JP2004142973A - Porous concrete - Google Patents

Porous concrete Download PDF

Info

Publication number
JP2004142973A
JP2004142973A JP2002307767A JP2002307767A JP2004142973A JP 2004142973 A JP2004142973 A JP 2004142973A JP 2002307767 A JP2002307767 A JP 2002307767A JP 2002307767 A JP2002307767 A JP 2002307767A JP 2004142973 A JP2004142973 A JP 2004142973A
Authority
JP
Japan
Prior art keywords
blast furnace
slag
porous concrete
slowly cooled
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002307767A
Other languages
Japanese (ja)
Other versions
JP4141794B2 (en
Inventor
Katsunobu Demura
出村 克宣
Takayuki Higuchi
樋口隆行
Minoru Morioka
盛岡 実
Yasuyuki Nakanishi
中西 泰之
Tsumoru Ishida
石田 積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002307767A priority Critical patent/JP4141794B2/en
Publication of JP2004142973A publication Critical patent/JP2004142973A/en
Application granted granted Critical
Publication of JP4141794B2 publication Critical patent/JP4141794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain porous concrete capable of purifying contaminated water and accelerating the growth of a plant to be well-matched to the surrounding natural environment. <P>SOLUTION: The porous concrete is formed by containing blast furnace slow-cooled slag. The contaminated water is purified, the growth of the plant is accelerated to be matched to the surrounding natural environment and harmful heavy metals such as cadmium, lead, arsenic, nickel, mercury, molybdenum, selenium, 3-valent chromium and 6-valent chromium are reduced to be suitable for the application such as a greening concrete block or a tetrapod in a civil engineering, a construction field or a purification field of domestic waste water. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、汚染された河川を浄化しつつ、周囲の自然環境と調和を図るために草木の生育を可能にすると同時に、カドミウム、鉛、砒素、ニッケル、水銀、モリブデン、セレン、三価クロム、及び六価クロム等の有害な重金属を低減可能であるポーラスコンクリートに関する。また、本発明における部や%は、特に規定のない限り質量基準である。
【0002】
【従来の技術と課題】
近年、下水道の整備普及により生活廃水及び汚水は充分に管理されるようになってきた。しかし一部地域では依然として生活廃水が河川へそのまま排出されている。これら廃水中には多くの有機成分、無機成分が含まれる。
【0003】
排水中に含まれる有害物質による環境汚染を予防するため、環境庁告示第59号(水質汚濁に係る環境基準)、水質汚濁防止法、廃棄物処理法、生活環境保全条例等の環境基準が制定されており、水質中の有害な重金属量は厳しく規制されている。これらの環境基準を遵守するためには、カドミウム、鉛、砒素、ニッケル、水銀、モリブデン、セレン、三価クロム、及び六価クロム等の有害な重金属を含む化合物を分解、吸着、除去等を行い、低減する方法が求められてきた。
【0004】
このうち有機成分は河川中に生息する微生物やプランクトン等によって吸着、分解され、自然に浄化される。
【0005】
そこで、排水中に含まれる有機成分を浄化するための緑化基盤材料としてポーラスコンクリートが注目されている。ポーラスコンクリートとは、(1)粗骨材量を多くし、コンクリート中に数mm以下の微細な気泡を設ける、(2)AE剤等、AE減水剤、高性能AE減水剤等によりコンクリート中に数mm以下の微細な気泡を設ける、等の方法によって内部に気泡を有してなるコンクリートの総称であり、水が透過できる、植物が根をはることができる等の特徴を有するため、植物、微生物、プランクトン等を大量に生息させて排水中の有害な有機物を分解する機能をコンクリートに付加することが可能である(特開平06−228967号公報、特開平10−067550号公報、及び特開2000−328574号公報等)。
【0006】
しかし、排水中に含まれる無機成分、特にカドミウム、鉛、砒素、ニッケル、水銀、モリブデン、セレン、三価クロム、及び六価クロム等の有害な重金属は分解されることなく、生物中に蓄積されたり植物や作物等に吸収され、最終的に人体に影響をおよぼすことが懸念される。そこで、このような有害な重金属を浄化する方法が必要とされている。
【0007】
これら有害な重金属の低減方法としては、セメントを主体とする固化材により固定化する方法や、水溶性の第一鉄塩を添加する方法、4A族元素化合物による方法が提案されている(特開昭48−083114号公報、特開昭49−016714号公報、特開平11−207301号公報等)。
【0008】
しかし固化材による方法は、低濃度〜高濃度の重金属の固定に優れかつ長期的にも安定であるが、河川や湖畔の浄化等大量の汚染水を浄化するのには不向きである。一方、水溶性の第一鉄塩や4A族元素化合物は比較的大量の有害な金属の低減には適しているが、非常に高価であることや長期的に渡って有害な金属の低減作用を持続させるのは難しいという課題があった。
【0009】
また、有害な重金属の低減方法として高炉水砕スラグを用いる方法も提案されている(特開2000−086322号公報)。しかし、高炉水砕スラグは長期的な効果が期待できるものの、重金属低減効果が水溶性の第一鉄塩や4A族元素化合物等に比べ劣るという課題があった。また、水溶性の第一鉄塩と高炉水砕スラグを組み合わせる方法も検討されているが、依然として材料が高価であるという課題があった。
【0010】
そこで本発明者らが鋭意検討した結果、特定のポーラスコンクリートが周囲の自然環境と調和を図るために草木の生育が可能とすると同時に、河川中の有害な有機物や有害な重金属を低減できることを知見し、本発明を完成した。
【0011】
【課題を解決するための手段】
すなわち、本発明は高炉徐冷スラグを含有してなるポーラスコンクリートであり、高炉徐冷スラグ中に含まれる非硫酸態イオウ量が0.5%以上であることを特徴とする該ポーラスコンクリートであり、高炉徐冷スラグから溶出する溶解性イオウ濃度が100mg/リットル以上であることを特徴とする該ポーラスコンクリートであり、高炉徐冷スラグの酸素消費量が2.5×10−3mmolO/g以上であることを特徴とする該ポーラスコンクリートであり、高炉徐冷スラグの酸化還元電位が100mV以上であることを特徴とする該ポーラスコンクリートであり、高炉徐冷スラグのガラス化率が30%以下であることを特徴とする該ポーラスコンクリートであり、微粉末の高炉徐冷スラグを含有することを特徴とする該ポーラスコンクリートであり、コンクリートの空隙率が10〜50%であることを特徴とする該ポーラスコンクリートである。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0013】
本発明でいう有害な重金属とは、環境庁告示第59号において規制されているカドミウム、鉛、砒素、水銀、セレン、及び六価クロム等の他に、ニッケル及びモリブデン等の有害な重金属全般を指す。また、三価クロムも空気中で酸化されて六価クロムとなることがあるため、有害な重金属とみなすものとする。
【0014】
本発明で使用する高炉徐冷スラグは、鉄鋼の精錬過程における高炉より副生するものであり、徐冷されて結晶化した高炉スラグの粉末である。高炉徐冷スラグは、高炉水砕スラグと同様の組成を有しており、具体的にはSiO、CaO、Al、及びMgO等を主要な化学成分とし、その他の成分として、TiO、MnO、NaO、S、P、及びFe等が挙げられる。
【0015】
本発明における高炉徐冷スラグはそのまま粗骨材又は細骨材として使用することが可能であり、また、粉砕して高炉徐冷スラグ微粉末として使用することも可能である。
【0016】
高炉徐冷スラグに含まれる化合物としては、ゲーレナイト2CaO・Al・SiOとアケルマナイト2CaO・MgO・2SiOの混晶である、いわゆるメリライトを主成分とし、この他の化合物として、ダイカルシウムシリケート2CaO・SiO、ランキナイト3CaO・2SiO、及びワラストナイトCaO・SiO等のカルシウムシリケート、メルビナイト3CaO・MgO・2SiO及びモンチセライトCaO・MgO・SiO等のカルシウムマグネシウムシリケート、アノーサイトCaO・Al・2SiO、リューサイト(KO、NaO)・Al・SiO、スピネルMgO・Al、マグネタイトFe、並びに、硫化カルシウムCaS及び硫化鉄FeS等の硫化物等を含む場合がある。
【0017】
高炉徐冷スラグ中の非硫酸態イオウ量は、全イオウ量、単体イオウ量、硫化物態イオウ量、チオ硫酸態イオウ量、及び硫酸態イオウ(三酸化イオウ)量を山口と小野の方法により定量することによって、また、硫酸態イオウ量(三酸化イオウ)と硫化物イオウ量については、JIS R 5202に定められた方法により定量することによっても求めることができる(「高炉スラグ中硫黄の状態分析」、山口直治、小野昭紘:製鉄研究、第301号、pp.37−40、1980参照)。高炉徐冷スラグは、非硫酸態イオウを含有することにより、非硫酸態イオウを含まないスラグに、多硫化物、硫化物、チオ硫酸塩、又は亜硫酸塩等を添加したのでは、本発明の効果は得られない。
【0018】
本発明でいう溶解性イオウ濃度とは、高炉徐冷スラグ粉末から水中に溶出するイオウ量を評価するための指標であり、高炉徐冷スラグ粉末20gを20℃の水100ml中に入れ、30分間攪拌した後、固液分離した液相中に含まれる非硫酸態イオウイオンの濃度をいう。これら水中のイオウ濃度はICP発光分析法やイオンクロマトグラフィ−によって定量することができる。
【0019】
本発明における高炉徐冷スラグから溶出する溶解性イオウ濃度は特に限定されないが、100mg/リットル以上であることが好ましい。溶解性イオウ濃度が100mg/リットル未満では、充分な重金属低減効果が得られない場合がある。非硫酸態イオウイオンには、イオウイオン(S2−)、多硫化物イオン(S 2−、n≧2)、チオ硫酸イオン(S 2−)、亜硫酸イオン(SO 2−)、硫酸イオン(SO 2−)等が挙げられる。
【0020】
また、使用する高炉徐冷スラグ中の非硫酸態イオウの含有量は、0.5%以上が好ましい。高炉徐冷スラグ中の非硫酸態イオウの含有量が0.5%未満では、所定の重金属低減効果が得られない場合がある。
【0021】
高炉徐冷スラグの酸素消費量の測定は次のように行う。ブレーン比表面積6,000cm/gに調製したスラグ粉末2gと蒸留水40mlを混合し、2時間振とうした後ろ過する。ろ液10mlに0.1mol/リットル硫酸四価セリウム水溶液を10mlと、1/40mol/リットル酸化還元指示薬フェロインを数滴加え、振とう液中の残存四価セリウムを0.1mol/リットル硫酸第一鉄で滴定する。この値から、スラグ粉末によって三価に還元された四価セリウム量(単位:mmol/g)が得られ、この値を4で割ったものを酸素消費量(単位:mmolO/g)とする。酸素消費量が前記範囲にないと、充分な重金属低減効果が得られない場合がある。
【0022】
高炉徐冷スラグの還元能力を示す指標である酸素消費量は2.5×10−3mmol/g以上であることが好ましく、3.0×10−3mmol/g以上であることがより好ましい。酸素消費量とはスラグ粉の還元能力を示す指標の一つである。
【0023】
高炉徐冷スラグの酸化還元電位は100mV以上であることが好ましく、150mV以上がより好ましい。酸化還元電位とは、スラグ粉の還元能力を表す指標の一つであり、測定は次のように行う。ブレーン比表面積6,000cm/gに調製したスラグ粉50gと蒸留水100mlを混合し、24時間振とう後、ろ過する。ろ液の酸化還元電位を所定のORP電極で測定し、ORP1とする。その後、このろ液のpHを測定し、同じpHとなるように塩酸又は水酸化ナトリウム等で調整した蒸留水の酸化還元電位ORP2を測定する。このORP2とORP1の差(ORP2−ORP1)を酸化還元電位(単位:mV)とする。
【0024】
本発明でいう高炉徐冷スラグのガラス化率(X)は、X(%)=(1−S/S)×100として求められる。ここで、Sは粉末X線回折法により求められる高炉徐冷スラグ粉中の主要な結晶性化合物であるメリライト(ゲーレナイト2CaO・Al・SiOとアケルマナイト2CaO・MgO・2SiOの混晶)のメインピークの面積であり、Sは高炉徐冷スラグ粉を1,000℃で3時間加熱し、その後、5℃/分の冷却速度で冷却したもののメリライトのメインピークの面積を表す。
【0025】
高炉徐冷スラグのガラス化率は、30%以下が好ましく、10%以下がより好ましい。ガラス化率がこの範囲外では所定の重金属低減効果が得られない場合がある。ガラス化率が高い場合、ほぼ同量の非硫酸態イオウを含有していても、結晶質である高炉徐冷スラグに比しチオ硫酸塩、亜硫酸塩、及び硫黄等の非硫酸態イオウの溶出が極めて少なく、有害な重金属の低減効果が得られない場合がある。
【0026】
本発明のポーラスコンクリートは草木の生育に適した空隙があればよく、空隙率は特に限定されるものではないが、ポーラスコンクリート全体に占める空隙の体積割合を示す空隙率は10〜50%であることが好ましい。ポーラスコンクリートの空隙率が10%未満では効率的に重金属を不溶化できず、草木や生物が生育しないため、水質の浄化が不十分となることがある。また、ポーラスコンクリートの空隙率が50%を超えるとポーラスコンクリートの強度が不足する場合がある。
【0027】
ポーラスコンクリートの空隙率を高くするには、コンクリート中の骨材、特に粗骨材の配合割合を高める方法が一般的である。
【0028】
本発明のポーラスコンクリートを製造するための配合は特に限定されるものではないが、例えば、粗骨材を多用してポーラスコンクリートとする場合は、高炉徐冷スラグ微粉末5〜50部及びセメント95〜50部からなる粉体100部、細骨材0〜100部、粗骨材300〜600部、並びに水15〜60部とすることが好ましい。
【0029】
上記のポーラスコンクリートの配合において、セメント及び高炉徐冷スラグ微粉末からなる粉体100部中、高炉徐冷スラグ微粉末が5部未満では重金属低減効果が小さくなる場合があり、50部を超えるとコンクリートの強度が低下する恐れがある。
【0030】
また、上記の配合において、粗骨材量が600部を超える場合は空隙率が50%を超えるために強度不足となることがあり、粗骨材量が300部未満では空隙率が10%未満となり、有害な重金属の低減効果が小さくなる場合がある。
【0031】
本発明で高炉徐冷スラグを細骨材あるいは粗骨材として用いる場合には、スラグの粒度範囲をJIS A 5011−1規格に準じた粒度幅で設定することが好ましい。すなわち、粗骨材はBFG40−5区分に記載された40〜5mm、細骨材はBFS5−0.3区分に記載された5〜0.3mmに準拠した粒度範囲内とすることが好ましい。粗骨材の最大粒径は40mm以下とすることが好ましく、粗骨材の最大粒径が40mmを超えると有害な重金属の低減効果が低下したり、コンクリートの強度が低下するため好ましくない。
【0032】
本発明では、骨材に占める高炉徐冷スラグの配合量が多いほど有害な重金属を低減する効果が顕著である。高炉徐冷スラグの細骨材及び粗骨材の合計量は多いほど好ましく、総骨材量に占める高炉徐冷スラグの細骨材及び粗骨材の合計量が100%であることが最も好ましい。
【0033】
高炉徐冷スラグ微粉末の粒度は特に限定されるものではないが、ブレーン比表面積で2,000cm/g以上が好ましく、3,000〜10,000cm/gがより好ましい。2,000cm/g未満では、有害な重金属の低減効果が不十分な場合があり、10,000cm/gを超えると過剰な粉砕動力が必要となり、不経済である。
【0034】
セメントは特に限定されないが、ポルトランドセメントを含有するものが好ましく、例えば、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに高炉水砕スラグ、フライアッシュ、又はシリカを含有する各種混合セメント、並びに石灰石微粉末を含有するフィラーセメント等が挙げられる。
【0035】
本発明のポーラスコンクリートは、セメント、骨材、水、高炉徐冷スラグ等を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。
【0036】
本発明のポーラスコンクリートは、蒸気養生、オートクレーブ養生を行っても良い。蒸気養生を行う場合の雰囲気温度は特に制限されないが、30〜70℃が好ましく、40〜60℃がより好ましい。30℃未満では生産性が不十分であり、70℃を超えると温度応力によりクラックが入り、耐久性が低下する恐れがある。
【0037】
本発明のポーラスコンクリートには汎用の減水剤、AE減水剤、高性能減水剤、及び高性能AE減水剤等の減水剤を用いて高流動化することが好ましい。減水剤は液状や粉末状のいずれも使用可能である。
【0038】
減水剤、AE減水剤、高性能減水剤、及び高性能AE減水剤等の減水剤を用いる場合の使用量は、セメント及び高炉徐冷スラグ微粉末からなる粉体100部に対し、0.5〜5部が好ましい。また、ナフタレン系、メラミン系、スルホン酸系、又はポリカルボン酸系等の高性能減水剤又は高性能AE減水剤を用いると、ポーラスコンクリートの強度発現性が良く好ましい。
【0039】
本発明では、重量骨材や軽量骨材等の骨材、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、ベントナイト等の粘土鉱物、あるいはハイドロタルサイト等のアニオン交換体等のセメント混和剤のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。
【0040】
本発明では、ポーラスコンクリートの空隙に土壌を充填することも可能である。具体的には砂質土、粘性土等が挙げられ、有害な重金属の不溶化と同時に植物の生育を促すことも可能である。
【0041】
また、本発明のポーラスコンクリートは炭酸ガス雰囲気下で促進炭酸化養生して使用することも可能である。炭酸化することによってコンクリートの強度が増進し、かつ充填した土壌のアルカリ性が低くなり、植物の生育がより促進される。
【0042】
促進炭酸化養生は、空気中より炭酸ガス濃度が高い雰囲気中、例えば、炭酸ガス濃度1〜30%が好ましく、5〜10%の雰囲気中で養生するのがより好ましい。また、炭酸ガスの高圧容器中で0.1〜1.0MPaに加圧する方法や、蒸気養生を併用することは、生産性向上の面から有効である。
【0043】
促進炭酸化養生の雰囲気温度は10〜70℃が好ましく、30〜50℃がより好ましい。10℃未満では生産性が不充分であり、70℃を超えると温度応力によってマイクロクラックが生じ、耐久性が低下する恐れがある。
【0044】
【実施例】
以下、実験例に基づいて本発明をさらに詳細に説明する。
【0045】
実験例1
セメント70部、高炉徐冷スラグ微粉末30部からなる粉末100部、細骨材100重量部、粗骨材600重量部、水30部、減水剤1部とし、使用した細骨材、粗骨材の種類を表1に示すように変化させてなるポーラスコンクリートを、それぞれ調製した。
【0046】
これらのポーラスコンクリートをΦ15×30cmの円柱ブロック状に成型し、20℃、80%RH室内で7日間養生した。これを鉛10mg/リットル、カドミウム10mg/リットル、六価クロム10mg/リットルを含有させた重金属汚染水10リットル中に1ヶ月間浸漬させた。その後、液相中に残存する鉛、カドミウム、及び六価クロム量をICP発光分析法で定量した。
【0047】
また、比較例として、高炉水砕スラグの微粉末e’、細骨材e、及び粗骨材Eを用いた結果(実験No.1−5参照)と、通常の珪石質の微粉末f’、細骨材f及び粗骨材Fを用いた結果(実験No.1−6参照)を併記する。結果を表1に示す。
【0048】
<使用材料>
(1)スラグ
スラグα:高炉徐冷スラグ、ガラス化率5%、非硫酸体イオウ0.9%、溶解性イオウ濃度418mg/リットル、酸素消費量10.3×10−3mmolO/g、酸化還元電位290mV、密度3.00g/cm
スラグβ:高炉徐冷スラグ、ガラス化率5%、非硫酸体イオウ0.5%、溶解性イオウ濃度229mg/リットル、酸素消費量6.3×10−3mmolO/g、酸化還元電位218mV、密度3.00g/cm
スラグγ:高炉徐冷スラグ、ガラス化率5%、非硫酸体イオウ0.3%、溶解性イオウ濃度138mg/リットル、酸素消費量4.2×10−3mmolO/g、酸化還元電位178mV、密度3.00g/cm
スラグδ:高炉徐冷スラグ、ガラス化率30%、非硫酸体イオウ0.9%、溶解性イオウ濃度291mg/リットル、酸素消費量3.0×10−3mmolO/g、酸化還元電位150mV、密度3.00g/cm
スラグε:高炉水砕スラグ、ガラス化率95%、非硫酸体イオウ0.9%、溶解性イオウ濃度10mg/リットル、酸素消費量2.0×10−3mmolO/g、酸化還元電位99mV、密度2.90g/cm
【0049】
(2)細骨材
高炉徐冷スラグ細骨材a :スラグαを骨材寸法1−5mmに調製したもの
高炉徐冷スラグ細骨材b :スラグβを骨材寸法1−5mmに調製したもの
高炉徐冷スラグ細骨材c :スラグγを骨材寸法1−5mmに調製したもの
高炉徐冷スラグ細骨材d :スラグδを骨材寸法1−5mmに調製したもの
高炉水砕スラグ細骨材e :スラグεを骨材寸法1−5mmに調製したもの
細骨材f :新潟県姫川産川砂利、密度2.62g/cm、骨材寸法1−5mm、珪石を主体
【0050】
(3)粗骨材
高炉徐冷スラグ粗骨材A :スラグαを骨材寸法15−25mmに調製したもの
高炉徐冷スラグ粗骨材B :スラグβを骨材寸法15−25mmに調製したもの
高炉徐冷スラグ粗骨材C :スラグγを骨材寸法15−25mmに調製したもの
高炉徐冷スラグ粗骨材D :スラグδを骨材寸法15−25mmに調製したもの
高炉水砕スラグ粗骨材E :スラグεを骨材寸法15−25mmに調製したもの
粗骨材F :新潟県姫川産、砕石、密度2.64g/cm、骨材寸法15−25mm、珪石を主体
【0051】
(4)微粉末
高炉徐冷スラグ微粉末a’:スラグαをブレーン値4,000cm/gに調製したもの
高炉徐冷スラグ微粉末b’:スラグβをブレーン値4,000cm/gに調製したもの
高炉徐冷スラグ微粉末c’:スラグγをブレーン値4,000cm/gに調製したもの
高炉徐冷スラグ微粉末d’:スラグδをブレーン値4,000cm/gに調製したもの
高炉水砕スラグ微粉末e’:スラグεをブレーン値4,000cm/gに調製したもの
微粉末f’ :細骨材fを粉砕しブレーン値4,000cm/gに調製したもの
【0052】
(5)その他材料
セメント :普通ポルトランドセメント、電気化学工業社製、密度3.15g/cm
水    :水道水
減水剤  :高性能AE減水剤、ポリカルボン酸系、市販品
【0053】
<試験方法>
空隙率:連続空隙率、日本コンクリート工学協会、エココンクリート研究委員会「ポーラスコンクリートの測定方法(案)」の容積法に準じて行った。
六価クロム濃度:JIS K 0102に準じて行った。
鉛、カドミウム濃度:ICP発光分析法により定量した(定量下限値0.02mg/リットル)。
圧縮強度:Φ15×30cmの円柱供試体を作成し、上下両面をキャッピングしてJIS A 1106に準拠して材齢7日で測定した。
【0054】
【表1】

Figure 2004142973
注: 微粉末欄のe’は高炉水砕スラグ微粉末、f’は川砂の粉砕粉
【0055】
実験例2
スラグαを原料とした高炉徐冷スラグ微粉末a’、高炉徐冷スラグ粗骨材A、及び高炉徐冷スラグ細骨材aを用い、粗骨材寸法を調製することによって表2に示すように空隙率を調整した。それ以外は実験例1と同様に試験をした。結果を表2に示す。
【0056】
【表2】
Figure 2004142973
【0057】
実験例3
スラグαを原料とした高炉徐冷スラグ微粉末a’、高炉徐冷スラグ粗骨材A、高炉徐冷スラグ細骨材a、川砂、及び川砂利を用い、細骨材及び粗骨材中の、高炉徐冷スラグと川砂、川砂利の配合割合を表3に示すように変化させたこと以外は実験例1と同様に行った。結果を表3に示す。
【0058】
<使用材料>
川砂 :新潟県姫川産川砂利、密度2.64g/cm、骨材寸法5−0.3mm、珪石を主体
川砂利:新潟県姫川産、砕石、密度2.64g/cm、骨材寸法40〜5mm、珪石を主体
【0059】
【表3】
Figure 2004142973
注:微粉末欄のf’は川砂の粉砕粉
表中の「細徐冷」は高炉徐冷スラグ細骨材 、「粗徐冷」は高炉徐冷スラグ粗骨材であることを示す。
【0060】
実験例4
セメント、高炉徐冷スラグ微粉末a’、高炉徐冷スラグ粗骨材A、及び高炉徐冷スラグ細骨材aを用い、セメント及び高炉徐冷スラグ微粉末a’の配合割合を表4に示すように変化させたこと以外は実験例1と同様に行った。結果を表4に示す。なお、高炉徐冷スラグの粗骨材及び高炉徐冷スラグの細骨材を使用せず、細骨材f及び粗骨材Fを用いた実験No.1−6を比較例として併記する。
【0061】
【表4】
Figure 2004142973
注:表中の徐冷スラグは高炉徐冷スラグ微粉末の(部)
【0062】
実験例5
蒸気養生を施したポーラスコンクリートを炭酸ガス濃度5%、温度40℃、相対湿度60%の環境で促進炭酸化養生を行った。得られたコンクリートの圧縮強度を測定すると共に、コンクリートをクラッシャーで粉砕し、フェノールフタレインの1%水溶液を噴霧してアルカリ性であるか否か確認した。さらに、コンクリートの空隙部分に土壌材とアルファルファーの種子を注入して植付け、2ヶ月後の植生状況を観察した結果をを表5に示す。また、比較例として、通常の蒸気養生のみを施したポーラスコンクリートの植生状況を併記する。
【0063】
【表5】
Figure 2004142973
注 ○:アルファルファーの草丈が5cm以上伸びたもの
△:アルファルファーの草丈が3cm以上伸びたもの
【0064】
【発明の効果】
本発明のポーラスコンクリートを用いることにより、汚染水を浄化し、かつ周囲の自然環境と調和を図るため、植物の生育を促すことが可能であり、同時にカドミウム、鉛、砒素、ニッケル、水銀、モリブデン、セレン、三価クロム、及び六価クロム等の有害な重金属を低減することができるため、土木、建築、及び生活廃水の浄化分野における緑化コンクリートブロック等の用途に適する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention enables vegetation to grow in harmony with the surrounding natural environment while purifying contaminated rivers, and at the same time, cadmium, lead, arsenic, nickel, mercury, molybdenum, selenium, trivalent chromium, And porous concrete capable of reducing harmful heavy metals such as hexavalent chromium. Further, parts and% in the present invention are based on mass unless otherwise specified.
[0002]
[Prior art and problems]
In recent years, domestic wastewater and sewage have been adequately managed due to the spread of sewerage systems. However, domestic wastewater is still being discharged into rivers in some areas. These wastewaters contain many organic and inorganic components.
[0003]
In order to prevent environmental pollution by harmful substances contained in wastewater, environmental standards such as the Notification of the Environment Agency No. 59 (Environmental Standards for Water Pollution), Water Pollution Prevention Law, Waste Disposal Law, and Living Environment Conservation Ordinance are established. And the amount of harmful heavy metals in water quality is strictly regulated. In order to comply with these environmental standards, decompose, adsorb and remove compounds containing harmful heavy metals such as cadmium, lead, arsenic, nickel, mercury, molybdenum, selenium, trivalent chromium, and hexavalent chromium. There has been a demand for a method of reducing this.
[0004]
Of these, organic components are adsorbed and decomposed by microorganisms and plankton that live in the river, and are naturally purified.
[0005]
Therefore, porous concrete has attracted attention as a greening base material for purifying organic components contained in wastewater. Porous concrete includes (1) increasing the amount of coarse aggregate and providing fine bubbles of several mm or less in the concrete, (2) AE agent, AE water reducing agent, high-performance AE water reducing agent, etc., into concrete. It is a generic name of concrete having bubbles inside by a method such as providing fine bubbles of several mm or less, and has characteristics such as water permeability, plant rooting, etc. It is possible to add a function of decomposing harmful organic substances in wastewater by inhabiting a large amount of microorganisms, plankton, etc. to concrete (Japanese Patent Application Laid-Open No. 06-228967, Japanese Patent Application Laid-Open No. 10-067550, and JP-A-2000-328574, etc.).
[0006]
However, the harmful heavy metals such as cadmium, lead, arsenic, nickel, mercury, molybdenum, selenium, trivalent chromium, and hexavalent chromium contained in the wastewater are not decomposed and are accumulated in living organisms. It is feared that they may be absorbed by plants, crops, etc. and eventually affect the human body. Therefore, there is a need for a method of purifying such harmful heavy metals.
[0007]
As a method of reducing these harmful heavy metals, a method of fixing with a solidifying material mainly composed of cement, a method of adding a water-soluble ferrous salt, and a method of using a 4A group element compound have been proposed (Japanese Patent Application Laid-Open (JP-A)) JP-A-48-08114, JP-A-49-016714, JP-A-11-207301 and the like.
[0008]
However, the method using a solidifying material is excellent in fixing low to high concentrations of heavy metals and is stable for a long period of time, but is not suitable for purifying a large amount of contaminated water such as rivers and lakes. On the other hand, water-soluble ferrous salts and group 4A element compounds are suitable for reducing relatively large amounts of harmful metals, but are very expensive and have a long-term effect of reducing harmful metals. There was a problem that it was difficult to maintain.
[0009]
A method using blast-furnace granulated slag has also been proposed as a method for reducing harmful heavy metals (JP-A-2000-086322). However, although granulated blast furnace slag can be expected to have a long-term effect, there is a problem that the effect of reducing heavy metals is inferior to water-soluble ferrous salts, group 4A element compounds, and the like. Further, a method of combining a water-soluble ferrous salt and granulated blast furnace slag has also been studied, but there is a problem that the material is still expensive.
[0010]
Therefore, as a result of extensive studies by the present inventors, it has been found that specific porous concrete enables vegetation to grow in harmony with the surrounding natural environment, and at the same time can reduce harmful organic substances and harmful heavy metals in rivers. Thus, the present invention has been completed.
[0011]
[Means for Solving the Problems]
That is, the present invention is a porous concrete containing blast furnace slowly cooled slag, wherein the amount of non-sulfuric acid sulfur contained in the blast furnace slowly cooled slag is 0.5% or more. The porous concrete, wherein the concentration of soluble sulfur eluted from the blast furnace slowly cooled slag is 100 mg / liter or more, and the oxygen consumption of the blast furnace slowly cooled slag is 2.5 × 10 −3 mmol O 2 / g. The porous concrete, characterized in that the oxidation-reduction potential of the blast furnace slowly cooled slag is 100 mV or more, and the vitrification rate of the blast furnace slow cooled slag is 30% or less. The porous concrete, characterized in that the porous concrete contains blast furnace slow-cooled slag of fine powder. A cleat, a said porous concrete, wherein a porosity of the concrete is 10-50%.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0013]
The harmful heavy metals referred to in the present invention include cadmium, lead, arsenic, mercury, selenium, hexavalent chromium, etc. regulated in Notification No. 59 of the Environment Agency, as well as all harmful heavy metals such as nickel and molybdenum. Point. In addition, trivalent chromium may be oxidized in the air to form hexavalent chromium, and thus is regarded as a harmful heavy metal.
[0014]
The blast furnace slow-cooled slag used in the present invention is a by-product of the blast furnace in the refining process of steel, and is blast-furnace slag powder that has been gradually cooled and crystallized. The blast furnace slow cooling slag has the same composition as the granulated blast furnace slag. Specifically, SiO 2 , CaO, Al 2 O 3 , and MgO are used as main chemical components, and TiO is used as other components. 2 , MnO, Na 2 O, S, P 2 O 5 , and Fe 2 O 3 .
[0015]
The blast furnace slowly cooled slag in the present invention can be used as coarse aggregate or fine aggregate as it is, or can be pulverized and used as blast furnace slowly cooled slag fine powder.
[0016]
The compound contained in the blast furnace slowly cooled slag is mainly composed of so-called melilite, which is a mixed crystal of goerenite 2CaO.Al 2 O 3 .SiO 2 and akermanite 2CaO.MgO.2SiO 2. silicate 2CaO · SiO 2, rankinite night 3CaO · 2SiO 2, and calcium silicates, such as wollastonite CaO · SiO 2, Merubinaito 3CaO · MgO · 2SiO 2 and Monte celite CaO · MgO · SiO 2 such as calcium magnesium silicate, anorthite CaO.Al 2 O 3 .2SiO 2 , leucite (K 2 O, Na 2 O) .Al 2 O 3 .SiO 2 , spinel MgO.Al 2 O 3 , magnetite Fe 3 O 4 , and calcium sulfide CaS and Iron sulfide F It may contain sulfides such as eS.
[0017]
The amount of non-sulfuric sulfur in the blast furnace slow-cooled slag is calculated by the method of Yamaguchi and Ono based on the total sulfur, single element sulfur, sulfide sulfur, thiosulfate sulfur, and sulfate sulfur (sulfur trioxide). The amount of sulfuric acid sulfur (sulfur trioxide) and the amount of sulfur sulfide can be determined by quantification according to the method specified in JIS R5202 ("Sulfur state in blast furnace slag"). Analysis ", Naoji Yamaguchi, Akihiro Ono: Research of Steelmaking, No. 301, pp. 37-40, 1980). Blast furnace slow-cooled slag contains non-sulfuric sulfur, so that polysulfide, sulfide, thiosulfate, or sulfite is added to slag that does not contain non-sulfuric sulfur. No effect.
[0018]
The soluble sulfur concentration referred to in the present invention is an index for evaluating the amount of sulfur eluted from blast furnace slowly cooled slag powder into water, and 20 g of slowly cooled blast furnace slag powder is placed in 100 ml of water at 20 ° C. for 30 minutes. It refers to the concentration of non-sulfuric sulfur ions contained in the liquid phase that has been solid-liquid separated after stirring. The sulfur concentration in these waters can be determined by ICP emission spectrometry or ion chromatography.
[0019]
The concentration of soluble sulfur eluted from the blast furnace slowly cooled slag in the present invention is not particularly limited, but is preferably 100 mg / liter or more. If the soluble sulfur concentration is less than 100 mg / liter, a sufficient heavy metal reduction effect may not be obtained. Non-sulfuric sulfur ions include sulfur ion (S 2− ), polysulfide ion (S n 2− , n ≧ 2), thiosulfate ion (S 2 O 3 2− ), and sulfite ion (SO 3 2−). ), Sulfate ion (SO 4 2− ) and the like.
[0020]
Also, the content of non-sulfuric acid sulfur in the blast furnace slowly cooled slag used is preferably 0.5% or more. When the content of non-sulfuric sulfur in the blast furnace slowly cooled slag is less than 0.5%, a predetermined heavy metal reduction effect may not be obtained.
[0021]
The oxygen consumption of the blast furnace slag is measured as follows. 2 g of slag powder prepared to have a Blaine specific surface area of 6,000 cm 2 / g and 40 ml of distilled water are mixed, shaken for 2 hours, and then filtered. To 10 ml of the filtrate, 10 ml of a 0.1 mol / l cerium sulfate aqueous solution of cerium sulfate and several drops of 1/40 mol / l redox indicator ferroin were added, and the remaining tetravalent cerium in the shaker was reduced to 0.1 mol / l sulfuric acid. Titrate with iron. From this value, the amount of trivalent cerium reduced to trivalent by the slag powder (unit: mmol / g) is obtained, and the value obtained by dividing this value by 4 is defined as the oxygen consumption (unit: mmol O 2 / g). . If the oxygen consumption is not in the above range, a sufficient heavy metal reduction effect may not be obtained.
[0022]
The oxygen consumption, which is an index indicating the reducing ability of the blast furnace slowly cooled slag, is preferably 2.5 × 10 −3 mmol / g or more, more preferably 3.0 × 10 −3 mmol / g or more. . The oxygen consumption is one of the indexes indicating the reducing ability of the slag powder.
[0023]
The oxidation-reduction potential of the blast furnace slag is preferably 100 mV or more, and more preferably 150 mV or more. The oxidation-reduction potential is one of indices indicating the reducing ability of slag powder, and the measurement is performed as follows. A mixture of 50 g of slag powder adjusted to have a Blaine specific surface area of 6,000 cm 2 / g and 100 ml of distilled water is shaken for 24 hours, and then filtered. The oxidation-reduction potential of the filtrate is measured with a predetermined ORP electrode, and is defined as ORP1. Then, the pH of the filtrate is measured, and the oxidation-reduction potential ORP2 of distilled water adjusted with hydrochloric acid or sodium hydroxide to the same pH is measured. The difference between ORP2 and ORP1 (ORP2-ORP1) is defined as an oxidation-reduction potential (unit: mV).
[0024]
Vitrification rate slowly cooled blast furnace slag in the present invention (X) is, X (%) = (1 -S / S 0) is determined as × 100. Here, S is a main crystalline compound in the blast furnace slowly cooled slag powder determined by the powder X-ray diffraction method, which is a mixed crystal of melilite (gerenite 2CaO.Al 2 O 3 .SiO 2 and akermanite 2CaO.MgO.2SiO 2 ). ) Is the area of the main peak, and S 0 represents the area of the main peak of melilite obtained by heating the slowly cooled blast furnace slag powder at 1,000 ° C. for 3 hours and then cooling it at a cooling rate of 5 ° C./min.
[0025]
The vitrification rate of the blast furnace slowly cooled slag is preferably 30% or less, more preferably 10% or less. When the vitrification ratio is out of this range, a predetermined heavy metal reduction effect may not be obtained. When the vitrification rate is high, even though it contains almost the same amount of non-sulfuric sulfur, elution of non-sulfuric sulfur such as thiosulfate, sulfite, and sulfur is higher than that of crystalline blast furnace slowly cooled slag Harmful heavy metals may not be obtained.
[0026]
The porous concrete of the present invention only needs to have voids suitable for growing plants, and the porosity is not particularly limited. The porosity indicating the volume ratio of the voids in the entire porous concrete is 10 to 50%. Is preferred. If the porosity of the porous concrete is less than 10%, heavy metals cannot be efficiently insolubilized and plants and organisms do not grow, so that purification of water quality may be insufficient. If the porosity of the porous concrete exceeds 50%, the strength of the porous concrete may be insufficient.
[0027]
In order to increase the porosity of the porous concrete, it is general to increase the mixing ratio of the aggregate in the concrete, particularly the coarse aggregate.
[0028]
The composition for producing the porous concrete of the present invention is not particularly limited. For example, when a large amount of coarse aggregate is used to produce porous concrete, 5 to 50 parts of blast furnace slowly cooled slag fine powder and cement 95 It is preferable to use 100 parts of powder consisting of 50 parts to 50 parts, 0 to 100 parts of fine aggregate, 300 to 600 parts of coarse aggregate, and 15 to 60 parts of water.
[0029]
In the composition of the above porous concrete, in 100 parts of powder composed of cement and blast furnace slowly cooled slag fine powder, if the blast furnace slowly cooled slag fine powder is less than 5 parts, the heavy metal reduction effect may be reduced, and if it exceeds 50 parts. Concrete strength may be reduced.
[0030]
Further, in the above-mentioned composition, when the amount of coarse aggregate exceeds 600 parts, the porosity exceeds 50%, so that the strength may be insufficient. When the amount of coarse aggregate is less than 300 parts, the porosity is less than 10%. And the effect of reducing harmful heavy metals may be reduced.
[0031]
When the blast furnace slag is used as fine aggregate or coarse aggregate in the present invention, it is preferable to set the particle size range of the slag to a particle size width according to JIS A 5011-1 standard. That is, it is preferable that the coarse aggregate has a particle size within the range of 40 to 5 mm described in the BFG40-5 section, and the fine aggregate has a particle size within a range of 5 to 0.3 mm described in the BFS5-0.3 section. The maximum particle size of the coarse aggregate is preferably 40 mm or less, and if the maximum particle size of the coarse aggregate exceeds 40 mm, the effect of reducing harmful heavy metals decreases and the strength of concrete decreases, which is not preferable.
[0032]
In the present invention, the effect of reducing harmful heavy metals is more remarkable as the blending amount of the blast furnace slow cooling slag in the aggregate is larger. It is preferable that the total amount of fine aggregate and coarse aggregate in the blast furnace slowly cooled slag is large, and it is most preferable that the total amount of fine aggregate and coarse aggregate in the blast furnace slowly cooled slag be 100% of the total aggregate amount. .
[0033]
The particle size of the blast furnace slowly cooled slag fine powder is not particularly limited, but is preferably 2,000 cm 2 / g or more in terms of Blaine specific surface area, and more preferably 3,000 to 10,000 cm 2 / g. If it is less than 2,000 cm 2 / g, the effect of reducing harmful heavy metals may be insufficient, and if it exceeds 10,000 cm 2 / g, excessive grinding power is required, which is uneconomical.
[0034]
Cement is not particularly limited, but preferably contains Portland cement, for example, normal, fast strength, ultra-high strength, low heat, and various portland cement such as moderate heat, blast furnace granulated slag to these Portland cement, fly ash, Or various mixed cements containing silica, and filler cements containing limestone fine powder.
[0035]
The porous concrete of the present invention may be mixed with cement, aggregate, water, blast furnace slowly cooled slag, or the like at the time of construction, or may be partially or entirely mixed in advance.
[0036]
The porous concrete of the present invention may be subjected to steam curing and autoclave curing. The ambient temperature for steam curing is not particularly limited, but is preferably 30 to 70 ° C, more preferably 40 to 60 ° C. If the temperature is lower than 30 ° C., the productivity is insufficient. If the temperature is higher than 70 ° C., cracks occur due to temperature stress, and the durability may be reduced.
[0037]
The porous concrete of the present invention is preferably made highly fluid by using a water reducing agent such as a general-purpose water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent. The water reducing agent may be used in either liquid or powder form.
[0038]
When a water reducing agent such as a water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent is used, the amount used is 0.5 parts with respect to 100 parts of powder consisting of cement and blast furnace slowly cooled slag fine powder. ~ 5 parts are preferred. Further, it is preferable to use a high-performance water reducing agent or a high-performance AE water reducing agent such as a naphthalene-based, melamine-based, sulfonic acid-based, or polycarboxylic acid-based one because the strength of the porous concrete is good.
[0039]
In the present invention, aggregates such as heavy aggregates and lightweight aggregates, thickeners, rust inhibitors, antifreeze agents, shrinkage reducing agents, polymer emulsions, setting modifiers, clay minerals such as bentonite, hydrotalcite, etc. It is possible to use one or two or more of the cement admixtures such as the above-mentioned anion exchangers in a range that does not substantially inhibit the object of the present invention.
[0040]
In the present invention, it is possible to fill the voids of the porous concrete with soil. Specific examples include sandy soil and clayey soil, which can promote the growth of plants at the same time as the insolubilization of harmful heavy metals.
[0041]
The porous concrete of the present invention can be used after accelerated carbonation curing under a carbon dioxide gas atmosphere. Carbonation increases the strength of the concrete and reduces the alkalinity of the filled soil, further promoting plant growth.
[0042]
The accelerated carbonation curing is performed in an atmosphere having a higher concentration of carbon dioxide than air, for example, preferably in a concentration of 1 to 30%, more preferably in an atmosphere of 5 to 10%. Further, a method of pressurizing to 0.1 to 1.0 MPa in a carbon dioxide gas high-pressure vessel or using steam curing together is effective from the viewpoint of improving productivity.
[0043]
The atmosphere temperature of the accelerated carbonation curing is preferably from 10 to 70C, more preferably from 30 to 50C. If the temperature is lower than 10 ° C., the productivity is insufficient. If the temperature exceeds 70 ° C., microcracks are generated due to temperature stress, and the durability may be reduced.
[0044]
【Example】
Hereinafter, the present invention will be described in more detail based on experimental examples.
[0045]
Experimental example 1
70 parts of cement, 100 parts of powder consisting of 30 parts of blast furnace slowly cooled slag fine powder, 100 parts by weight of fine aggregate, 600 parts by weight of coarse aggregate, 30 parts of water, 1 part of water reducing agent, used fine aggregate, coarse bone Porous concrete was prepared by changing the type of material as shown in Table 1.
[0046]
These porous concretes were molded into a cylindrical block having a diameter of 15 × 30 cm, and cured in a room at 20 ° C. and 80% RH for 7 days. This was immersed for one month in 10 liters of heavy metal contaminated water containing 10 mg / l of lead, 10 mg / l of cadmium, and 10 mg / l of hexavalent chromium. Thereafter, the amounts of lead, cadmium, and hexavalent chromium remaining in the liquid phase were quantified by ICP emission spectrometry.
[0047]
As a comparative example, the results using the fine powder e ′ of the granulated blast furnace slag, the fine aggregate e, and the coarse aggregate E (see Experiment No. 1-5) and the normal fine silica-based powder f ′ , Fine aggregate f and coarse aggregate F (see Experiment No. 1-6). Table 1 shows the results.
[0048]
<Material used>
(1) Slag slag α: blast furnace slowly cooled slag, vitrification rate 5%, non-sulfuric acid sulfur 0.9%, soluble sulfur concentration 418 mg / liter, oxygen consumption 10.3 × 10 −3 mmol O 2 / g, oxidation Reduction potential 290 mV, density 3.00 g / cm 3
Slag β: blast furnace slowly cooled slag, vitrification rate 5%, non-sulfuric acid sulfur 0.5%, soluble sulfur concentration 229 mg / liter, oxygen consumption 6.3 × 10 −3 mmol O 2 / g, redox potential 218 mV , Density 3.00 g / cm 3
Slag γ: Blast furnace slowly cooled slag, vitrification rate 5%, non-sulfuric acid sulfur 0.3%, soluble sulfur concentration 138 mg / liter, oxygen consumption 4.2 × 10 −3 mmol O 2 / g, redox potential 178 mV , Density 3.00 g / cm 3
Slag δ: Slowly cooled blast furnace slag, vitrification rate 30%, non-sulfuric acid sulfur 0.9%, soluble sulfur concentration 291 mg / l, oxygen consumption 3.0 × 10 −3 mmol O 2 / g, redox potential 150 mV , Density 3.00 g / cm 3
Slag ε: Granulated blast furnace slag, vitrification rate 95%, non-sulfuric acid sulfur 0.9%, soluble sulfur concentration 10 mg / liter, oxygen consumption 2.0 × 10 −3 mmol O 2 / g, redox potential 99 mV , Density 2.90 g / cm 3
[0049]
(2) Fine aggregate blast furnace slowly cooled slag fine aggregate a: slag α adjusted to aggregate size 1-5 mm Blast furnace slow cooled slag fine aggregate b: slag β adjusted to aggregate size 1-5 mm Blast furnace slow-cooled slag fine aggregate c: Slag γ adjusted to aggregate size 1-5 mm Blast furnace slow-cooled slag fine aggregate d: Slag δ adjusted to aggregate size 1-5 mm Blast furnace granulated slag fine bone Material e: Slag ε adjusted to aggregate size 1-5 mm Fine aggregate f: Gravel from Himekawa, Niigata Prefecture, density 2.62 g / cm 3 , aggregate size 1-5 mm, mainly composed of silica stone
(3) Coarse Aggregate Blast Furnace Slowly Cooled Slag Coarse Aggregate A: Slag α adjusted to aggregate size 15-25 mm Blast Furnace Slowly Cooled Slag Coarse Aggregate B: Slag β adjusted to aggregate size 15-25 mm Blast furnace slowly cooled slag coarse aggregate C: Slag γ adjusted to aggregate size 15-25 mm Blast furnace slow cooled slag coarse aggregate D: Slag δ adjusted to aggregate size 15-25 mm Blast furnace granulated slag coarse bone Material E: slag ε prepared to have an aggregate size of 15 to 25 mm Coarse aggregate F: crushed stone from Himekawa, Niigata Prefecture, density 2.64 g / cm 3 , aggregate size 15 to 25 mm, mainly composed of silica stone
(4) Fine powder blast furnace slow-cooled slag fine powder a ': A slag α adjusted to a brane value of 4,000 cm 2 / g Blast furnace slow-cooled slag fine powder b': Slag β to a brane value of 4,000 cm 2 / g Blast furnace slow-cooled slag fine powder c ′: Slag γ was prepared to a Blaine value of 4,000 cm 2 / g Blast furnace slow-cooled slag fine powder d ′: Slag δ was prepared to a Blaine value of 4,000 cm 2 / g Granulated blast furnace slag fine powder e ': Slag ε adjusted to a Blaine value of 4,000 cm 2 / g Fine powder f': Fine aggregate f ground to a Blaine value of 4,000 cm 2 / g [ 0052
(5) Other material cement: Ordinary Portland cement, manufactured by Denki Kagaku Kogyo Co., Ltd., density 3.15 g / cm 3
Water: tap water reducer: high-performance AE water reducer, polycarboxylic acid, commercially available
<Test method>
Porosity: Continuous porosity, measured according to the volumetric method of the Japan Concrete Institute, Eco-Concrete Research Committee "Measurement method for porous concrete (draft)".
Hexavalent chromium concentration: Performed according to JIS K0102.
Lead and cadmium concentrations: quantified by ICP emission spectrometry (lower limit of quantification: 0.02 mg / liter).
Compressive strength: A cylindrical specimen having a diameter of 15 × 30 cm was prepared, upper and lower surfaces were capped, and measured at a material age of 7 days in accordance with JIS A 1106.
[0054]
[Table 1]
Figure 2004142973
Note: e 'in the fine powder column is blast furnace granulated slag fine powder, and f' is crushed powder of river sand.
Experimental example 2
Using the blast furnace slow-cooled slag fine powder a ′, the blast furnace slow-cooled slag coarse aggregate A, and the blast furnace slow-cooled slag fine aggregate a using the slag α as a raw material, the coarse aggregate size is adjusted as shown in Table 2. The porosity was adjusted. Otherwise, the test was performed in the same manner as in Experimental Example 1. Table 2 shows the results.
[0056]
[Table 2]
Figure 2004142973
[0057]
Experimental example 3
Using blast furnace slow-cooled slag fine powder a ', blast furnace slow-cooled slag coarse aggregate A, blast furnace slow-cooled slag fine aggregate a, river sand, and river gravel using slag α as a raw material, fine aggregate and coarse aggregate The experiment was conducted in the same manner as in Experimental Example 1 except that the mixing ratio of the blast furnace slowly cooled slag, the river sand and the river gravel was changed as shown in Table 3. Table 3 shows the results.
[0058]
<Material used>
River sand: River gravel from Himekawa, Niigata prefecture, density 2.64 g / cm 3 , aggregate size 5-0.3 mm, mainly silica stone River gravel: from Himekawa, Niigata prefecture, crushed stone, density 2.64 g / cm 3 , aggregate size 40-5mm, mainly composed of silica stone
[Table 3]
Figure 2004142973
Note: f 'in the fine powder column indicates that "slow cooling" in the crushed powder of river sand is blast furnace slow cooling slag fine aggregate, and "coarse slow cooling" is blast furnace slow cooling slag coarse aggregate.
[0060]
Experimental example 4
Table 4 shows the mixing ratio of the cement and the blast furnace slowly cooled slag fine powder a 'using the cement, the blast furnace slow cooled slag fine powder a', the blast furnace slow cooled slag coarse aggregate A, and the blast furnace slow cooled slag fine aggregate a. Except having changed like this, it carried out similarly to Experimental example 1. Table 4 shows the results. Experiment No. 1 using fine aggregate f and coarse aggregate F without using coarse aggregate of blast furnace slow cooling slag and fine aggregate of blast furnace slow cooling slag. 1-6 are also described as comparative examples.
[0061]
[Table 4]
Figure 2004142973
Note: Slowly cooled slag in the table is (parts) of blast furnace slowly cooled slag fine powder.
[0062]
Experimental example 5
The steam-cured porous concrete was subjected to accelerated carbonation curing in an environment of a carbon dioxide gas concentration of 5%, a temperature of 40 ° C., and a relative humidity of 60%. While measuring the compressive strength of the obtained concrete, the concrete was pulverized with a crusher and sprayed with a 1% aqueous solution of phenolphthalein to check whether the concrete was alkaline. Furthermore, the soil material and alfalfa seeds were injected into the concrete voids and planted, and the results of observing the vegetation after two months are shown in Table 5. Also, as a comparative example, the vegetation status of porous concrete subjected to only ordinary steam curing is also described.
[0063]
[Table 5]
Figure 2004142973
Note ○: Alfalfa with plant height of 5 cm or more. Δ: Alfalfa with plant height of 3 cm or more.
【The invention's effect】
By using the porous concrete of the present invention, it is possible to promote the growth of plants in order to purify contaminated water and harmonize with the surrounding natural environment, and at the same time, promote cadmium, lead, arsenic, nickel, mercury, and molybdenum. It can reduce harmful heavy metals such as selenium, selenium, trivalent chromium, and hexavalent chromium, so that it is suitable for applications such as greening concrete blocks in the fields of civil engineering, construction, and purification of domestic wastewater.

Claims (8)

高炉徐冷スラグを含有してなるポーラスコンクリート。Porous concrete containing blast furnace slag. 高炉徐冷スラグ中に含まれる非硫酸態イオウ量が0.5%以上であることを特徴とする請求項1記載のポーラスコンクリート。The porous concrete according to claim 1, wherein the amount of non-sulfuric acid sulfur contained in the blast furnace slowly cooled slag is 0.5% or more. 高炉徐冷スラグから溶出する溶解性イオウ濃度が100mg/リットル以上であることを特徴とする請求項1〜2のいずれか1項に記載のポーラスコンクリート。The porous concrete according to any one of claims 1 to 2, wherein the soluble sulfur concentration eluted from the blast furnace slowly cooled slag is 100 mg / liter or more. 高炉徐冷スラグの酸素消費量が2.5×10−3mmolO/g以上であることを特徴とする請求項1〜3のいずれか1項に記載のポーラスコンクリート。Porous concrete according to any one of claims 1 to 3, wherein the oxygen consumption of slowly cooled blast furnace slag is 2.5 × 10 -3 mmolO 2 / g or more. 高炉徐冷スラグの酸化還元電位が100mV以上であることを特徴とする請求項1〜4のいずれか1項に記載のポーラスコンクリート。The porous concrete according to any one of claims 1 to 4, wherein the oxidation-reduction potential of the blast furnace slowly cooled slag is 100 mV or more. 高炉徐冷スラグのガラス化率が30%以下であることを特徴とする請求項1〜5のいずれか1項に記載のポーラスコンクリート。The porcelain concrete according to any one of claims 1 to 5, wherein the blast furnace slag has a vitrification rate of 30% or less. 微粉末の高炉徐冷スラグを含有することを特徴とする請求項1〜6のいずれか1項に記載のポーラスコンクリート。The porous concrete according to any one of claims 1 to 6, further comprising fine blast furnace slag of fine powder. コンクリートの空隙率が10〜50%であることを特徴とする請求項1〜7のいずれか1項に記載のポーラスコンクリート。The porous concrete according to any one of claims 1 to 7, wherein the porosity of the concrete is 10 to 50%.
JP2002307767A 2002-10-23 2002-10-23 Cement composition for porous concrete and porous concrete using the same Expired - Fee Related JP4141794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307767A JP4141794B2 (en) 2002-10-23 2002-10-23 Cement composition for porous concrete and porous concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307767A JP4141794B2 (en) 2002-10-23 2002-10-23 Cement composition for porous concrete and porous concrete using the same

Publications (2)

Publication Number Publication Date
JP2004142973A true JP2004142973A (en) 2004-05-20
JP4141794B2 JP4141794B2 (en) 2008-08-27

Family

ID=32454088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307767A Expired - Fee Related JP4141794B2 (en) 2002-10-23 2002-10-23 Cement composition for porous concrete and porous concrete using the same

Country Status (1)

Country Link
JP (1) JP4141794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237559A (en) * 2013-06-06 2014-12-18 電気化学工業株式会社 Aggregate and manufacturing method thereof
JP2016169317A (en) * 2015-03-13 2016-09-23 デンカ株式会社 Liquid admixture for ground stabilization, material for ground stabilization and construction method for ground stabilization using the same
JP2016185098A (en) * 2015-03-27 2016-10-27 株式会社ホクコン Environment improving concrete block

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107867817A (en) * 2016-11-18 2018-04-03 山东鑫海科技股份有限公司 A kind of environment-protective process of effectively processing lateritic nickel ore nickel-iron smelting waste residue
CN107867818A (en) * 2016-11-22 2018-04-03 山东鑫海科技股份有限公司 A kind of method for preparing inner wall of building plate using lateritic nickel ore nickel-iron smelting waste residue

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160895A (en) * 1988-12-15 1990-06-20 Tetsugen:Kk Foundation conditioner
JPH04198049A (en) * 1990-11-29 1992-07-17 Sumitomo Metal Ind Ltd Water-permeable composition
JPH0761852A (en) * 1993-08-25 1995-03-07 Nissan Chem Ind Ltd Cement composition
JPH10324547A (en) * 1997-03-27 1998-12-08 Kawasaki Steel Corp Treatment of chromium oxide-containing material
JP2000086322A (en) * 1998-09-17 2000-03-28 Taiheiyo Cement Corp Hexavalent chromium leach reducing agent for hydraulic material, and method for reducing hexavalent chromium leach
JP2000157094A (en) * 1998-11-27 2000-06-13 Nkk Corp Stone material for sinking and disposing in water and its production
JP2000301107A (en) * 1999-04-14 2000-10-31 Center For Coal Utilization Japan Method for suppressing elution of very small amount of heavy metal contained in coal ash and earthwork material using coal ash
JP2001294459A (en) * 2000-04-12 2001-10-23 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2002097047A (en) * 2000-09-25 2002-04-02 Denki Kagaku Kogyo Kk Cement admixture, cement composition and method of using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160895A (en) * 1988-12-15 1990-06-20 Tetsugen:Kk Foundation conditioner
JPH04198049A (en) * 1990-11-29 1992-07-17 Sumitomo Metal Ind Ltd Water-permeable composition
JPH0761852A (en) * 1993-08-25 1995-03-07 Nissan Chem Ind Ltd Cement composition
JPH10324547A (en) * 1997-03-27 1998-12-08 Kawasaki Steel Corp Treatment of chromium oxide-containing material
JP2000086322A (en) * 1998-09-17 2000-03-28 Taiheiyo Cement Corp Hexavalent chromium leach reducing agent for hydraulic material, and method for reducing hexavalent chromium leach
JP2000157094A (en) * 1998-11-27 2000-06-13 Nkk Corp Stone material for sinking and disposing in water and its production
JP2000301107A (en) * 1999-04-14 2000-10-31 Center For Coal Utilization Japan Method for suppressing elution of very small amount of heavy metal contained in coal ash and earthwork material using coal ash
JP2001294459A (en) * 2000-04-12 2001-10-23 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2002097047A (en) * 2000-09-25 2002-04-02 Denki Kagaku Kogyo Kk Cement admixture, cement composition and method of using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237559A (en) * 2013-06-06 2014-12-18 電気化学工業株式会社 Aggregate and manufacturing method thereof
JP2016169317A (en) * 2015-03-13 2016-09-23 デンカ株式会社 Liquid admixture for ground stabilization, material for ground stabilization and construction method for ground stabilization using the same
JP2016185098A (en) * 2015-03-27 2016-10-27 株式会社ホクコン Environment improving concrete block

Also Published As

Publication number Publication date
JP4141794B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
Roychand et al. Recycling steel slag from municipal wastewater treatment plants into concrete applications–A step towards circular economy
Ahmad et al. Sustainable management of water treatment sludge through 3 ‘R’concept
JP5189119B2 (en) Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture
US20080179253A1 (en) Porous Particulate Material For Fluid Treatment, Cementitious Composition and Method of Manufacture Thereof
Wijeyawardana et al. Improvement of heavy metal removal from urban runoff using modified pervious concrete
KR101367790B1 (en) Echo-functional and low-alkali compositions for concrete forming
Huseien et al. Durability performance of modified concrete incorporating fly ash and effective microorganism
JP2006182583A (en) Mortar or concrete having compacted surface layer and its manufacturing method
He et al. Recycling of water treatment sludge in concrete: The role of water-binder ratio from a nanoscale perspective
JP4141794B2 (en) Cement composition for porous concrete and porous concrete using the same
Quan et al. Enhancing phosphorus removal by novel porous concrete fabricated with alkali-activated aggregate derived from industrial solid wastes
JP4014518B2 (en) Soil improvement material
KR100375407B1 (en) method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same
CN111661993A (en) Sludge curing agent and preparation method and use method thereof
Jeong et al. Evaluation of compressive strength and phosphate fixation characteristics of wastewater filter media using coal bottom ash and oyster shells
JP3897727B2 (en) Hazardous material collector
Helepciuc et al. Health and environmental effects of heavy metals resulted from fly ash and cement obtaining and trials to reduce their pollutant concentration by a process of combining-exclusion
JP2001113165A (en) Adsorbent
JP2002114556A (en) Functional cement hardened body
Shi Hydraulic cement systems for stabilization/solidification
Yogafanny et al. The leaching behavior of pervious mortar used as water filter in rural areas
Hunter et al. Bioreactor media for treatment of slag leachate
KR100935204B1 (en) Solity of high hardened using solidity material and method of manufacturing solity
JP3810350B2 (en) Cement admixture and cement composition
JP3559905B2 (en) Environmental purification type inorganic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4141794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees