JP2003095721A - Cement admixture, and cement composition - Google Patents

Cement admixture, and cement composition

Info

Publication number
JP2003095721A
JP2003095721A JP2001293538A JP2001293538A JP2003095721A JP 2003095721 A JP2003095721 A JP 2003095721A JP 2001293538 A JP2001293538 A JP 2001293538A JP 2001293538 A JP2001293538 A JP 2001293538A JP 2003095721 A JP2003095721 A JP 2003095721A
Authority
JP
Japan
Prior art keywords
cement
polymer
composition
admixture
cooled slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001293538A
Other languages
Japanese (ja)
Other versions
JP5132022B2 (en
Inventor
Katsuichi Miyaguchi
克一 宮口
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001293538A priority Critical patent/JP5132022B2/en
Publication of JP2003095721A publication Critical patent/JP2003095721A/en
Application granted granted Critical
Publication of JP5132022B2 publication Critical patent/JP5132022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cement admixture which has excellent fluidity even in summer compared with that in a conventional polymer cement mortar composition, has improved strength, and is mainly used in the civil engineering and construction field, and to provide a cement composition. SOLUTION: The cement admixture contains blastfurnace slow cooled slag fine powder crystallized by annealing, and a polymer such as synthetic rubber latex and resin emulsion, and the cement composition contains cement and the cement admixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に、土木・建築
分野において使用されるセメント混和材及びセメント組
成物に関する。本発明では特に限定しない限り部や%は
質量基準である。
TECHNICAL FIELD The present invention mainly relates to a cement admixture and a cement composition used in the fields of civil engineering and construction. In the present invention, parts and% are based on mass unless otherwise specified.

【0002】[0002]

【従来の技術とその課題】一般に、ポルトランドセメン
トにポリマーエマルジョンや骨材を配合したポリマーセ
メントモルタルはよく知られている(特公平02-10112公
報等)。これらのポリマーセメントモルタル組成物は耐
水性に優れており、主に、建築物の内壁や外壁等に使用
されてきた。また、最近は、橋脚や床版等の劣化部を除
去したあとの断面修復材として使用され、補修材料とし
ての需要が高まってきている。しかしながら、これらの
ポリマーセメントモルタルは、流動性の保持性能に劣
り、工事現場での安定的な施工の妨げとなり、施工不良
の原因となることが問題となっていた。
2. Description of the Related Art Generally, polymer cement mortar in which a polymer emulsion or an aggregate is mixed with Portland cement is well known (Japanese Patent Publication No. 02-10112, etc.). These polymer cement mortar compositions have excellent water resistance and have been mainly used for the inner wall and outer wall of buildings. In addition, recently, it is used as a cross-section restoration material after removing deteriorated parts such as bridge piers and floor slabs, and the demand as a repair material is increasing. However, these polymer cement mortars have a problem that they are inferior in fluidity retention performance, hinder stable construction at a construction site, and cause defective construction.

【0003】本発明者は、種々検討の結果、特定の材料
を使用することによって、前記従来技術の持つ課題を解
消し、流動性の保持性能に優れ、しかも高強度なポリマ
ーセメント組成物が得られるとの知見を得て本発明を完
成するに至った。
As a result of various studies, the inventor of the present invention has solved the problems of the above-mentioned prior art by using a specific material, and obtained a polymer cement composition having excellent fluidity retention performance and high strength. The present invention has been completed based on the finding that it is possible.

【0004】[0004]

【問題を解決するための手段】即ち、本発明は、高炉徐
冷スラグ微粉末とポリマーを含有してなるセメント混和
材であり、セメントと該セメント混和材を含有してなる
セメント組成物である。
[Means for Solving the Problem] That is, the present invention is a cement admixture containing blast furnace slowly cooled slag fine powder and a polymer, and a cement composition containing cement and the cement admixture. .

【0005】[0005]

【発明の実施の形態】以下、本発明を詳しく説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.

【0006】本発明で使用する高炉徐冷スラグ微粉末
(以下、徐冷スラグという)は徐冷されて結晶化した高炉
スラグの粉末である。徐冷スラグは、通常、ドライピッ
ト、あるいは、畑と呼ばれる冷却ヤードに溶融スラグを
流し込み、自然放冷と適度の散水により冷却され、結晶
質の塊状スラグとして得られる。徐冷スラグの成分は高
炉水砕スラグと同様の組成を有しており、具体的には、
SiO2、CaO、Al2O3、及びMgOなどを主要な化学成分と
し、その他微量成分として、Na2O、K2O、Fe2O3、MnO、T
iO2、S、Cr2O3、及びP2O5などを含有する。この化学成
分の割合は特に限定されるものではないが、通常、主成
分であるSiO2は25〜45%、CaOは30〜50%、Al2O3は10〜
20%、及びMgOは3〜10%程度であり、微量成分であるN
a2O、K2O、Fe2O3、MnO、TiO2、及びSなどは各々2%以
下である。徐冷スラグのブレーン比表面積(以下、ブレ
ーン値という)は4,000cm2/gを超えることが好ましく、
4,500cm2/g以上がより好ましく、5,000cm2/g以上が最も
好ましい。ブレーン値が4,000cm2/g以下では優れた初期
強度や耐酸性が得られない場合がある。また、ブレーン
値は、大きすぎると混練水量が多くなり、強度発現性や
耐久性が悪くなる場合があり、8,000cm2/g以下が好まし
い。徐冷スラグのガラス化率は30%以下が好ましく、10
%以下がより好ましい。ガラス化率が30%を超えると水
和熱が大きくなる場合がある。ガラス化率(X)は、X
(%)=(1−S/S0)×100として求められる。ここで、
Sは粉末X線回折法により求められる徐冷スラグ中の主
要な結晶性化合物であるメリライト(ゲーレナイト2CaO・
Al2O3・SiO2とアケルマナイト2CaO・MgO・2SiO2の固溶体)
のメインピークの面積であり、S0は徐冷スラグを1,000
℃で3時間加熱し、その後、5℃/分の冷却速度で冷却
したもののメリライトのメインピークの面積を表す。徐
冷スラグの使用量は、セメント100部に対して、5〜300
部が好ましく、10〜100部がより好ましい。5部未満で
は強度増進効果が充分に発揮できない場合があり、300
部を超えると作業性が悪化する場合がある。
Blast furnace slowly cooled slag fine powder used in the present invention
(Hereinafter, referred to as slowly cooled slag) is powder of blast furnace slag that is slowly cooled and crystallized. The slow-cooled slag is usually obtained by pouring the molten slag into a dry pit or a cooling yard called a field, cooling it by natural cooling and appropriate watering, and obtaining crystalline massive slag. The components of the slowly cooled slag have the same composition as the granulated blast furnace slag, and specifically,
SiO 2 , CaO, Al 2 O 3 and MgO are the main chemical components, and other minor components are Na 2 O, K 2 O, Fe 2 O 3 , MnO, T
It contains iO 2 , S, Cr 2 O 3 , P 2 O 5 , and the like. The proportion of this chemical component is not particularly limited, but normally, the main component SiO 2 is 25 to 45%, CaO is 30 to 50%, and Al 2 O 3 is 10 to
20%, and MgO is about 3-10%, and N is a trace component.
Each of a 2 O, K 2 O, Fe 2 O 3 , MnO, TiO 2 , and S is 2% or less. The Blaine specific surface area of the slowly cooled slag (hereinafter, referred to as Blaine value) preferably exceeds 4,000 cm 2 / g,
4,500 cm 2 / g or more is more preferable, and 5,000 cm 2 / g or more is most preferable. When the Blaine value is 4,000 cm 2 / g or less, excellent initial strength and acid resistance may not be obtained. When the Blaine value is too large, the amount of kneading water increases, which may deteriorate the strength development and durability, and is preferably 8,000 cm 2 / g or less. The vitrification rate of the slowly cooled slag is preferably 30% or less,
% Or less is more preferable. If the vitrification ratio exceeds 30%, the heat of hydration may increase. Vitrification rate (X) is X
(%) = (1−S / S 0 ) × 100. here,
S is melilite (gerenite 2CaO.) Which is the main crystalline compound in the slowly cooled slag obtained by powder X-ray diffraction method.
(Solid solution of Al 2 O 3 · SiO 2 and akermanite 2CaO · MgO · 2SiO 2 )
The area of the main peak of S 0 is 1,000 for the slowly cooled slag.
The area of the main peak of melilite after heating at 0 ° C. for 3 hours and then cooling at a cooling rate of 5 ° C./min is shown. The amount of slowly cooled slag used is 5 to 300 per 100 parts of cement.
Parts are preferred, and 10-100 parts are more preferred. If it is less than 5 parts, the strength enhancing effect may not be fully exerted,
If it exceeds the number of parts, workability may deteriorate.

【0007】本発明で使用するポリマーは、特に限定さ
れた物ではなく、公知の種々の物が使用できるが、通
常、天然ゴムラテックス、スチレンブタジエンゴム、ク
ロロプレンゴム、メタクリル酸メチルブタジエンゴム、
及びアクリロニトリルブタジエンゴムなどの合成ゴムラ
テックス、ポリアクリル酸エステル、エチレン酢酸ビニ
ル、スチレンアクリル酸エステル、塩化ビニル、塩化ビ
ニリデン、ポリプロピオン酸ビニル、ポリプロピレン、
エポキシ樹脂、アスファルト、ゴムアスファルト、及び
パラフィンなどの樹脂エマルジョン、エチレン酢酸ビニ
ル、酢酸ビニルビニルバーサテート、スチレンアクリル
酸エステル、及びポリアクリル酸エステルなどの再乳化
形粉末樹脂等、又はこれらの混合物が使用可能である。
ポリマーの使用量は、セメント100部に対して、固形分
換算で2〜30部が好ましく、5〜20部がより好ましい。
2部未満では耐水性や付着強度等、ポリマーに起因する
性能が充分に発揮できない場合があり、30部を超えると
作業性が悪化する場合がある。
The polymer used in the present invention is not particularly limited and various known ones can be used. Usually, natural rubber latex, styrene butadiene rubber, chloroprene rubber, methyl methacrylate methacrylate,
And synthetic rubber latex such as acrylonitrile butadiene rubber, polyacrylic acid ester, ethylene vinyl acetate, styrene acrylic acid ester, vinyl chloride, vinylidene chloride, vinyl propionate, polypropylene,
Epoxy resin, resin emulsion such as asphalt, rubber asphalt, and paraffin, re-emulsified powder resin such as ethylene vinyl acetate, vinyl acetate vinyl versatate, styrene acrylic ester, and polyacrylic ester, or a mixture thereof is used. It is possible.
The amount of the polymer used is preferably 2 to 30 parts, more preferably 5 to 20 parts, in terms of solid content, based on 100 parts of cement.
If it is less than 2 parts, the properties such as water resistance and adhesive strength due to the polymer may not be sufficiently exhibited, and if it exceeds 30 parts, workability may be deteriorated.

【0008】本発明では、徐冷スラグとポリマーの混合
方法は特に限定されるものではなく、それぞれの材料を
施工時に混合しても良いし、あらかじめその一部、ある
いは全部を混合しておいても差し支えない。また、徐冷
スラグの表面にポリマーを噴霧して、粉状ポリマーとす
ることは輸送コストや現場施工での計量ミスをなくすと
いう面からも好ましい。
In the present invention, the method of mixing the slowly cooled slag and the polymer is not particularly limited, and the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance. It doesn't matter. In addition, it is preferable to spray the polymer on the surface of the slowly cooled slag to obtain a powdery polymer from the viewpoint of eliminating transportation costs and measurement errors in field construction.

【0009】本発明で使用するセメントとしては、普
通、早強、超早強、低熱、及び中庸熱等の各種ポルトラ
ンドセメント、これらポルトランドセメントに、高炉ス
ラグ、フライアッシュ、又はシリカを混合した各種混合
セメント、並びに、石灰石粉末等を混合したフィラーセ
メントなどが挙げられ、これらのうちの一種又は二種以
上が使用可能である。
As the cement used in the present invention, various portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, etc., and various mixture of these portland cement with blast furnace slag, fly ash, or silica are mixed. Examples include cement and filler cement in which limestone powder or the like is mixed, and one or more of these can be used.

【0010】本発明で使用する水量は、使用する材料の
種類や配合により変わるため、一義的に決定されるもの
ではないが、通常、水/セメント比で25〜60%が好まし
く、30〜50%がより好ましい。25%未満では充分な作業
性を得られない場合があり、60%を超えると充分な強度
発現性を得られない場合がある。なお、本発明における
水/セメント比を算出する際の水には練混水の他に、ポ
リマーラテックスや樹脂エマルジョンなどの水性ポリマ
ーディスパージョンに含まれる水も含むものとする。
The amount of water used in the present invention is not uniquely determined because it varies depending on the type and composition of the materials used, but normally, the water / cement ratio is preferably 25 to 60%, and 30 to 50%. % Is more preferable. If it is less than 25%, sufficient workability may not be obtained, and if it exceeds 60%, sufficient strength development may not be obtained. Water used in the calculation of the water / cement ratio in the present invention includes not only kneading and mixing water but also water contained in an aqueous polymer dispersion such as a polymer latex or a resin emulsion.

【0011】本発明では、本発明のセメント組成物の他
に、必要に応じ、砂や砂利等の骨材、高炉スラグ、フラ
イアッシュ、及びシリカフュームなどの混和材、膨張
材、収縮低減剤、減水剤、高性能減水剤、AE剤、AE
減水剤、高性能AE減水剤、流動化剤、凝結促進剤、凝
結遅延剤、増粘剤、防錆剤、防凍剤、消泡剤、ベントナ
イトやモンモリロナイトなどの粘土鉱物、ゼオライト、
ハイドロタルサイト、及びハイドロカルマイトなどのイ
オン交換体、並びに、ビニロン繊維、アクリル繊維、及
び炭素繊維等の繊維状物質等のうちの一種又は二種以上
を本発明の目的を阻害しない範囲内で使用することがで
きる。
In the present invention, in addition to the cement composition of the present invention, if necessary, an aggregate such as sand or gravel, an admixture such as blast furnace slag, fly ash, and silica fume, an expanding material, a shrinkage reducing agent, and a water reducing agent. Agent, high-performance water reducing agent, AE agent, AE
Water-reducing agent, high-performance AE water-reducing agent, superplasticizer, setting accelerator, setting retarder, thickener, rust inhibitor, antifreezing agent, defoaming agent, clay mineral such as bentonite and montmorillonite, zeolite,
Hydrotalcite, and ion exchangers such as hydrocalumite, and one or more of vinylon fibers, acrylic fibers, and fibrous substances such as carbon fibers, etc. within a range that does not impair the object of the present invention. Can be used.

【0012】本発明では、各材料の混合方法は特に限定
されるものではなく、それぞれの材料を施工時に混合し
ても良いし、あらかじめその一部、あるいは全部を混合
しておいても差し支えない。混合装置としては、既存の
如何なる装置も使用可能であり、例えば、傾胴ミキサ
ー、オムニミキサー、ヘンシェルミキサー、V型ミキサ
ー、及びナウターミキサーなどが挙げられる。
In the present invention, the method of mixing the respective materials is not particularly limited, and the respective materials may be mixed at the time of construction, or part or all of them may be mixed in advance. . Any existing device can be used as the mixing device, and examples thereof include a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer.

【0013】[0013]

【実施例】以下、実験例により本発明をさらに詳しく説
明するが、本発明はこれらの実験例の記載に限定される
ものではない。
The present invention will be described in more detail below by way of experimental examples, but the present invention is not limited to the description of these experimental examples.

【0014】実験例1 徐冷スラグとポリマーからなるセメント混和材を、ポリ
マー/セメント比10%となるように、セメントと混合し
てセメント組成物を調製した。このセメント組成物を使
用し、水/セメント比45%、セメント/砂比1/3のモ
ルタルを調製し、そのフローと圧縮強度を測定した。ま
た、徐冷スラグは不活性の粉体とみなし、セメント100
部に対して、30部の徐冷スラグを同量の砂と置換した。
このモルタル組成物について、フロー値175±5mmになる
ように減水剤を適量添加した。
Experimental Example 1 A cement composition was prepared by mixing a cement admixture composed of slowly cooled slag and a polymer with cement so that the polymer / cement ratio was 10%. Using this cement composition, a mortar with a water / cement ratio of 45% and a cement / sand ratio of 1/3 was prepared, and its flow and compressive strength were measured. In addition, the slowly cooled slag is regarded as an inert powder, and cement 100
For each part, 30 parts of the slowly cooled slag were replaced with the same amount of sand.
An appropriate amount of a water reducing agent was added to this mortar composition so that the flow value was 175 ± 5 mm.

【0015】<使用材料> ポリマーA:エチレン酢酸ビニル系樹脂エマルジョン、
市販品、固形分55% ポリマーB:アクリル酸エステル系樹脂エマルジョン、
市販品、固形分50% ポリマーC:スチレンブタジエン系ゴムラテックス、市
販品、固形分45% ポリマーD:エチレン酢酸ビニル系再乳化形粉末樹脂、
市販品 徐冷スラグ:比重3.00、ブレーン値4,500cm2/g、ガラス
化率5% セメント :普通ポルトランドセメント、密度3.15g/cm
3、ブレーン値3,500cm2/g 水 :水道水 減水剤 :メラミンスルホン酸系高性能減水剤、市販
品 砂 :JIS標準砂(ISO679準拠)
<Materials used> Polymer A: ethylene vinyl acetate resin emulsion,
Commercial product, solid content 55% Polymer B: Acrylic ester resin emulsion,
Commercial product, solid content 50% Polymer C: styrene-butadiene rubber latex, commercial product, solid content 45% Polymer D: ethylene vinyl acetate-based re-emulsified powder resin,
Commercially available slow-cooled slag: specific gravity 3.00, Blaine value 4,500 cm 2 / g, vitrification rate 5% Cement: ordinary Portland cement, density 3.15 g / cm
3 , Blaine value 3,500 cm 2 / g Water: Tap water water reducing agent: Melamine sulfonic acid type high performance water reducing agent, commercial sand: JIS standard sand (ISO679 compliant)

【0016】<測定方法> フロー :旧JIS R 5201に準じて、20℃の恒温室内で
測定 圧縮強度 :材齢1日で脱型後、20℃、R.H.60%で乾燥
養生を行ったモルタルの圧縮強度をJIS R 5201に準じ
て、20℃の恒温室内で測定
<Measurement method> Flow: Measured in a thermostatic chamber at 20 ° C according to the old JIS R 5201 Compressive strength: Compressed mortar which was demolded after 1 day of age and then dried and cured at 20 ° C and 60% RH. Strength is measured according to JIS R 5201 in a constant temperature room at 20 ° C.

【0017】[0017]

【表1】 [Table 1]

【0018】実験例2 試験を30℃の恒温室内で行い、30℃、60%R.H.で乾燥養
生を行ったこと以外は実験例1と同様に行った。結果を
表2に示す。
Experimental Example 2 The experiment was carried out in the same manner as in Experimental Example 1 except that the test was carried out in a thermostatic chamber at 30 ° C. and the drying curing was carried out at 30 ° C. and 60% RH. The results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明のセメント混和材を使用すること
により、従来のポリマーセメントモルタル組成物に比較
し、夏場でも流動性の保持性能に優れ、強度を増進する
効果を奏する。
EFFECTS OF THE INVENTION By using the cement admixture of the present invention, as compared with the conventional polymer cement mortar composition, the fluidity retention performance is excellent even in the summer and the strength is enhanced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉徐冷スラグ微粉末とポリマーとを含
有してなるセメント混和材。
1. A cement admixture containing a blast furnace slowly cooled slag fine powder and a polymer.
【請求項2】 セメントと請求項1記載のセメント混和
材とを含有してなるセメント組成物。
2. A cement composition comprising cement and the cement admixture according to claim 1.
JP2001293538A 2001-09-26 2001-09-26 Cement admixture and cement composition Expired - Fee Related JP5132022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293538A JP5132022B2 (en) 2001-09-26 2001-09-26 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293538A JP5132022B2 (en) 2001-09-26 2001-09-26 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2003095721A true JP2003095721A (en) 2003-04-03
JP5132022B2 JP5132022B2 (en) 2013-01-30

Family

ID=19115304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293538A Expired - Fee Related JP5132022B2 (en) 2001-09-26 2001-09-26 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP5132022B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117451A (en) * 2004-10-20 2006-05-11 Denki Kagaku Kogyo Kk Cement composition for repairing and repairing method
WO2011087304A2 (en) * 2010-01-13 2011-07-21 전남대학교산학협력단 Alkali-activated binding material having no cement and comprising a complex alkali activator, and mortar or concrete using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300231A (en) * 1991-03-28 1992-10-23 Denki Kagaku Kogyo Kk Quick-setting polymer cement composition
JPH0761852A (en) * 1993-08-25 1995-03-07 Nissan Chem Ind Ltd Cement composition
JPH0986978A (en) * 1995-09-19 1997-03-31 Denki Kagaku Kogyo Kk Mixed cement composition
JPH10203852A (en) * 1997-01-06 1998-08-04 Sumikin Kashima Kouka Kk Production of ultrafine power of blast furnace watergranulated slag
JP2000191355A (en) * 1998-12-25 2000-07-11 Lion Corp Cement admixture
JP2000290056A (en) * 1999-02-04 2000-10-17 Nippon Shokubai Co Ltd Hydraulic composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300231A (en) * 1991-03-28 1992-10-23 Denki Kagaku Kogyo Kk Quick-setting polymer cement composition
JPH0761852A (en) * 1993-08-25 1995-03-07 Nissan Chem Ind Ltd Cement composition
JPH0986978A (en) * 1995-09-19 1997-03-31 Denki Kagaku Kogyo Kk Mixed cement composition
JPH10203852A (en) * 1997-01-06 1998-08-04 Sumikin Kashima Kouka Kk Production of ultrafine power of blast furnace watergranulated slag
JP2000191355A (en) * 1998-12-25 2000-07-11 Lion Corp Cement admixture
JP2000290056A (en) * 1999-02-04 2000-10-17 Nippon Shokubai Co Ltd Hydraulic composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117451A (en) * 2004-10-20 2006-05-11 Denki Kagaku Kogyo Kk Cement composition for repairing and repairing method
WO2011087304A2 (en) * 2010-01-13 2011-07-21 전남대학교산학협력단 Alkali-activated binding material having no cement and comprising a complex alkali activator, and mortar or concrete using same
WO2011087304A3 (en) * 2010-01-13 2011-12-29 전남대학교산학협력단 Alkali-activated binding material having no cement and comprising a complex alkali activator, and mortar or concrete using same

Also Published As

Publication number Publication date
JP5132022B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4502298B2 (en) Cement composition and acid resistant cement / concrete using the same
JP5080714B2 (en) Cement composition
ES2777216T3 (en) Composition for use as a two component filler grout comprising extracted silicate
CN101258115B (en) Cement composition for grouting and grout material comprising the same
JP2951385B2 (en) Polymer cement mortar composition
JP2006131488A (en) Acid resistant grout composition
JP2008094674A (en) Filler for reinforcement and method of filling reinforcement using the same
JP2003171162A (en) Cement based grout composition
JP2022069599A (en) Polymer cement mortar
JP2000272943A (en) Cement admixture, cement composition and grout material
JP2007045650A (en) Polymer cement grout material
JP2020158348A (en) Polymer cement grout mortar composition and polymer cement grout mortar
JP2001261415A (en) Cement mixing agent, cement composition and high fluidity concrete using the composition
JP2002003249A (en) Cement admixture, cement composition and cement concrete with high flowability
JP2001294459A (en) Cement admixture and cement composition
JP3672518B2 (en) Cement admixture, cement composition and concrete using the same
JP7034573B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP2020083660A (en) Cement admixture, expansion material, and cement composition
JP5132022B2 (en) Cement admixture and cement composition
JP2004210557A (en) Grout composition
JP7083637B2 (en) Concrete and its manufacturing method
JP4459379B2 (en) Cement admixture and cement composition
JP4101574B2 (en) Cement admixture and cement composition
JP2003095714A (en) Cement admixture, cement composition, and high fluidity concrete obtained by using the same
JP4606631B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5132022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees