggregate, Method for its Manufacture, and Use Thereof
JP6543912B2 (en) * 2014-10-30 2019-07-17 宇部興産株式会社 Cement composition and method for producing the same
JP6543911B2 (en) * 2014-10-30 2019-07-17 宇部興産株式会社 Cement composition and method for producing the same
JP6907747B2 (en) * 2017-06-20 2021-07-21 宇部興産株式会社 Hardened coal ash
JP7437210B2 (en) 2020-03-26 2024-02-22 Ube三菱セメント株式会社 Cement-based solidifying material and method for producing cement-based solidifying material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218657A (en) * 1997-02-06 1998-08-18 Chichibu Onoda Cement Corp Cement composition and its production
JPH11171628A (en) * 1997-12-05 1999-06-29 Kawasaki City Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition
JP2003146728A (en) * 2001-11-13 2003-05-21 Denki Kagaku Kogyo Kk Solidifying material
JP2004231479A (en) * 2003-01-31 2004-08-19 Ube Ind Ltd Cement-based solidifying agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218657A (en) * 1997-02-06 1998-08-18 Chichibu Onoda Cement Corp Cement composition and its production
JPH11171628A (en) * 1997-12-05 1999-06-29 Kawasaki City Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition
JP2003146728A (en) * 2001-11-13 2003-05-21 Denki Kagaku Kogyo Kk Solidifying material
JP2004231479A (en) * 2003-01-31 2004-08-19 Ube Ind Ltd Cement-based solidifying agent

Also Published As

Publication number Publication date
JP2006219312A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4585328B2 (en) Solidifying material composition
JP4135743B2 (en) Cement composition
JP6947501B2 (en) Cement composition
TWI701228B (en) Concrete composition and method for producing the same
JP5627840B2 (en) Cement composition
JP4568549B2 (en) Cement composition and method for producing the same
JP4122988B2 (en) Cement-based solidifying material
JP4478531B2 (en) Cement composition
JP6983963B1 (en) Cement composition
JP5924435B1 (en) Clinker composition and cement composition
JP4244102B2 (en) Weight grout mortar admixture and cement composition, and weight grout mortar
JP6980552B2 (en) Cement composition
JP4464102B2 (en) High strength mortar composition
JP4744678B2 (en) Cement admixture and cement composition
JPH10101390A (en) Curing accelerator, spraying material and spraying method using the same
JP2008156231A (en) Cement composition
JP5954512B1 (en) Clinker composition and cement composition
JP2014162696A (en) Cement-based solidifying material
JP3786872B2 (en) Concrete composition and concrete using the same
JP4498555B2 (en) Cement admixture and cement composition
JP7134668B2 (en) Cement-based solidifying material composition
JP4459380B2 (en) Cement admixture and cement composition
JP7473604B2 (en) Spraying materials and spraying methods
JP2013087036A (en) Low hydration heat cement clinker and low hydration heat cement composition
JP7185994B2 (en) Cement-based solidifying material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

R150 Certificate of patent or registration of utility model

Ref document number: 4585328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250