JPH0761852A - Cement composition - Google Patents

Cement composition

Info

Publication number
JPH0761852A
JPH0761852A JP23253293A JP23253293A JPH0761852A JP H0761852 A JPH0761852 A JP H0761852A JP 23253293 A JP23253293 A JP 23253293A JP 23253293 A JP23253293 A JP 23253293A JP H0761852 A JPH0761852 A JP H0761852A
Authority
JP
Japan
Prior art keywords
weight
concrete
cement
blast furnace
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23253293A
Other languages
Japanese (ja)
Inventor
Masanori Adachi
正則 安達
Tadashi Naito
忠 内藤
Satoshi Yamazaki
聡 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AISERA KK
Nissan Chemical Corp
Original Assignee
AISERA KK
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AISERA KK, Nissan Chemical Corp filed Critical AISERA KK
Priority to JP23253293A priority Critical patent/JPH0761852A/en
Publication of JPH0761852A publication Critical patent/JPH0761852A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a cement composition excellent in preventing the deterioration of hardened concrete. CONSTITUTION:This cement composition contains 100 pts.wt. of Portland cement, 100-230 pts.wt. of fine powder of water-granulated blast furnace slag, 100-1,000 pts.wt. of annealed blast furnace slag and 1-100 pts.wt. of lithium nitrite. The cement composition exhibits hydraulic property and has good workability to enable the use of conventional application method. The hardened material of the composition has high strength and denseness. For example, the cement paste, mortar or concrete produced from the cement composition is usable not only as a high-strength body base but also as a dense and strong coating material to be applied to hardened concrete and various other substrates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水硬性セメントを含有
するセメント組成物に関する。特に、本発明のセメント
組成物は、硬化したコンクリートの劣化を防止するため
に、当該硬化コンクリート表面に施される被覆材として
有用である。
FIELD OF THE INVENTION The present invention relates to a cement composition containing a hydraulic cement. In particular, the cement composition of the present invention is useful as a coating material applied to the surface of the hardened concrete in order to prevent deterioration of the hardened concrete.

【0002】[0002]

【従来の技術】従来より、耐久性に優れる硬化コンクリ
ートは種々の構造物、特に、鉄筋コンクリート、鉄骨コ
ンクリート等に使用されている。しかし、この硬化コン
クリートに塩化物イオンが含まれたり、或いはこの硬化
コンクリートが中性化すると、この構造物中の鉄筋、鉄
骨等に腐食が起こり、錆の発生に伴う膨張力によりこの
硬化コンクリートにひびわれが発生するに至る。このひ
びわれが発生すると、水や空気はこのひびわれを伝って
硬化コンクリートの内部に容易に侵入することができ、
この構造物中の鉄筋、鉄骨等にたやすく接触し、これら
鉄筋、鉄骨等は更に腐食が進行し、遂にこの構造物は破
壊するに至る。
2. Description of the Related Art Conventionally, hardened concrete having excellent durability has been used for various structures, particularly reinforced concrete, steel frame concrete and the like. However, if chloride ions are contained in this hardened concrete, or if this hardened concrete is neutralized, the reinforcing bars, steel frames, etc. in this structure will corrode, and the expansive force associated with the occurrence of rust will cause this hardened concrete to It will lead to cracks. When this crack occurs, water and air can easily penetrate the inside of the hardened concrete along the crack,
The reinforcing bars, steel frames, etc. in this structure are easily contacted with each other, and further corrosion of these reinforcing bars, steel frames, etc. progresses, and finally this structure is destroyed.

【0003】洗砂処理を施した海砂をコンクリートの配
合に使用することにより、その硬化コンクリートには海
砂に原因する塩化物イオンは殆ど付随して来ない。この
ように、コンクリートの配合前において、その配合成分
に基づく塩化物イオンのコンクリート中への混入は防ぐ
ことができる。
By using sea sand that has undergone sand washing treatment in the mix of concrete, the hardened concrete is hardly accompanied by chloride ions caused by sea sand. As described above, before the concrete is mixed, it is possible to prevent chloride ions based on the mixed components from being mixed into the concrete.

【0004】しかし、硬化コンクリートの表面に何らの
処理も施さないと、特に海岸近くに設けられたコンクリ
ート構造物では、この地方に多い空気中の浮遊塩分がこ
の構造物表面に確実に飛来して硬化コンクリートの内部
に侵入する。更に、何らの処理も施されていない硬化コ
ンクリート表面は、逐次空気中の二酸化炭素を吸収し、
或いは酸性雨や酸性土壌に接触してその酸性物質を吸収
する。そしてこれら酸性物質は、硬化コンクリート中の
セメント水和生成物と反応して、次第に硬化コンクリー
トを中性化させる。
However, if no treatment is applied to the surface of the hardened concrete, especially in a concrete structure provided near the coast, airborne salt, which is often present in this region, will surely fly to the surface of this structure. Penetrate inside hardened concrete. Furthermore, the hardened concrete surface that has not been subjected to any treatment absorbs carbon dioxide in the air one after another,
Alternatively, it comes into contact with acid rain or acid soil to absorb the acid substance. These acidic substances then react with the cement hydration products in the hardened concrete, gradually neutralizing the hardened concrete.

【0005】従来より、このような硬化コンクリートの
内部に侵入した有害物質に原因する鉄筋コンクリート構
造物の劣化を防ぐ方法として、エポキシ系塗料、アクリ
ル系塗料、ポリマーセメントモルタル等の仕上材で硬化
コンクリート表面を被覆する方法が採られている。
Conventionally, as a method for preventing deterioration of a reinforced concrete structure due to harmful substances penetrating into the inside of such hardened concrete, a surface of the hardened concrete is finished with a finishing material such as epoxy paint, acrylic paint, polymer cement mortar, or the like. Has been adopted.

【0006】改良された方法としては特公昭57-11988号
公報に、劣化したセメント系硬化物表面に水溶性珪酸塩
の水溶液を塗布した後セメントペーストを塗布する方法
が開示されている。特公平5-41595 号公報には、鋼材を
内蔵する無機質材の表面に、亜硝酸塩の水溶液を塗布含
浸した後、セメント系組成物を上塗りする方法が開示さ
れている。また特公平4-68272 号公報には、セメントに
対し1〜25重量%量の亜硝酸リチウムを含有するセメン
トペースト、モルタル又はコンクリートで、硬化コンク
リートの表面を被覆する方法が開示されている。
As an improved method, Japanese Examined Patent Publication No. 57-11988 discloses a method of applying an aqueous solution of a water-soluble silicate to the surface of a deteriorated cement-based cured product and then applying a cement paste. Japanese Patent Publication No. 4-41595 discloses a method in which the surface of an inorganic material containing a steel material is coated and impregnated with an aqueous solution of nitrite, and then the cementitious composition is overcoated. Japanese Patent Publication No. 4-68272 discloses a method of coating the surface of hardened concrete with cement paste, mortar or concrete containing 1 to 25% by weight of lithium nitrite with respect to cement.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記塗
料やモルタル等で被覆する従来の方法では、硬化コンク
リート表面に数回にわたる重塗りや定期的な塗り替えを
必要とし、この施工自体も煩雑であり、そして硬化コン
クリートの劣化防止硬化も充分でない。
However, in the conventional method of coating with the above paint or mortar, the hardened concrete surface requires several heavy coatings and periodic recoating, and this construction itself is complicated. Also, the hardening of the hardened concrete to prevent deterioration is not sufficient.

【0008】また、上記特公昭57-11988号公報や特公平
5-41595 号公報に開示の方法では、薬液の塗布含浸工程
とセメントペースト等の被覆材で上塗りする工程の2つ
の工程を必要とし、煩雑である。そして上記特公平4-68
272 号公報に開示の方法では、亜硝酸リチウムの含有量
が高くなるとセメントの凝結時間が延びるなどの問題点
を有する。
In addition, Japanese Patent Publication No. 57-11988 and Japanese Patent Publication No.
The method disclosed in Japanese Patent Publication No. 5-41595 is complicated because it requires two steps of coating and impregnating with a chemical solution and overcoating with a coating material such as cement paste. And above-mentioned 4-68
The method disclosed in Japanese Patent No. 272 has a problem that the setting time of cement increases as the content of lithium nitrite increases.

【0009】そしてこれら従来の方法に使用される被覆
材は、綿密度及び強度が充分でないから、長期にわたる
使用中に有害物質がこの被覆材を通って、硬化コンクリ
ートの中に少しづつ侵入するのを防ぎ得ない。
Since the covering materials used in these conventional methods have insufficient cotton density and strength, harmful substances gradually penetrate into the hardened concrete through the covering materials during long-term use. Cannot be prevented.

【0010】本発明は、硬化コンクリートに劣化をもた
らす如き物質が当該コンクリートの表面からその内部に
侵入するのを確実に防ぎ得るような、当該硬化コンクリ
ートの表面に施される被覆材を形成させるためのセメン
ト組成物を提供しようとするものである。
The present invention is intended to form a coating applied to the surface of the hardened concrete which can reliably prevent substances such as deterioration of the hardened concrete from entering the interior of the concrete. The present invention is intended to provide a cement composition.

【0011】[0011]

【課題を解決するための手段】本発明のセメント組成物
は、 100重量部のポルトランドセメントと、 100〜230
重量部の高炉水砕スラグ微粉末と、 100〜1000重量部の
高炉徐冷スラグと、1〜100 重量部の亜硝酸リチウムと
を含有することを特徴とする。
The cement composition of the present invention comprises 100 parts by weight of Portland cement and 100-230.
It is characterized in that it contains 100 parts by weight of granulated blast furnace slag fine powder, 100 to 1000 parts by weight of blast furnace slowly cooled slag, and 1 to 100 parts by weight of lithium nitrite.

【0012】本発明に用いられるポルトランドセメント
としては、普通ポルトランドセメント、早強ポルトラン
ドセメント等が挙げられる。本発明に用いられる高炉水
砕スラグ微粉末は、通常結合剤として使用される水硬性
のものであり、市販品として容易に入手することができ
る。本発明に用いられる高炉徐冷スラグは、結晶質の粉
末であって、結合剤としての性質を有しないものであ
る。この高炉徐冷スラグ粉末としては、50〜150 ミクロ
ンの平均粒径を有する高炉徐冷スラグ粒子1重量部と、
150〜300 ミクロンの平均粒径を有する高炉徐冷スラグ
粒子1〜4重量部の混合物が好ましい。
Examples of the Portland cement used in the present invention include ordinary Portland cement and early strength Portland cement. The ground granulated blast-furnace slag used in the present invention is a hydraulic one that is usually used as a binder and can be easily obtained as a commercial product. The blast furnace slowly cooled slag used in the present invention is a crystalline powder and does not have a property as a binder. As this blast furnace slowly cooled slag powder, 1 part by weight of blast furnace slowly cooled slag particles having an average particle size of 50 to 150 microns,
A mixture of 1 to 4 parts by weight of blast furnace slowly cooled slag particles having an average particle size of 150 to 300 microns is preferred.

【0013】亜硝酸リチウムは、結晶粉末としても、或
いはその水溶液としても使用することができる。この亜
硝酸リチウムの水溶液としては、10〜50重量%程度、特
に20〜40重量%濃度のものが好ましい。この水溶液は市
販の工業製品としても入手することができる。
Lithium nitrite can be used as a crystal powder or an aqueous solution thereof. The aqueous solution of lithium nitrite has a concentration of about 10 to 50% by weight, preferably 20 to 40% by weight. This aqueous solution is also available as a commercially available industrial product.

【0014】本発明のセメント組成物は、上記ポルトラ
ンドセメント 100重量部と、上記高炉水砕スラグ微粉末
100〜230 重量部と、上記高炉徐冷スラグ 100〜1000重
量部と、上記亜硝酸リチウム1〜100 重量部とを混合す
ることにより得られる。このセメント組成物は水硬性を
示し、通常、水及び所望成分と配合して、セメントペー
スト、モルタル、コンクリート等の形態で使用される。
The cement composition of the present invention comprises 100 parts by weight of the above Portland cement and the above ground granulated blast furnace slag powder.
It can be obtained by mixing 100 to 230 parts by weight, 100 to 1000 parts by weight of the blast furnace slow cooling slag, and 1 to 100 parts by weight of lithium nitrite. This cement composition exhibits hydraulic properties and is usually used in the form of cement paste, mortar, concrete or the like by mixing with water and desired components.

【0015】本発明のセメント組成物は、本発明の目的
が達成される限り、他の添加剤を含有することができ
る。好ましい添加剤の例としては、合成樹脂、合成ゴム
等の水性エマルジョン等が挙げられる。その他の好まし
い添加剤の例としては、セメント混和剤として従来から
使用されている減水剤、AE剤、AE減水剤、高性能減
水剤、高性能AE減水剤、増粘剤、硬化促進剤、防錆剤
等が挙げられる。
The cement composition of the present invention may contain other additives as long as the object of the present invention is achieved. Examples of preferable additives include aqueous emulsions of synthetic resins and synthetic rubbers. Examples of other preferable additives include a water reducing agent, an AE agent, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, a thickening agent, a curing accelerator, and an antioxidant which are conventionally used as cement admixtures. Examples include rust agents.

【0016】[0016]

【作用】本発明のセメント組成物によるセメントペース
ト、モルタル又はコンクリートの硬化物は、白華現象を
呈することなく、格別に高い強度を有することが見出さ
れた。この硬化物の高い強度は、この硬化物が高度の緻
密性を有していることを意味している。
It has been found that the cement paste, mortar, or hardened concrete of the cement composition of the present invention has exceptionally high strength without exhibiting the white bloom phenomenon. The high strength of this cured product means that this cured product has a high degree of compactness.

【0017】高炉徐冷スラグは結晶質の粉末であり、通
常、骨材として作用するが、本発明のセメント組成物に
よるセメントペースト、モルタル又はコンクリート中で
は、その表面部分が亜硝酸リチウムに由来のリチウムイ
オンと反応して、結合力の高い物質がこの表面部分に生
成するものと考えられる。すなわち、本発明のセメント
組成物によるセメントペースト、モルタル又はコンクリ
ートの硬化物には、この反応の結果、結合力の高い生成
物質を介して、骨材として作用する芯部とセメント硬化
物とが強く結合した緻密質の材料組織が形成され、これ
によりこの硬化物は高い強度を有するものと考えられ
る。
The blast furnace slowly cooled slag is a crystalline powder and usually acts as an aggregate. In the cement paste, mortar or concrete prepared by the cement composition of the present invention, the surface portion thereof is derived from lithium nitrite. It is considered that a substance having a high binding force is generated on this surface portion by reacting with lithium ions. That is, the cement paste, the mortar or the concrete hardened product by the cement composition of the present invention, as a result of this reaction, through the generated substance having a high binding force, the core portion acting as an aggregate and the hardened cement product are strong. It is considered that a bonded dense material structure is formed, and this cured product has high strength.

【0018】そして、平均粒径の大きい高炉徐冷スラグ
粒子と一緒に混合されている平均粒径の小さい高炉徐冷
スラグ粒子は、大きい粒子の間に介在して、上記材料組
織の緻密化を更に高める。けれども、小さい方の粒子1
重量部に対し大きい方の粒子1重量部以下の混合物、或
いは小さい方の粒子1重量部に対し大きい方の粒子4重
量部以上の混合物を使用して、セメントペースト、モル
タル又はコンクリートの硬化物を造ると、収縮率の大き
い硬化物が生成し、充分に高い強度及び接着力を有する
硬化物が得られない。
The blast furnace slowly cooled slag particles having a small average particle size, which are mixed together with the blast furnace slowly cooled slag particles having a large average particle size, are present between the large particles to densify the material structure. Further increase. But the smaller particle 1
Using a mixture of 1 part by weight or less of the larger particles with respect to 1 part by weight, or a mixture of 4 parts by weight or more of the larger particles with respect to 1 part by weight of the smaller particles, a cured product of cement paste, mortar or concrete is prepared. When manufactured, a cured product having a large shrinkage rate is produced, and a cured product having sufficiently high strength and adhesive strength cannot be obtained.

【0019】また、ポルトランドセメント 100重量部に
対し、高炉水砕スラグ微粉末を 100重量部以下の比率で
使用すると、十分な強度と緻密性を有する硬化物が得ら
れず、反対に 230重量部以上の比率で使用すると、硬化
時間が長引く。
Further, when 100 parts by weight of granulated blast furnace slag is used in an amount of 100 parts by weight or less based on 100 parts by weight of Portland cement, a cured product having sufficient strength and compactness cannot be obtained. When used in the above proportions, the curing time is prolonged.

【0020】亜硝酸リチウムは、高炉水砕スラグ微粉末
の硬化を促進させる作用をするが、ポルトランドセメン
トに対して1重量%以下の比率では、この硬化促進作用
は充分でなく、反対に30重量%以上、特に 100重量%以
上の比率では、長い凝結時間をもたらし、実用的セメン
ト組成物が得られない。亜硝酸リチウムは、ポルトラン
ドセメントに対して、特に5〜15重量%の比率で使用す
るのが好ましい。
Lithium nitrite has the function of accelerating the hardening of the ground granulated blast furnace slag powder, but at a ratio of less than 1% by weight to Portland cement, this hardening accelerating effect is not sufficient, and conversely 30% by weight. % Or more, particularly 100% by weight or more, results in a long setting time and a practical cement composition cannot be obtained. Lithium nitrite is particularly preferably used in a proportion of 5 to 15% by weight, based on Portland cement.

【0021】[0021]

【実施例】【Example】

実施例1 10ミクロン以下の大きさの高炉水砕スラグ粒子からなる
高炉水砕スラグ微粉末60重量部、普通ポルトランドセメ
ント40重量部、平均粒径 100ミクロンの大きさの高炉徐
冷スラグ粒子からなる高炉徐冷スラグ粉末30重量部、平
均粒径 200ミクロンの大きさの高炉徐冷スラグ粒子から
なる高炉徐冷スラグ粉末70重量部、40重量%の亜硝酸リ
チウム水溶液25重量部及び水10重量部を混合することに
より、モルタルを調製した。
Example 1 60 parts by weight of ground granulated blast furnace slag consisting of granulated blast furnace slag particles having a size of 10 microns or less, 40 parts by weight of ordinary Portland cement, and slowly cooled blast furnace slag particles having an average particle size of 100 microns 30 parts by weight of slowly cooled blast furnace slag powder, 70 parts by weight of slowly cooled blast furnace slag powder consisting of slowly cooled blast furnace slag particles having an average particle size of 200 microns, 25 parts by weight of 40% by weight aqueous lithium nitrite solution and 10 parts by weight of water A mortar was prepared by mixing

【0022】このモルタルを、縦4cm×横4cm×高さ16
cmの大きさの型枠中に打設し、1日後に脱型してモルタ
ル硬化体を調製した。次いで、この硬化体を上記打設後
28日目まで温度20℃の水中で養生を行った後取り出して
モルタル試験体を得た。このモルタル試験体について、
曲げ強度と圧縮強度を測定した。
This mortar is 4 cm in length × 4 cm in width × 16 in height
It was placed in a mold having a size of cm, and after 1 day, it was demolded to prepare a cured mortar. Then, this cured body is placed
After 28 days of curing in water at a temperature of 20 ° C., it was taken out to obtain a mortar specimen. About this mortar specimen,
Bending strength and compressive strength were measured.

【0023】別途、上記同様にして調製したモルタル
を、コンクリート基盤の上にコテを用いて5mm厚さに塗
り付け、その1日後から28日目まで温度20℃の水中で養
生を行った後取り出してモルタル被覆のコンクリートを
調製した。次いで、そのモルタル被覆の表面に、縦4cm
×横4cmの付着試験用ジグをエポキシ樹脂接着剤を用い
て張り付けることにより、モルタル被覆のコンクリート
試験体を得た。このモルタル被覆のコンクリート試験体
について、建研式接着力試験器を用いて付着強度を測定
した。これら測定結果を第1表に示す。
Separately, a mortar prepared in the same manner as above was applied on a concrete base with a trowel to a thickness of 5 mm, and cured one day later to 28 days in water at a temperature of 20 ° C. and then taken out. A mortar-coated concrete was prepared. Then, on the surface of the mortar coating, length 4 cm
A mortar-covered concrete specimen was obtained by sticking a 4 cm horizontal jig for adhesion test using an epoxy resin adhesive. The adhesive strength of this mortar-covered concrete specimen was measured using a Kenken-type adhesive strength tester. The results of these measurements are shown in Table 1.

【0024】比較例1 10ミクロン以下に粉砕した高炉水砕スラグ微粉末60重量
部、普通ポルトランドセメント40重量部、豊浦産標準砂
100重量部及び水35重量部を混合してモルタルを調製し
た他は、実施例1と同様にしてモルタル試験体を得た。
このモルタル試験体について、曲げ強度と圧縮強度を測
定した。
Comparative Example 1 60 parts by weight of ground granulated blast furnace slag powder crushed to 10 microns or less, 40 parts by weight of ordinary Portland cement, standard sand from Toyoura
A mortar specimen was obtained in the same manner as in Example 1 except that 100 parts by weight and 35 parts by weight of water were mixed to prepare a mortar.
The bending strength and the compressive strength of this mortar specimen were measured.

【0025】別途、上記同様にして調製したモルタルを
使用した他は、実施例1と同様にして、モルタル被覆の
コンクリート試験体を得た。このモルタル被覆のコンク
リート試験体について、建研式接着力試験器を用いて付
着強度を測定した。これら測定結果を第1表に示す。
Separately, a mortar-covered concrete specimen was obtained in the same manner as in Example 1 except that the mortar prepared as described above was used. The adhesive strength of this mortar-covered concrete specimen was measured using a Kenken-type adhesive strength tester. The results of these measurements are shown in Table 1.

【0026】[0026]

【表1】 ──────────────────────────── 試験項目 実施例1 比較例1 ──────────────────────────── 曲げ強度(kg/cm2) 96 62 圧縮強度(kg/cm2) 441 285 付着強度(kg/cm2) 49 16 剥離した面 コンクリート 上塗モルタル ────────────────────────────[Table 1] ───────────────────────────── Test item Example 1 Comparative Example 1 ─────────── ────────────────── Bending strength (kg / cm 2 ) 96 62 Compressive strength (kg / cm 2 ) 441 285 Adhesive strength (kg / cm 2 ) 49 16 Peeled Surface Concrete Topcoat Mortar ────────────────────────────

【0027】第1表の結果を見ると、比較例1に対し、
実施例1では顕著に高い強度が得られている。そしてモ
ルタル被覆のコンクリートへの付着強度測定において
も、比較例1では上塗モルタルの破壊による剥離が起こ
ったのに対し、実施例1では基盤のコンクリートの破壊
による剥離が起こり、上塗モルタルの強度が高いことを
示している。この上塗モルタルの高い強度は、このモル
タルが緻密であることを意味している。
Looking at the results in Table 1, in comparison with Comparative Example 1,
In Example 1, remarkably high strength was obtained. Also in the measurement of the adhesion strength of the mortar coating to the concrete, in Comparative Example 1, the peeling due to the destruction of the overcoat mortar occurred, whereas in Example 1, the peeling due to the destruction of the base concrete occurred and the strength of the overcoat mortar was high. It is shown that. The high strength of this topcoat mortar means that the mortar is dense.

【0028】実施例2 打設後17年経過した5階建ての打ち放しコンクリート仕
上げの鉄筋コンクリート構造物にひびわれ、コンクリー
トの剥落等が見られたため、この構造物に補修工事が行
われた。この工事では、そのひびわれ部とコンクリート
の剥落部を埋め戻した後、構造物全体を実施例1と同様
にして調製したモルタルで被覆することが行われた。こ
の補修を施してから1年経過後に調査を行ったところ、
何ら異常が認められなかった。
Example 2 Repair work was carried out on a five-story exposed concrete-finished reinforced concrete structure which had been cracked for 17 years since it was cracked and the concrete was peeled off. In this construction, the cracked portion and the exfoliated portion of concrete were backfilled, and then the entire structure was covered with mortar prepared in the same manner as in Example 1. After a year after the repair, we conducted an investigation and found that
No abnormality was found.

【0029】[0029]

【発明の効果】本発明のセメント組成物は水硬性を示
し、そして通常の施工方法を適用できる良好な作業性を
有する。その硬化物は高い強度と緻密性を有し、例え
ば、このセメント組成物によるセメントペースト、モル
タル又はコンクリートは、高強度の素地基材として使用
できるのみならず、硬化コンクリート、その他基材の上
に施される緻密で高強度を有する被覆材として使用する
ことができる。
EFFECTS OF THE INVENTION The cement composition of the present invention exhibits hydraulic properties and has good workability to which ordinary construction methods can be applied. The cured product has high strength and denseness. For example, the cement paste, mortar or concrete produced by this cement composition can be used not only as a high-strength base material, but also on hardened concrete or other base materials. It can be used as a dense and high-strength coating material to be applied.

【0030】特に、このセメント組成物によるセメント
ペースト又はモルタルで、硬化コンクリートの表面に被
覆を施すと、その緻密で高強度を有する被覆層によっ
て、硬化コンクリートへの外来塩化物イオン、二酸化炭
素、水等の侵入が遮断され、硬化コンクリートの劣化が
防止される。劣化が未だ起こっていない硬化コンクリー
トの表面、或いは既に劣化が起こった硬化コンクリート
の表面に直接、又はその補修処理後にこの被覆を施す
と、以後の硬化コンクリートの劣化を防止することがで
きる。
In particular, when the surface of hardened concrete is coated with cement paste or mortar of this cement composition, the dense and high-strength coating layer allows foreign chloride ions, carbon dioxide, and water to enter the hardened concrete. Invasion of such materials is blocked and deterioration of hardened concrete is prevented. If this coating is applied directly to the surface of the hardened concrete that has not yet deteriorated, or to the surface of the hardened concrete that has already deteriorated, or after the repair treatment, subsequent deterioration of the hardened concrete can be prevented.

【0031】鉄筋コンクリート、鉄骨コンクリート等の
腐食性金属材料が埋め込まれている硬化コンクリートの
表面に、このセメント組成物によるセメントペースト又
はモルタルの被覆を施すと、この被覆層中の亜硝酸リチ
ウムが硬化コンクリートの内部へ逐次浸透し、その浸透
した亜硝酸リチウムによってその鉄筋、鉄骨等の腐蝕が
防止される。また、鉄筋、鉄骨等の有無に係わらず、ア
ルカリ骨材反応を起こす骨材を含有する硬化コンクリー
トに対しても、この被覆を施すことによって、上記同様
に浸透した亜硝酸リチウム由来のリチウムイオンは、そ
の硬化コンクリート中のアルカリ骨材反応を防止する。
When a cement paste or mortar is coated with this cement composition on the surface of hardened concrete in which a corrosive metal material such as reinforced concrete or steel frame concrete is embedded, lithium nitrite in the coating layer is hardened concrete. The permeated lithium nitrite prevents corrosion of the rebar, steel frame, etc. Further, regardless of the presence or absence of rebar, steel frame, etc., even for hardened concrete containing aggregate that causes an alkaline aggregate reaction, by applying this coating, lithium ions derived from lithium nitrite permeated in the same manner as above, , Prevent alkali-aggregate reaction in the hardened concrete.

【0032】本発明のセメント組成物によるセメントペ
ースト、モルタル又はコンクリートの硬化物表面は、別
の塗材との良好な密着性を有し、その表面に上塗りを施
すことができる。例えば、その表面に疏水性材料の上塗
りを施すことにより、硬化コンクリートへの有害物質の
侵入防止効果を更に高めることができる。
The surface of the hardened material of cement paste, mortar or concrete by the cement composition of the present invention has good adhesion to another coating material, and the surface can be overcoated. For example, by coating the surface of the hydrophobic material, the effect of preventing harmful substances from entering the hardened concrete can be further enhanced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 18:14 A 22:08) B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C04B 18:14 A 22:08) B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 100重量部のポルトランドセメントと、
100〜230 重量部の高炉水砕スラグ微粉末と、 100〜10
00重量部の高炉徐冷スラグと、1〜100 重量部の亜硝酸
リチウムとを含有するセメント組成物。
1. 100 parts by weight of Portland cement,
100 to 230 parts by weight of granulated blast furnace granulated slag and 100 to 10 parts by weight
A cement composition containing 00 parts by weight of slowly cooled blast furnace slag and 1 to 100 parts by weight of lithium nitrite.
【請求項2】 高炉徐冷スラグは、50〜150 ミクロンの
平均粒径を有する高炉徐冷スラグ粒子1重量部と、 150
〜300 ミクロンの平均粒径を有する高炉徐冷スラグ粒子
1〜4重量部からなることを特徴とする請求項1に記載
のセメント組成物。
2. The blast furnace slowly cooled slag comprises 1 part by weight of blast furnace slowly cooled slag particles having an average particle size of 50 to 150 microns.
The cement composition according to claim 1, which comprises 1 to 4 parts by weight of blast furnace slowly cooled slag particles having an average particle diameter of ˜300 μm.
JP23253293A 1993-08-25 1993-08-25 Cement composition Pending JPH0761852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23253293A JPH0761852A (en) 1993-08-25 1993-08-25 Cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23253293A JPH0761852A (en) 1993-08-25 1993-08-25 Cement composition

Publications (1)

Publication Number Publication Date
JPH0761852A true JPH0761852A (en) 1995-03-07

Family

ID=16940816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23253293A Pending JPH0761852A (en) 1993-08-25 1993-08-25 Cement composition

Country Status (1)

Country Link
JP (1) JPH0761852A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208290A (en) * 1996-01-31 1997-08-12 Ono Kogyo Kk Paving material and paving block using the same
JP2001261415A (en) * 2000-03-21 2001-09-26 Denki Kagaku Kogyo Kk Cement mixing agent, cement composition and high fluidity concrete using the composition
JP2001294459A (en) * 2000-04-12 2001-10-23 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2002003249A (en) * 2000-06-16 2002-01-09 Denki Kagaku Kogyo Kk Cement admixture, cement composition and cement concrete with high flowability
WO2002022518A1 (en) * 2000-09-13 2002-03-21 Denki Kagaku Kogyo Kabushiki Kaisha Cement composition
JP2002097047A (en) * 2000-09-25 2002-04-02 Denki Kagaku Kogyo Kk Cement admixture, cement composition and method of using the same
JP2002321950A (en) * 2001-04-24 2002-11-08 Taiheiyo Cement Corp Filler cement composition
JP2002321949A (en) * 2001-04-24 2002-11-08 Taiheiyo Cement Corp Blast furnace cement composition
JP2003095721A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, and cement composition
JP2003095718A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement concrete composition obtained by using the same
JP2003095717A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement concrete obtained by using the same
JP2003095714A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and high fluidity concrete obtained by using the same
JP2003112957A (en) * 2001-10-03 2003-04-18 Denki Kagaku Kogyo Kk Cement admixture, and cement composition
JP2003147716A (en) * 2001-11-13 2003-05-21 Kawasaki Steel Corp Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP2003146728A (en) * 2001-11-13 2003-05-21 Denki Kagaku Kogyo Kk Solidifying material
JP2003165758A (en) * 2001-11-29 2003-06-10 Denki Kagaku Kogyo Kk Back-filling grout
JP2003176160A (en) * 2001-12-06 2003-06-24 Denki Kagaku Kogyo Kk Carbonated hardened cement composition
JP2003221268A (en) * 2002-01-29 2003-08-05 Denki Kagaku Kogyo Kk Cement hardened body production method and cement hardened body obtained by the method
JP2004051423A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2004142973A (en) * 2002-10-23 2004-05-20 Denki Kagaku Kogyo Kk Porous concrete
JP2006016261A (en) * 2004-07-02 2006-01-19 Denki Kagaku Kogyo Kk Spraying composition, spraying paste, and method of rust prevention processing using them
JP2006273680A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Grouting material for repair or thickness increase of concrete structure and construction method for prevention of alkali aggregate reaction using the grouting material
JP2007009693A (en) * 2006-10-23 2007-01-18 Jfe Steel Kk Pavement and paving method
CN100445469C (en) * 2004-03-30 2008-12-24 株式会社特弓 High-strength concrete prefabricated piece having both water permeability and water-retaining property
JP2014198640A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Hydraulic composition
JP2018076203A (en) * 2016-11-10 2018-05-17 国立大学法人東京工業大学 Cement-based hydraulic composition
JP2021148675A (en) * 2020-03-23 2021-09-27 株式会社トクヤマ Method of measuring content of calcium propionate in cement-based hardened body, and method of suppressing alkali-aggregate reaction of cement-based hardened body

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208290A (en) * 1996-01-31 1997-08-12 Ono Kogyo Kk Paving material and paving block using the same
JP2001261415A (en) * 2000-03-21 2001-09-26 Denki Kagaku Kogyo Kk Cement mixing agent, cement composition and high fluidity concrete using the composition
JP2001294459A (en) * 2000-04-12 2001-10-23 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2002003249A (en) * 2000-06-16 2002-01-09 Denki Kagaku Kogyo Kk Cement admixture, cement composition and cement concrete with high flowability
WO2002022518A1 (en) * 2000-09-13 2002-03-21 Denki Kagaku Kogyo Kabushiki Kaisha Cement composition
JP5080714B2 (en) * 2000-09-13 2012-11-21 電気化学工業株式会社 Cement composition
JPWO2002022518A1 (en) * 2000-09-13 2004-01-22 電気化学工業株式会社 Cement composition
US6840996B2 (en) 2000-09-13 2005-01-11 Denki Kagaku Kogyo Kabushiki Kaisha Cement composition
KR100717090B1 (en) * 2000-09-13 2007-05-10 덴끼 가가꾸 고교 가부시키가이샤 Cement composition
JP4558165B2 (en) * 2000-09-25 2010-10-06 電気化学工業株式会社 Cement admixture, cement composition and spraying method using the same
JP2002097047A (en) * 2000-09-25 2002-04-02 Denki Kagaku Kogyo Kk Cement admixture, cement composition and method of using the same
JP2002321949A (en) * 2001-04-24 2002-11-08 Taiheiyo Cement Corp Blast furnace cement composition
JP2002321950A (en) * 2001-04-24 2002-11-08 Taiheiyo Cement Corp Filler cement composition
JP2003095717A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement concrete obtained by using the same
JP2003095714A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and high fluidity concrete obtained by using the same
JP2003095718A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, cement composition, and cement concrete composition obtained by using the same
JP2003095721A (en) * 2001-09-26 2003-04-03 Denki Kagaku Kogyo Kk Cement admixture, and cement composition
JP2003112957A (en) * 2001-10-03 2003-04-18 Denki Kagaku Kogyo Kk Cement admixture, and cement composition
JP2003146728A (en) * 2001-11-13 2003-05-21 Denki Kagaku Kogyo Kk Solidifying material
JP2003147716A (en) * 2001-11-13 2003-05-21 Kawasaki Steel Corp Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP2003165758A (en) * 2001-11-29 2003-06-10 Denki Kagaku Kogyo Kk Back-filling grout
JP2003176160A (en) * 2001-12-06 2003-06-24 Denki Kagaku Kogyo Kk Carbonated hardened cement composition
JP2003221268A (en) * 2002-01-29 2003-08-05 Denki Kagaku Kogyo Kk Cement hardened body production method and cement hardened body obtained by the method
JP2004051423A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2004142973A (en) * 2002-10-23 2004-05-20 Denki Kagaku Kogyo Kk Porous concrete
CN100445469C (en) * 2004-03-30 2008-12-24 株式会社特弓 High-strength concrete prefabricated piece having both water permeability and water-retaining property
JP2006016261A (en) * 2004-07-02 2006-01-19 Denki Kagaku Kogyo Kk Spraying composition, spraying paste, and method of rust prevention processing using them
JP2006273680A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Grouting material for repair or thickness increase of concrete structure and construction method for prevention of alkali aggregate reaction using the grouting material
JP4693456B2 (en) * 2005-03-30 2011-06-01 住友大阪セメント株式会社 A grout material for repairing or thickening a concrete structure, and an alkali aggregate reaction prevention construction method using the grout material
JP2007009693A (en) * 2006-10-23 2007-01-18 Jfe Steel Kk Pavement and paving method
JP2014198640A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Hydraulic composition
JP2018076203A (en) * 2016-11-10 2018-05-17 国立大学法人東京工業大学 Cement-based hydraulic composition
JP2021148675A (en) * 2020-03-23 2021-09-27 株式会社トクヤマ Method of measuring content of calcium propionate in cement-based hardened body, and method of suppressing alkali-aggregate reaction of cement-based hardened body

Similar Documents

Publication Publication Date Title
JPH0761852A (en) Cement composition
US4153473A (en) Method of controlling and removing ice and snow from roads and bridges
KR101472485B1 (en) Geo-polymer mortar cement composition using the same construction methods
JPS6050742B2 (en) Self-curing inorganic composition
CA1328584C (en) Method for preventing hardened cementitious material from deteriorating
KR101551842B1 (en) Method for Repairing Deteriorate Parts in Concrete Using Mortar
KR101482976B1 (en) Permeability Primer for Repairing Alkali of Concrete Structure and Method for Repairing the Same Thereof
KR101931721B1 (en) Method for repairing concrete structure using eco-friendly inorganic polymer
KR101943374B1 (en) Crack-Reducing Type Steel-Cement Concrete Composition Having Improved Durability, And Method For Repairing And Rehabilitating Road Pavement Using The Composition
JP2002201057A (en) Adiabatic mortar
JP2003120041A (en) Repair method for concrete deteriorated by salt damage
CA1213619A (en) Polymer cement mortar composition
JP2000290088A (en) Method for preventing acid deterioration of concrete surface and deposition of dust on the surface
JP5300483B2 (en) A method to improve the adhesion of cement bond coatings on concrete surfaces
JPH0475178B2 (en)
JP3190277B2 (en) Cement composition
JPS63162590A (en) Method of mending ferroconcrete
JP2913275B2 (en) Hybrid exterior wall repair method
JPS62117957A (en) Reparing of cementitious structure
JPH04357184A (en) Method for preventing drterioraton of cured concrete
JPS6357474B2 (en)
JP5730627B2 (en) Curing agent for alumina cement composition and repair method using the same
JPS62241854A (en) Hydraulic material composition
JPH0774087B2 (en) Aggregate for cured inorganic material and method for producing the same
JPH0774089B2 (en) Mortar composition