JP3983033B2 - Cement admixture, cement composition, and cement concrete using the same - Google Patents
Cement admixture, cement composition, and cement concrete using the same Download PDFInfo
- Publication number
- JP3983033B2 JP3983033B2 JP2001347246A JP2001347246A JP3983033B2 JP 3983033 B2 JP3983033 B2 JP 3983033B2 JP 2001347246 A JP2001347246 A JP 2001347246A JP 2001347246 A JP2001347246 A JP 2001347246A JP 3983033 B2 JP3983033 B2 JP 3983033B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- slag
- admixture
- sulfur
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
- C04B18/142—Steelmaking slags, converter slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/308—Slump-loss preventing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/10—Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
- C04B2111/1075—Chromium-free or very low chromium-content materials
- C04B2111/1081—Chromium VI, e.g. for avoiding chromium eczema
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主に、土木・建築業界において使用されるセメント混和材、セメント組成物、及びそれを用いたセメントコンクリートに関する。
なお、本発明における部や%は特に規定しない限り質量基準で示す。
また、本発明でいうセメントコンクリートとは、ペースト、モルタル、及びコンクリートを総称するものである。
【0002】
【従来の技術とその課題】
現在、産業副産物である各種の鉄鋼スラグの有効利用に関して関心が寄せられている(「鉄鋼スラグの有効利用の現状と今後の課題」、社団法人日本鉄鋼協会、平成13年参照)。
鉄鋼スラグは、プロセスや設備によって様々な組成や性状を有するスラグとして副生している。
例えば、銑鉄を調製するプロセスで用いる高炉からは高炉スラグが、銑鉄から製鋼するプロセスで用いる溶銑予備処理設備、転炉、及び電気炉からは、それぞれ、溶銑予備処理スラグ、転炉スラグ、及び電気炉スラグが副生する。
さらに、高炉スラグには水砕スラグと徐冷スラグがあり、溶銑予備処理スラグには、脱珪スラグ、脱リンスラグ、及び脱硫スラグがあり、電気炉スラグにも酸化期スラグと還元期スラグが存在する。
【0003】
従来より、高炉より副生する高炉水砕スラグや高炉徐冷スラグはコンクリート混和材や路盤材等として利用されている。
また、転炉スラグもある程度の処理を施せば路盤材として利用できることも報告されている。
しかしながら、前述した鉄鋼スラグと呼ばれるものには未だに有効な利用方法が見出されていないものが多い。
そのひとつとして、溶銑の予備処理設備で副生する脱硫スラグが挙げられる。
脱硫スラグは、イオウ分を除去する工程で副生するスラグであり、他のスラグよりもイオウ分が多い特徴を有する。
したがって、イオウ分を嫌うセメント原料への脱硫スラグの利用ができないこと、また、その他の有効な利用方法も見出されていないことから廃棄処分されていることが多い。
【0004】
本発明者は、有効利用方法が見出されていない脱硫スラグを粉末化した脱硫スラグ粉末が優れた性能を有することを見出し、それを含有するセメント混和材を用いることにより、多機能なセメントコンクリートが得られることを知見し、本発明を完成するに至った。
【0005】
【課題を解決するための手段】
即ち、本発明は、非硫酸態イオウとして存在するイオウを0.5%以上含むブレーン比表面積が3,000cm2/g以上である脱硫スラグ粉末を含有してなる、普通、早強、超早強、低熱、及び中庸熱のポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した混合セメント、石灰石粉末を混合したフィラーセメント、並びに、産業廃棄物利用型セメントのエコセメントのうちの一種又は二種以上を含むセメントに使用するセメント混和材であり、該セメントと、該セメント混和材とを含有してなるセメント組成物であり、セメント組成物100部中、セメント混和材が3〜60部である該セメント組成物であり、該セメント組成物を用いてなるセメントコンクリートである。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0007】
本発明で使用する脱硫スラグとは、溶銑の予備処理設備で副生するスラグ、いわゆる、溶銑予備処理スラグのうち、脱硫工程で副生するスラグを総称するものであり、特に限定されるものではない。
脱硫スラグの成分は特に限定されるものではないが、具体的には、CaO、SiO2、Al2O3、Fe2O3、S、MgO、TiO2、MnO、Na2O、及びP2O5などが挙げられ、さらにFe2O3以外の状態で存在するFeを含んでいる。
これらの成分割合は、使用する鉄鉱石の組成や脱硫剤の組成によって大きく異なるため一義的に決定することはできない。
また、化合物としては、トライカルシウムシリケート3CaO・SiO2、ダイカルシウムシリケート2CaO・SiO2、ランキナイト3CaO・2SiO2、及びワラストナイトCaO・SiO2などのカルシウムシリケート、カルシウムフェライト、カルシウムアルミノフェライト、遊離石灰、リューサイト(K2O、Na2O)・Al2O3・SiO2、スピネルMgO・Al2O3、マグネタイトFe3O4、並びに、硫化カルシウムCaSや硫化鉄FeSなどの硫化物等を含む場合が多いが、化合物組成も化学成分の変動と関連するため一義的に決定されるものではない。
【0008】
本発明では、脱硫スラグは特に限定されるものではないが、非硫酸態イオウとして存在するイオウ(以下、単に非硫酸態イオウという)を0.5%以上含むものを用いることが、本発明の効果が顕著であることから好ましい。非硫酸態イオウが0.5%未満では、本発明の効果、即ち、六価クロム還元性能やスランプロスの抑制効果が充分に得られない場合がある。非硫酸態イオウは、0.5%以上が好ましく、0.7%以上がより好ましく、0.9%以上が最も好ましい。
非硫酸態イオウ量は、全イオウ量、単体イオウ量、硫化物態イオウ量、チオ硫酸態イオウ量、及び硫酸態イオウ(三酸化イオウ)量を山口と小野の方法により定量することによって、また、硫酸態イオウ量(三酸化イオウ)と硫化物イオウ量については、JIS R 5202に定められた方法により定量することによっても求めることができる(「高炉スラグ中硫黄の状態分析」、山口直治、小野昭紘:製鉄研究、第301号、pp.37-40、1980参照)。
【0009】
脱硫スラグのブレーン比表面積(以下、ブレーン値という)は特に限定されるものではないが、3,000cm2/g以上が好ましく、4,000〜8000cm2/gがより好ましく、5,000〜8,000cm2/gが最も好ましい。3,000cm2/g未満では本発明の効果、即ち、六価クロムの還元性能が充分に得られない場合があり、また、材料分離抵抗性も期待できない。一方、8000cm2/gを超えるように粉砕するには、粉砕動力が大きくなり不経済であり、また、脱硫スラグが風化しやすくなって、品質の経時的な劣化が大きくなる場合がある。
【0010】
本発明のセメント混和材(以下、本混和材という)の使用量は特に限定されるものではないが、通常、セメントと本混和材からなるセメント組成物100部中、3〜60部が好ましく、5〜50部がより好ましい。3部未満では本発明の効果が充分に得られない場合があり、60部を超えて使用すると強度発現性が悪くなる場合がある。
【0011】
本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末等を混合したフィラーセメント、並びに、産業廃棄物利用型セメント、いわゆるエコセメントなどが挙げられ、これらのうちの一種又は二種以上の使用が可能である。
【0012】
本発明のセメント組成物はそれぞれの材料を施工時に混合してもよいし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。例えば、高炉徐冷スラグとセメントクリンカーとセッコウを別々に粉砕して混合しても良いし、これらの一部をあるいは全部を混合粉砕して製造してもよい。
本発明のセメント組成物の粒度は、使用する目的・用途に依存するため特に限定されるものではないが、通常、ブレーン値で3,000〜8,000cm2/gが好ましく、4,000〜6,000cm2/gがより好ましい。3,000cm2/g未満では強度発現性が充分に得られない場合があり、8,000cm2/gを超えると作業性が悪くなる場合がある。
【0013】
本発明では、セメント、本混和材、砂や砂利等の骨材の他に、従来セメントコンクリートに用いられてきた高炉水砕スラグ粉末、石灰石粉末、フライアッシュ、及びシリカフュームなどの混和材料、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、ベントナイトなどの粘土鉱物、並びに、ハイドロタルサイトなどのアニオン交換体等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
【0014】
なお、本発明のセメントコンクリートには、施工の良否の影響を受けない高流動コンクリートも含まれる。
高流動コンクリートは、コンクリートの広がりで表されるスランプフロー値で、650±50mmの範囲で調製されるのが一般的である。
【0015】
本発明において、各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。
混合装置としては、既存のいかなる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサなどの使用が可能である。
【0016】
【実施例】
以下、本発明を実験例に基づいてさらに説明する。
【0017】
実験例1
各種脱硫スラグ微粉末(スラグ)を本混和材として使用し、表1に示すような単位セメント組成物量350kg/m3、単位水量175kg/m3、s/a=46%、及び空気量4.5±1.5%のコンクリートを調製し、スランプロスを測定した。
また、本混和材の六価クロム低減能力を評価するため、六価クロム残存濃度を測定した。
比較のために、高炉水砕スラグや、溶銑予備処理スラグのうちの脱珪スラグについても同様の実験を行った。結果を表1に併記する。
なお、コンクリートのスランプ値が18±1.5cmとなるように高性能AE減水剤を使用した。
【0018】
<使用材料>
セメント :普通ポルトランドセメント、電気化学工業社製、比重3.15
スラグA :脱硫スラグ、ブレーン値3,000cm2/g、非硫酸態イオウ0.9%
スラグB :脱硫スラグ、ブレーン値4,000cm2/g、非硫酸態イオウ0.9%
スラグC :脱硫スラグ、ブレーン値5,000cm2/g、非硫酸態イオウ0.9%
スラグD :脱硫スラグ、ブレーン値6,000cm2/g、非硫酸態イオウ0.9%
スラグE :脱硫スラグ、ブレーン値8,000cm2/g、非硫酸態イオウ0.9%
スラグF :スラグDを水に浸漬してエイジングし、非硫酸態イオウを0.7%にしたもの、ブレーン値6,000cm2/g
スラグG :スラグDを水に浸漬してエイジングし、非硫酸態イオウを0.5%にしたもの、ブレーン値6,000cm2/g
スラグH :高炉水砕スラグ、ブレーン値6,000cm2/g、非硫酸態イオウ0.6%
スラグI :脱珪スラグ、ブレーン値6,000cm2/g、非硫酸態イオウ0.04%
水 :水道水
砂 :新潟県姫川産、比重2.62
砂利 :新潟県姫川産、砕石、比重2.64
高性能AE減水剤:ポリカルボン酸系、市販品
【0019】
<測定方法>
スランプロス:JIS A 1101に準じてスランプ値を測定し、練り上がりのスランプ値から90分経過後のスランプ値を差し引いて、スランプロス値とした。
六価クロム残存濃度:セメント混和材の六価クロム低減能力の評価、六価クロム標準溶液を希釈して、六価クロム濃度が100mg/lの溶液を調製し、この六価クロム溶液50ccに各セメント混和材10gを入れて攪拌し、7日後に固液分離して液相中の六価クロム残存濃度を測定することによって評価した。ただし、六価クロムの残存濃度は、JIS K 0102に準じ、ICP発光分光分析法により測定した。
【0020】
【表1】
【0021】
実験例2
セメントと本混和材からなるセメント組成物100部中、表2示すスラグDを使用し、スランプロスを測定したこと以外は、実験例1と同様に行った。結果を表2に併記する。
【0022】
【表2】
【0023】
【発明の効果】
本発明のセメント混和材は六価クロムの低減能力を有し、これを使用することにより、スランプロスが小さいコンクリートとすることができる。また、脱硫スラグの有効利用にもなるなどの効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a cement admixture, a cement composition, and cement concrete using the cement admixture used in the civil engineering and construction industries.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
Moreover, the cement concrete as used in this invention is a general term for paste, mortar, and concrete.
[0002]
[Prior art and its problems]
Currently, there is interest in the effective use of various types of steel slag, which is an industrial by-product (see “Current Status and Future Issues of Effective Use of Steel Slag”, Japan Iron and Steel Institute, 2001).
Steel slag is by-produced as slag having various compositions and properties depending on the process and equipment.
For example, blast furnace slag from the blast furnace used in the process of preparing pig iron, hot metal pretreatment equipment, converter, and electric furnace used in the process of steelmaking from pig iron, respectively, hot metal pretreatment slag, converter slag, and electric Furnace slag is by-produced.
Furthermore, there are granulated slag and slow-cooled slag in blast furnace slag, and hot metal pretreatment slag includes desiliconized slag, dephosphorized slag, and desulfurized slag, and electric furnace slag also has oxidation period slag and reduction period slag. To do.
[0003]
Conventionally, blast furnace granulated slag and blast furnace slow-cooled slag by-produced from the blast furnace have been used as concrete admixtures, roadbed materials and the like.
It has also been reported that converter slag can be used as a roadbed material after a certain amount of treatment.
However, many of the above-described steel slags have not yet been found to be effective.
One of them is desulfurization slag by-produced in hot metal pretreatment equipment.
Desulfurization slag is a slag produced as a by-product in the process of removing sulfur, and has a feature that there is more sulfur than other slag.
Therefore, desulfurization slag cannot be used as a raw material for cement that does not like sulfur, and no other effective use method has been found.
[0004]
The present inventor has found that desulfurized slag powder obtained by pulverizing desulfurized slag for which no effective utilization method has been found has excellent performance, and by using a cement admixture containing the same, multifunctional cement concrete As a result, the present invention has been completed.
[0005]
[Means for Solving the Problems]
That is, the present invention comprises a desulfurized slag powder having a Blaine specific surface area of 3,000 cm 2 / g or more containing 0.5% or more of sulfur existing as non-sulfuric sulfur, and usually, early strength, super early strength, low heat , And moderately hot Portland cement, mixed cement containing blast furnace slag, fly ash, or silica mixed with Portland cement, filler cement mixed with limestone powder, and one kind of eco-cement of industrial waste utilization type cement or a cement admixture to be used in cement containing two or more, and the cement is a cement composition comprising the said cement admixture, cement composition in 100 parts of cement admixture is 3-60 Part of the cement composition, which is cement concrete using the cement composition.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0007]
The desulfurization slag used in the present invention is a generic term for slag produced as a by-product in hot metal pretreatment equipment, so-called hot metal pretreatment slag, and is a generic term for slag produced as a by-product in the desulfurization process. Absent.
Although not components of the desulfurization slag is particularly limited, specifically, CaO, SiO 2, Al 2 O 3, Fe 2 O 3, S, MgO, TiO 2, MnO, Na 2 O, and P 2 O 5 and the like are included, and Fe that exists in a state other than Fe 2 O 3 is included.
Since these component ratios vary greatly depending on the composition of the iron ore used and the composition of the desulfurizing agent, they cannot be uniquely determined.
The compound, tri-calcium silicate 3CaO · SiO 2, dicalcium silicate 2CaO · SiO 2, calcium silicates, such as rankinite night 3CaO · 2SiO 2, and wollastonite CaO · SiO 2, calcium ferrite, calcium alumino ferrite, free Lime, leucite (K 2 O, Na 2 O) / Al 2 O 3 / SiO 2 , spinel MgO / Al 2 O 3 , magnetite Fe 3 O 4 , sulfides such as calcium sulfide CaS and iron sulfide FeS, etc. In many cases, however, the compound composition is not uniquely determined because it is related to the variation of chemical components.
[0008]
In the present invention, the desulfurized slag is not particularly limited, but it is possible to use the one containing 0.5% or more of sulfur existing as non-sulfate sulfur (hereinafter simply referred to as non-sulfate sulfur). It is preferable because it is remarkable. If the non-sulfuric sulfur is less than 0.5%, the effects of the present invention, that is, the hexavalent chromium reduction performance and the slump loss suppressing effect may not be sufficiently obtained. Non-sulfuric sulfur is preferably 0.5% or more, more preferably 0.7% or more, and most preferably 0.9% or more.
The amount of non-sulfuric sulfur can be determined by quantifying the total sulfur, simple sulfur, sulfide sulfur, thiosulfate sulfur, and sulfate (sulfur trioxide) by the method of Yamaguchi and Ono. The amount of sulfur sulfate (sulfur trioxide) and the amount of sulfide sulfur can also be determined by quantifying by the method specified in JIS R 5202 ("Situation analysis of sulfur in blast furnace slag", Naoji Yamaguchi, (Akiaki Ono: Steel Research, No. 301, pp. 37-40, 1980).
[0009]
Blaine specific surface area of the desulfurization slag (hereinafter, referred to as Blaine value) but is not particularly limited, is preferably at least 3,000 cm 2 / g, more preferably 4,000~8000cm 2 / g, 5,000~8,000cm 2 / g is Most preferred. If it is less than 3,000 cm 2 / g, the effect of the present invention, that is, the reduction performance of hexavalent chromium may not be sufficiently obtained, and the material separation resistance cannot be expected. On the other hand, pulverization to exceed 8000 cm 2 / g is uneconomical because the pulverization power is increased, and the desulfurized slag is likely to be weathered, and the deterioration of quality over time may increase.
[0010]
The amount of the cement admixture of the present invention (hereinafter referred to as the present admixture) is not particularly limited, but usually 3 to 60 parts are preferable in 100 parts of the cement composition composed of cement and the present admixture, 5 to 50 parts is more preferable. If it is less than 3 parts, the effect of the present invention may not be sufficiently obtained, and if it is used in excess of 60 parts, strength development may be deteriorated.
[0011]
As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements obtained by mixing blast furnace slag, fly ash, or silica with these portland cements, limestone Examples include filler cement mixed with powder and the like, industrial waste utilization type cement, so-called eco-cement, and the like, and one or more of these can be used.
[0012]
In the cement composition of the present invention, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance. For example, blast furnace slow cooling slag, cement clinker and gypsum may be separately pulverized and mixed, or some or all of these may be mixed and pulverized.
The particle size of the cement composition of the present invention is not particularly limited because it depends on the purpose and application to be used. Usually, the brain value is preferably 3,000 to 8,000 cm 2 / g, and 4,000 to 6,000 cm 2 / g. Is more preferable. If it is less than 3,000 cm 2 / g, sufficient strength development may not be obtained, and if it exceeds 8,000 cm 2 / g, workability may deteriorate.
[0013]
In the present invention, in addition to cement, the present admixture, aggregates such as sand and gravel, admixtures such as granulated blast furnace slag powder, limestone powder, fly ash, and silica fume that have been conventionally used in cement concrete, water reducing agents , AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, antifoaming agent, thickener, rust preventive agent, antifreeze agent, shrinkage reducing agent, polymer emulsion, setting modifier, clay mineral such as bentonite, and One or two or more of anion exchangers such as hydrotalcite can be used as long as the object of the present invention is not substantially inhibited.
[0014]
The cement concrete of the present invention includes high-fluidity concrete that is not affected by the quality of construction.
High fluid concrete is generally prepared in the range of 650 ± 50 mm with a slump flow value expressed by the spread of the concrete.
[0015]
In the present invention, the mixing method of each material is not particularly limited, and the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.
Any existing apparatus can be used as the mixing apparatus, and for example, a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer can be used.
[0016]
【Example】
Hereinafter, the present invention will be further described based on experimental examples.
[0017]
Experimental example 1
Various desulfurized slag fine powder (slag) is used as this admixture, and the unit cement composition amount 350kg / m 3 , unit water amount 175kg / m 3 , s / a = 46% and air amount 4.5 ± as shown in Table 1 1.5% concrete was prepared and slump loss was measured.
In order to evaluate the ability of this admixture to reduce hexavalent chromium, the residual concentration of hexavalent chromium was measured.
For comparison, the same experiment was also conducted on deblasted slag out of blast furnace granulated slag and hot metal pretreatment slag. The results are also shown in Table 1.
A high-performance AE water reducing agent was used so that the slump value of concrete would be 18 ± 1.5 cm.
[0018]
<Materials used>
Cement: Ordinary Portland cement, manufactured by Denki Kagaku Kogyo, specific gravity 3.15
Slag A: Desulfurized slag, brain value 3,000cm 2 / g, non-sulfate sulfur 0.9%
Slag B: Desulfurized slag, brain value 4,000cm 2 / g, non-sulfate sulfur 0.9%
Slag C: Desulfurized slag, brain value 5,000cm 2 / g, non-sulfate sulfur 0.9%
Slag D: Desulfurized slag, brain value 6,000cm 2 / g, non-sulfate sulfur 0.9%
Slag E: Desulfurized slag, brain value 8,000cm 2 / g, non-sulfate sulfur 0.9%
Slag F: Slag D immersed in water and aged to 0.7% non-sulfate sulfur, brain value 6,000cm 2 / g
Slag G: Slag D immersed in water and aged to 0.5% non-sulfate sulfur, brain value 6,000cm 2 / g
Slag H: Granulated blast furnace slag, brain value 6,000cm 2 / g, non-sulfate sulfur 0.6%
Slag I: Desiliconized slag, brain value 6,000cm 2 / g, non-sulfate sulfur 0.04%
Water: tap water sand: from Himekawa, Niigata Prefecture, specific gravity 2.62
Gravel: from Himekawa, Niigata Prefecture, crushed stone, specific gravity 2.64
High performance AE water reducing agent: polycarboxylic acid, commercially available
<Measurement method>
Slump loss: The slump value was measured according to JIS A 1101, and the slump value after 90 minutes was subtracted from the slump value after kneading to obtain the slump loss value.
Hexavalent chromium residual concentration: Evaluation of hexavalent chromium reduction ability of cement admixture, dilute hexavalent chromium standard solution, prepare solution with hexavalent chromium concentration of 100mg / l, and add 50cc of this hexavalent chromium solution to each 10 g of cement admixture was added and stirred. After 7 days, solid-liquid separation was performed, and the residual concentration of hexavalent chromium in the liquid phase was measured. However, the residual concentration of hexavalent chromium was measured by ICP emission spectroscopic analysis according to JIS K 0102.
[0020]
[Table 1]
[0021]
Experimental example 2
It was carried out in the same manner as in Experimental Example 1 except that slag D shown in Table 2 was used in 100 parts of a cement composition composed of cement and the present admixture, and slump loss was measured. The results are also shown in Table 2.
[0022]
[Table 2]
[0023]
【The invention's effect】
The cement admixture of the present invention has the ability to reduce hexavalent chromium, and by using this, it is possible to make concrete with a small slump loss. Moreover, there exists an effect of becoming effective use of desulfurization slag.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001347246A JP3983033B2 (en) | 2001-11-13 | 2001-11-13 | Cement admixture, cement composition, and cement concrete using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001347246A JP3983033B2 (en) | 2001-11-13 | 2001-11-13 | Cement admixture, cement composition, and cement concrete using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003146715A JP2003146715A (en) | 2003-05-21 |
JP3983033B2 true JP3983033B2 (en) | 2007-09-26 |
Family
ID=19160279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001347246A Expired - Fee Related JP3983033B2 (en) | 2001-11-13 | 2001-11-13 | Cement admixture, cement composition, and cement concrete using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3983033B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101223888B1 (en) * | 2010-12-27 | 2013-01-17 | 재단법인 포항산업과학연구원 | Blast furnace slag powder composition improved activity |
KR101353626B1 (en) * | 2011-08-26 | 2014-01-21 | 재단법인 포항산업과학연구원 | Non―sintering slag cement composite using byproduct of iron and steel |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101016877B1 (en) * | 2008-09-17 | 2011-02-22 | 재단법인 포항산업과학연구원 | High-Performance Addtive for Concrete Made from Desulfured Slag and Manufacturing Method Thereof |
KR101366576B1 (en) * | 2011-12-08 | 2014-02-27 | 재단법인 포항산업과학연구원 | Cement admixture and cement mixture having the same |
KR101482382B1 (en) | 2013-03-08 | 2015-01-14 | 주식회사 포스코 | Low-heat cement composition including desulfurization slag and blast furnace slag |
CN110395918A (en) * | 2019-09-03 | 2019-11-01 | 广东华欣环保科技有限公司 | A kind of processing method of sintering flue gas desulfurization slag |
-
2001
- 2001-11-13 JP JP2001347246A patent/JP3983033B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101223888B1 (en) * | 2010-12-27 | 2013-01-17 | 재단법인 포항산업과학연구원 | Blast furnace slag powder composition improved activity |
KR101353626B1 (en) * | 2011-08-26 | 2014-01-21 | 재단법인 포항산업과학연구원 | Non―sintering slag cement composite using byproduct of iron and steel |
Also Published As
Publication number | Publication date |
---|---|
JP2003146715A (en) | 2003-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4267446B2 (en) | Cement admixture, cement composition, and neutralization suppression method using the same | |
JP5080714B2 (en) | Cement composition | |
JP3844457B2 (en) | Cement admixture and cement composition | |
JP5189119B2 (en) | Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture | |
JP3983033B2 (en) | Cement admixture, cement composition, and cement concrete using the same | |
JP4209381B2 (en) | Cement composition | |
JP2005047771A (en) | Cement composition | |
JP7509867B2 (en) | Cement admixture, expansive material, and cement composition | |
WO2023022172A1 (en) | Cement admixture, method for producing cement admixture, and cement composition | |
JP2002037651A (en) | Admixture and cement composition for heavy weight grout mortar and heavy weight grout mortar | |
JP2004292201A (en) | Admixture for concrete and concrete composition | |
JP4509339B2 (en) | Cement admixture and cement composition | |
JP4642202B2 (en) | Cement admixture and cement composition | |
JP3810350B2 (en) | Cement admixture and cement composition | |
JP3877583B2 (en) | Hexavalent chromium reducing material | |
JP3725077B2 (en) | Cement admixture and cement composition | |
JP3786872B2 (en) | Concrete composition and concrete using the same | |
JP2003192410A (en) | Cement admixture, cement composition and cement concrete obtained by using the same | |
JP4057971B2 (en) | Cement composition | |
JP4459379B2 (en) | Cement admixture and cement composition | |
JP2005029404A (en) | Cement composition | |
JP4318418B2 (en) | Cement composition | |
JP3818805B2 (en) | Cement admixture and cement composition | |
JP2003192404A (en) | Cement composition for self-compaction and mortar | |
JP3883343B2 (en) | Cement admixture and cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070703 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070703 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130713 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |