JPH0442080B2 - - Google Patents

Info

Publication number
JPH0442080B2
JPH0442080B2 JP62298308A JP29830887A JPH0442080B2 JP H0442080 B2 JPH0442080 B2 JP H0442080B2 JP 62298308 A JP62298308 A JP 62298308A JP 29830887 A JP29830887 A JP 29830887A JP H0442080 B2 JPH0442080 B2 JP H0442080B2
Authority
JP
Japan
Prior art keywords
sludge
weight
water
parts
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62298308A
Other languages
Japanese (ja)
Other versions
JPH01139198A (en
Inventor
Mitsuaki Seo
Masahiro Miura
Hideo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telnite Co Ltd
Original Assignee
Telnite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telnite Co Ltd filed Critical Telnite Co Ltd
Priority to JP29830887A priority Critical patent/JPH01139198A/en
Publication of JPH01139198A publication Critical patent/JPH01139198A/en
Publication of JPH0442080B2 publication Critical patent/JPH0442080B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

a 産業上の利用分野 本発明は、土木工事や浚渫工事等から発生する
軟弱な土砂やヘドロ類、上下水道処理により発生
する汚泥スラツジ、工場廃水処理により発生する
スラツジなどの汚泥(以下「汚泥」という。)を
再利用に適する形態または廃棄容易な形態にする
ための汚泥の改質方法に関する。 b 従来の技術 一般に土木工事や浚渫工事、上下水道処理ある
いは工場廃水処理等から発生する汚泥は、地域に
よつて異なるが、約50〜90%の含水率を有してい
る。 従来、このような汚泥はセメント系固化剤など
を混合することにより処理されている。 c 発明が解決しようとする課題 しかしながら、多量の水分を含有する汚泥は、
水分を45あるいは60%以下まで絞つた後でなけれ
ば、処理することができない。 また、セメント系固化剤のみを用いて汚泥を処
理する方法は、処理後の汚泥が流動性を失い、そ
れが一定以上の強度に達するまでに長時間(具体
的には24〜72時間)を要する。 さらに、固化後の汚泥に、必要以上の強度を付
与するためには、多量のセメント系固化剤(具体
的には10〜15重量%)を添加する必要があるが、
セメント系固化剤を10重量%以上添加すると、固
化過程の汚泥のPHが12以上となり、廃棄処分する
ためにはPHを中性付近に調整しなければならな
い。また、このPHの調整は非常に難しいという欠
点が指摘されている。 本発明は、上記問題点を解決しようとするもの
で、その目的は、汚泥を効率よく固化し、再利用
に適する形態あるいは廃棄容易な形態にする汚泥
の改質方法を提供するものである。 d 課題を解決するための手段 本発明の要旨は、土木工事や浚渫工事等から発
生する軟弱な土砂やヘドロ類、上下水道処理によ
り発生する汚泥スラツジ、工場廃水処理により発
生するスラツジなどの汚泥100重量部に対して、
天然水溶性高分子物質、その半合成高分子物質、
凝集性を有する合成水溶性高分子物質および吸水
性樹脂から選ばれた少なくとも1種の高分子物質
0.1〜1.5重量部と2価以上の陽イオンを含有する
水酸化物、塩化物、硫酸塩および硝酸塩から選ば
れた少なくとも1種の化合物0.3〜2.7重量部を添
加混合し、次いで、水硬性セメント0.6〜3.5重量
部を混合せしめることを特徴とする汚泥の改質方
法にある。 本発明の改質方法によつて改質される汚泥は、
含水率が20〜90重量%のものであるが、含水率が
20〜50重量%のものは、より効果的に改質され
る。 上記高分子物質は、天然水溶性高分子物質、そ
の半合成高分子物質、凝集性を有する合成水溶性
高分子物質および吸収性樹脂から選ばれた少なく
とも1種のものである。 上記天然水溶性高分子物質またはその半合成高
分子物質としては、グアーガム、ローカストビン
ガム、クインスシードガム、アラビノガラクタン
ガム、アラビアガム、トラガントガム、澱粉、ザ
ンサンガム、ザンコート、ゼラチン、サイリユー
ムガム、アルギン酸塩類、カルボキシメチルセル
ロース、カルボキシメチルハイドロオキシエチル
セルロースなど、およびその他のこれらに類似す
る天然水溶性高分子物質またはその半合成高分子
物質を用いることができる。 また上記凝集性を有する合成水溶性高分子物質
としては、ポリビニルアルコール、ポリビニルピ
ロリドン、ポリビニルメタアクリレート、ポリア
クリルアミド、ポリアクリル酸ソーダ、ポリエチ
レンオキサイド、ビーガムなど、およびこれらに
類似する合成水溶性高分子物質を用いることがで
きる。 さらに、上記吸水性樹脂としては、ポリアクリ
ル酸系、ポリサツカライド系またはこれらの共重
合体系、アソブチレンと無水マレイン酸共重合体
系などの樹脂で代表される吸水性樹脂を用いるこ
とができる。 これらの高分子物質以外のものでも、水溶性で
あり、かつ増粘性、吸水性、凝集性などを有する
ものであれば、本発明に効果的に用いることがで
きる。 これらの高分子物質の添加量は、汚泥の種類や
含水率によつても異なるが、通常、汚泥100重量
部(1Kl)に対して、0.1〜1.5重量部(1.3〜19.5
Kg)である。 高分子物質の添加量が、0.1重量部(1.3Kg)未
満の場合は、汚泥の水分の吸収が十分でなく、
1.5重量部(19.5Kg)より多く添加しても添加効
果は少なく経済的でない。 これらの高分子物質の添加量は、汚泥の種類お
よび含水率によつて適正値があるため、高分子物
質はあらかじめ汚泥の含水率を測定し、添加量を
確認のうえ使用することが、より効果的である。 2価以上の陽イオンを含有する水酸化物、塩化
物、硫酸塩および硝酸塩から選ばれた少なくとも
1種の化合物としては、周期律表a,b,
a,b,b,b,b,bまたは族の
元素の水酸化物、塩化物、硫酸塩および硝酸塩の
うち水に易溶性あるいは難溶性のものを用いるこ
とができ、その具体例としては、マグネシウム、
カルシウム、アルミニウム等の水酸化物、マグネ
シウム、カルシウム、バリウム、アルミニウム、
ジルコニウム、クロム、マンガン等の塩化物、硫
酸塩または硝酸塩などが挙げられる。 これらの化合物の添加量は、汚泥100重量部
(1Kl)に対して、0.3〜2.7重量部(3.9〜35Kg)
である。 添加量が、0.3重量部(3.9Kg)より少ないと、
凝集効果が小さく、処理した汚泥の強度が小さ
く、2.7重量部(35Kg)よりも多いと、凝集効果
が高く、遊離水が生じやすい。 上記水硬性セメントとしては、普通ポルトラン
ドセメント、速硬性ポルトランドセメント、高炉
セメント、その他の改良されたポルトランドセメ
ント、アルミナセメント、カルシウムセメント、
フライアツシユやポゾランを含有するセメント類
などを用いることができる。 これら水硬性セメントの添加量は、使用した高
分子物質の添加量の汚泥の含水率に影響される。 しかし、通常は、汚泥100重量部(1Kl)に対
して、0.6〜3.5重量部(7.8〜46Kg)である。 水硬性セメントの使用量が0.6重量部(7.8Kg)
未満の場合は、汚泥を十分に固化させることがで
きず、汚泥の強度が不足する。また、3.5重量部
(46Kg)よりも多い場合は、汚泥のPHが大きくな
り、汚泥の強度が大きくなりすぎて、再利用や廃
棄に不適である。 なお、水硬性セメントの添加量は、汚泥の種類
および含水率により、適正な範囲があるので、水
硬性セメントを効果的に使用するためには、予め
これらを確認することが好ましい。 e 作用 一般に、親水性の高い高分子物質は、その特性
として増粘効果、吸水効果、凝集効果などを有し
ている。 本発明においては、このような特性を有する高
分子物質を汚泥に添加混合するこにより、汚泥の
増粘、凝集および脱水を行う。 すなわち、本発明において用いる天然水溶性高
分子物質、その半合成高分子物質、凝集性を有す
る合成水溶性高分子物質および吸水性樹脂は、水
溶性であり、増粘性、保水性および凝集性を有し
ている。 このような高分子物質を、チキソトロピツク性
を有し、含水率の高い汚泥に特定量添加混合する
と、汚泥粒子にこれらの高分子物質が物理的また
は化学的に吸着し、同時に粒子表面の電荷が中和
され、あるいは水分が吸収されて、汚泥全体が凝
集状に保持される。 さらに、このような高分子物質と共に2価以上
の陽イオンを含有する水酸化物、塩化物、硫酸塩
および硝酸塩から選ばれた少なくとも1種の化合
物を特定量加えると、汚泥の凝集状態をより効果
的にかつ速やかに得ることができる。 すなわち、2価以上の陽イオンを含有する水酸
化物、塩化物、硫酸塩および硝酸塩から選ばれた
少なくとも1種の化合物を加えることによつて、
汚泥の凝集状態をより良好にし、次に添加混合す
る水硬性セメントの効果をより高めることができ
る。 この凝集状態にある汚泥に、水硬性セメントを
添加すると、水硬性セメントが汚泥や高分子物質
などと反応し、あるいは物理的吸着などを起し
て、汚泥全体を凝集し、粉状化する。 したがつて、汚泥は適度の固さを持つた固形物
になり、再利用に適する形態、あるいは廃棄が容
易な形態の土壌になる。 このように、本発明方法によれば、汚泥は効率
よく固化されて、再利用に適する形態あるいは廃
棄が容易な形態になる。 なお、高分子物質と2価以上の陽イオンを含有
する水酸化物、塩化物、硫酸塩および硝酸塩から
選ばれた少なくとも1種の化合物の添加は、前後
して行つても、同時に行つても、上記の効果は同
様に得られる。 f 実施例 以下に本発明を実施例によりさらに詳しく説明
する。 〔実施例 1〕 下水道処理により生ずる汚泥スラツジ(含水率
44.4%)1Klに、ポリサツカリド系吸収性樹脂と
石こうを表−1に示す添加割合で添加混合し、そ
ののちポルトランドセメント50Kgを加えて混練
し、一軸圧縮強度の経時変化を測定した。 結果を、表−1に示す。
a Field of Industrial Application The present invention is applicable to sludge (hereinafter referred to as "sludge") such as soft earth and sand and sludge generated from civil engineering work, dredging, etc., sludge sludge generated from water and sewage treatment, and sludge generated from factory wastewater treatment. This invention relates to a method for reforming sludge to make it suitable for reuse or easy to dispose of. b. Prior Art Generally, sludge generated from civil engineering work, dredging work, water supply and sewage treatment, factory wastewater treatment, etc. has a moisture content of about 50 to 90%, although it varies depending on the region. Conventionally, such sludge has been treated by mixing cement-based solidifying agents and the like. c Problems to be solved by the invention However, sludge containing a large amount of water
It can only be processed after the water content has been reduced to below 45 or 60%. In addition, in the method of treating sludge using only a cement-based solidifying agent, the sludge loses fluidity after treatment, and it takes a long time (specifically 24 to 72 hours) for it to reach a certain level of strength. It takes. Furthermore, in order to give the solidified sludge more strength than necessary, it is necessary to add a large amount of cement-based solidifying agent (specifically 10 to 15% by weight).
If more than 10% by weight of a cement-based solidifying agent is added, the pH of the sludge during the solidification process will be 12 or higher, and the pH must be adjusted to around neutrality in order to be disposed of. Furthermore, it has been pointed out that the drawback is that it is very difficult to adjust the pH. The present invention aims to solve the above-mentioned problems, and its purpose is to provide a method for reforming sludge that efficiently solidifies sludge and converts it into a form suitable for reuse or a form that is easy to dispose of. d Means for Solving the Problems The gist of the present invention is that sludge 100 such as soft earth and sand and sludge generated from civil engineering work, dredging, etc., sludge sludge generated from water and sewage treatment, and sludge generated from factory wastewater treatment. For parts by weight,
Natural water-soluble polymer substances, semi-synthetic polymer substances,
At least one polymeric substance selected from synthetic water-soluble polymeric substances and water-absorbing resins having cohesive properties
0.1 to 1.5 parts by weight and 0.3 to 2.7 parts by weight of at least one compound selected from hydroxides, chlorides, sulfates, and nitrates containing divalent or higher cations are added and mixed, and then hydraulic cement is prepared. A sludge reforming method characterized by mixing 0.6 to 3.5 parts by weight. The sludge modified by the modification method of the present invention is
The moisture content is 20 to 90% by weight;
20-50% by weight is more effectively modified. The polymeric substance is at least one selected from natural water-soluble polymeric substances, semi-synthetic polymeric substances thereof, synthetic water-soluble polymeric substances having cohesive properties, and absorbent resins. The natural water-soluble polymer substances or their semi-synthetic polymer substances include guar gum, locust Bingham gum, quince seed gum, arabinogalactan gum, gum arabic, gum tragacanth, starch, xanthan gum, xancort, gelatin, psyllium gum, alginates, carboxylic acid Methyl cellulose, carboxymethyl hydroxyethyl cellulose, etc., and other similar natural water-soluble polymer substances or semi-synthetic polymer substances thereof can be used. In addition, the synthetic water-soluble polymer substances having the above-mentioned cohesive properties include polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl methacrylate, polyacrylamide, sodium polyacrylate, polyethylene oxide, Veegum, etc., and synthetic water-soluble polymer substances similar to these. can be used. Further, as the water-absorbing resin, water-absorbing resins typified by polyacrylic acid-based, polysaccharide-based or copolymer-based resins thereof, and isobutylene and maleic anhydride copolymer-based resins can be used. Materials other than these polymeric substances can be effectively used in the present invention as long as they are water-soluble and have thickening properties, water absorption properties, cohesive properties, and the like. The amount of these polymeric substances added varies depending on the type of sludge and water content, but it is usually 0.1 to 1.5 parts by weight (1.3 to 19.5 parts by weight) per 100 parts by weight (1Kl) of sludge.
Kg). If the amount of the polymeric substance added is less than 0.1 part by weight (1.3 kg), the water absorption of the sludge will not be sufficient;
Even if more than 1.5 parts by weight (19.5 kg) is added, the effect of addition is small and it is not economical. The amount of these polymeric substances added has an appropriate value depending on the type of sludge and the water content, so it is better to measure the water content of the sludge in advance and check the amount of polymeric substances added before using. Effective. At least one compound selected from hydroxides, chlorides, sulfates, and nitrates containing cations with a valence of 2 or more may be selected from compounds a, b,
Of the hydroxides, chlorides, sulfates and nitrates of elements of a, b, b, b, b, b or groups, those that are easily or poorly soluble in water can be used, and specific examples thereof include: magnesium,
Hydroxides of calcium, aluminum, etc., magnesium, calcium, barium, aluminum,
Examples include chlorides, sulfates, and nitrates of zirconium, chromium, manganese, and the like. The amount of these compounds added is 0.3 to 2.7 parts by weight (3.9 to 35 kg) per 100 parts by weight (1 Kl) of sludge.
It is. If the amount added is less than 0.3 parts by weight (3.9Kg),
The flocculation effect is small, and the strength of the treated sludge is low.If the amount is more than 2.7 parts by weight (35Kg), the flocculation effect is high and free water is likely to occur. The above-mentioned hydraulic cements include ordinary Portland cement, fast-setting Portland cement, blast furnace cement, other improved Portland cements, alumina cement, calcium cement,
Cement containing fly ash or pozzolan can be used. The amount of these hydraulic cements added is influenced by the amount of added polymer material used and the water content of the sludge. However, the amount is usually 0.6 to 3.5 parts by weight (7.8 to 46 kg) per 100 parts by weight (1 Kl) of sludge. The amount of hydraulic cement used is 0.6 parts by weight (7.8Kg)
If it is less than that, the sludge cannot be sufficiently solidified and the strength of the sludge is insufficient. Furthermore, if the amount is more than 3.5 parts by weight (46 kg), the PH of the sludge will increase and the strength of the sludge will become too large, making it unsuitable for reuse or disposal. Note that the amount of hydraulic cement to be added has an appropriate range depending on the type of sludge and the water content, so it is preferable to check these in advance in order to use hydraulic cement effectively. e Effect Generally, highly hydrophilic polymeric substances have properties such as thickening effect, water absorption effect, and coagulation effect. In the present invention, sludge is thickened, coagulated, and dewatered by adding and mixing a polymeric substance having such characteristics to sludge. That is, the natural water-soluble polymer substances, semi-synthetic polymer substances thereof, synthetic water-soluble polymer substances having cohesive properties, and water-absorbing resins used in the present invention are water-soluble and have low viscosity, water retention, and cohesive properties. have. When such polymeric substances are added and mixed in a specific amount to sludge with thixotropic properties and high water content, these polymeric substances are physically or chemically adsorbed to the sludge particles, and at the same time, the charge on the particle surface is reduced. The sludge is neutralized or water is absorbed, and the entire sludge is held in a cohesive form. Furthermore, if a specific amount of at least one compound selected from hydroxides, chlorides, sulfates, and nitrates containing divalent or higher cations is added together with such polymeric substances, the flocculation state of the sludge can be further improved. can be obtained effectively and quickly. That is, by adding at least one compound selected from hydroxides, chlorides, sulfates, and nitrates containing divalent or higher cations,
It is possible to improve the flocculation state of the sludge and further enhance the effect of the hydraulic cement that is subsequently added and mixed. When hydraulic cement is added to this coagulated sludge, the hydraulic cement reacts with the sludge and polymer substances, or causes physical adsorption, causing the entire sludge to coagulate and become powder. Therefore, the sludge becomes a solid substance with appropriate hardness, and becomes soil in a form suitable for reuse or in a form that is easy to dispose of. As described above, according to the method of the present invention, sludge is efficiently solidified into a form suitable for reuse or a form that is easy to dispose of. Note that the addition of a polymeric substance and at least one compound selected from hydroxides, chlorides, sulfates, and nitrates containing divalent or higher cations may be carried out one after the other or at the same time. , the above effects can be obtained in the same way. f Examples The present invention will be explained in more detail below using examples. [Example 1] Sludge sludge (water content
Polysaccharide-based absorbent resin and gypsum were added and mixed in 1Kl (44.4%) at the addition ratios shown in Table 1, and then 50Kg of Portland cement was added and kneaded, and the change in unconfined compressive strength over time was measured. The results are shown in Table-1.

〔実施例 2〕[Example 2]

浚渫工事から得られるヘドロ(含水率70.2%)
1Klに、グアーガムと塩化カルシウムを表−2に
示す添加割合で添加混合し、そののちアルミナセ
メントを表−2に示す添加割合で加えて混練し、
一軸圧縮強度を経時変化を測定した。 結果を、表−2に示す。
Sludge obtained from dredging work (moisture content 70.2%)
1Kl, add and mix guar gum and calcium chloride at the addition ratio shown in Table 2, then add alumina cement at the addition ratio shown in Table 2 and knead.
Changes in unconfined compressive strength over time were measured. The results are shown in Table-2.

【表】【table】

〔比較例 1〕[Comparative example 1]

土木工事で発生する軟弱な土砂(含水率29.3%
シルトおよび粘土分65.3%)1Klに、ザンサンガ
ムと消石灰を表−3に示す添加割合で加えて混練
し、一軸圧縮強度の経時変化を測定した。 結果を、表−3に示す。
Soft earth and sand generated during civil engineering work (moisture content 29.3%)
Xanthan gum and slaked lime were added to 1Kl (silt and clay content: 65.3%) at the addition ratios shown in Table 3 and kneaded, and the change in unconfined compressive strength over time was measured. The results are shown in Table-3.

〔比較例 2〕[Comparative example 2]

ポリサツカリド系吸収性樹脂、石こうおよびポ
ルトランドセメントを同時に添加混合する以外
は、実施例−1と同様にして、一軸圧縮強度の経
時変化を測定した。 結果を、表−4に示す。
Changes in unconfined compressive strength over time were measured in the same manner as in Example 1, except that the polysaccharide-based absorbent resin, gypsum, and Portland cement were added and mixed at the same time. The results are shown in Table-4.

【表】 実施例−1、2と比較例−1の対比から、汚泥
に高分子物質と2価以上の陽イオンを含有する水
酸化物、塩化物、硫酸塩および硝酸塩から選ばれ
た少なくとも1種の化合物を添加混合し、さらに
水硬性セメントを加えることにより、一軸圧縮強
度が向上していることが判る。 また、実施例−1と比較例−2の対比から、高
分子物質と2価以上の陽イオンを含有する水酸化
物、塩化物、硫酸塩および硝酸塩から選ばれた少
なくとも1種の化合物を添加混合し、そののちに
水硬性セメントを加えることにより、高分子物
質、2価以上の陽イオンを含有する水酸化物、塩
化物、硫酸塩および硝酸塩から選ばれた少なくと
も1種の化合物、ならびに水硬性セメントを同時
に添加混合するよりも優れた効果が得られること
が判る。 g 発明の効果 本発明はよれば、土木工事や浚渫工事等から発
生する軟弱な土砂やヘドロ類、上下水道処理によ
り発生する汚泥スラツジ、工場廃水処理により発
生するスラツジなどの汚泥を、水分を分離するこ
となく短時間のうちに効率よく固化させて、流動
性をなくし、一定以上の強度を付与することがで
き、汚泥を再利用に適した形態あるいは廃棄が容
易な形態になるように改質することができる。
[Table] From the comparison between Examples 1 and 2 and Comparative Example 1, at least one selected from hydroxides, chlorides, sulfates, and nitrates containing polymeric substances and divalent or higher cations was added to the sludge. It can be seen that the unconfined compressive strength is improved by adding and mixing the seed compound and further adding hydraulic cement. In addition, from a comparison between Example-1 and Comparative Example-2, at least one compound selected from hydroxides, chlorides, sulfates, and nitrates containing a polymeric substance and divalent or higher cations was added. By mixing and then adding hydraulic cement, a polymer substance, at least one compound selected from hydroxides, chlorides, sulfates, and nitrates containing divalent or higher cations, and water are mixed. It can be seen that a better effect can be obtained than adding and mixing hard cement at the same time. g. Effects of the Invention According to the present invention, water is separated from sludge such as soft earth and sand and sludge generated from civil engineering work, dredging, etc., sludge sludge generated from water supply and sewage treatment, and sludge generated from factory wastewater treatment. It is able to efficiently solidify sludge in a short period of time, eliminate fluidity, and give it a certain level of strength, and reform the sludge into a form suitable for reuse or easy to dispose of. can do.

Claims (1)

【特許請求の範囲】 1 土木工事や浚渫工事等から発生する軟弱な土
砂やヘドロ類、上下水道処理により発生する汚泥
スラツジ、工場廃水処理により発生するスラツジ
などの汚泥100重量部に対して、天然水溶性高分
子物質、その半合成高分子物質、凝集性を有する
合成水溶性高分子物質および吸収性樹脂から選ば
れた少なくとも1種の高分子物質0.1〜1.5重量部
と2価以上の陽イオンを含有する水酸化物、塩化
物、硫酸塩および硝酸塩から選ばれた少なくとも
1種の化合物0.3〜2.7重量部を添加混合し、次い
で、水硬性セメント0.6〜3.5重量部を混合せしめ
ることを特徴とする汚泥の改質方法。 2 2価以上の陽イオンが、周期律表a,
b,a,b,b,b,b,bまたは
族の元素である特許請求の範囲第1項記載の汚
泥の改質方法。 3 水硬性セメントがポルトランド系セメント、
アルミナ系セメント、特殊セメント、またはこれ
らとフライアツシユ、ポゾラン等を含有したもの
である特許請求の範囲第1項または第2項に記載
の汚泥の改質方法。
[Scope of Claims] 1. For 100 parts by weight of sludge such as soft earth and sludge generated from civil engineering work, dredging work, etc., sludge sludge generated from water supply and sewage treatment, and sludge generated from factory wastewater treatment, natural 0.1 to 1.5 parts by weight of at least one polymeric substance selected from water-soluble polymeric substances, semi-synthetic polymeric substances thereof, synthetic water-soluble polymeric substances with cohesive properties, and absorbent resins, and divalent or higher cations. 0.3 to 2.7 parts by weight of at least one compound selected from hydroxides, chlorides, sulfates and nitrates containing hydroxide, chloride, sulfate and nitrate are added and mixed, and then 0.6 to 3.5 parts by weight of hydraulic cement are mixed. A method for reforming sludge. 2 Cations with a valence of 2 or more are found in periodic table a,
The method for reforming sludge according to claim 1, wherein the sludge is an element of group b, a, b, b, b, b, b or group. 3 Hydraulic cement is Portland cement,
The method for reforming sludge according to claim 1 or 2, which is an alumina cement, a special cement, or a material containing these together with fly ash, pozzolan, etc.
JP29830887A 1987-11-26 1987-11-26 Method for reforming sludge or the like Granted JPH01139198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29830887A JPH01139198A (en) 1987-11-26 1987-11-26 Method for reforming sludge or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29830887A JPH01139198A (en) 1987-11-26 1987-11-26 Method for reforming sludge or the like

Publications (2)

Publication Number Publication Date
JPH01139198A JPH01139198A (en) 1989-05-31
JPH0442080B2 true JPH0442080B2 (en) 1992-07-10

Family

ID=17857963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29830887A Granted JPH01139198A (en) 1987-11-26 1987-11-26 Method for reforming sludge or the like

Country Status (1)

Country Link
JP (1) JPH01139198A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691999B2 (en) * 1989-01-24 1994-11-16 ハイモ株式会社 Treatment method for wet excavated soil
US5391597A (en) * 1993-10-04 1995-02-21 Cytec Technology Corp. Composition and process for increasing the shear strength of processing wastes used for tip building and underground consolidation
JP4069517B2 (en) * 1998-10-01 2008-04-02 宇部興産株式会社 Solidified material for hydrous soil and method for improving solidification of hydrous soil
JP4069520B2 (en) * 1998-10-01 2008-04-02 宇部興産株式会社 Solidified material for hydrous soil and method for improving solidification of hydrous soil
JP4261707B2 (en) * 1999-10-29 2009-04-30 株式会社テルナイト Boring wastewater treatment method
JP4467908B2 (en) * 2003-05-16 2010-05-26 有限会社イー・エス・テクノ Polymer solidifying agent

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981273A (en) * 1972-12-13 1974-08-06
JPS4984961A (en) * 1972-10-26 1974-08-15
JPS5230777A (en) * 1975-09-04 1977-03-08 Ebara Infilco Co Ltd Method for concentrating organic sludge
JPS55102677A (en) * 1979-01-29 1980-08-06 Chiyoda Chem Eng & Constr Co Ltd Improvement in strength of hydrous soft ground
JPS5658598A (en) * 1979-10-17 1981-05-21 Agency Of Ind Science & Technol Treatment of muddy water
JPS5658599A (en) * 1979-10-17 1981-05-21 Agency Of Ind Science & Technol Treatment of muddy water discharged from construction work or the like
JPS5676293A (en) * 1979-11-28 1981-06-23 Norihiko Base Application of high polymer flocculant
JPS56100920A (en) * 1980-01-18 1981-08-13 Chiyoda Chem Eng & Constr Co Ltd Improvement of water content poorsoil
JPS57121086A (en) * 1981-01-21 1982-07-28 Tokyo Gas Co Ltd Treatment for regenerating excavated soil
JPS57174523A (en) * 1981-04-22 1982-10-27 Chiyoda Chem Eng & Constr Co Ltd Increase of strength of wet soft soil
JPS58187485A (en) * 1982-04-28 1983-11-01 Kajima Corp Method for improving earth and sand
JPS5992099A (en) * 1982-11-18 1984-05-28 Kurita Water Ind Ltd Dehydration of sludge
JPS6087813A (en) * 1983-10-19 1985-05-17 Toagosei Chem Ind Co Ltd Coagulating, settling and solidifying agent
JPS61227899A (en) * 1985-04-02 1986-10-09 Toshihiro Ijichi Treatment of waste earth

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984961A (en) * 1972-10-26 1974-08-15
JPS4981273A (en) * 1972-12-13 1974-08-06
JPS5230777A (en) * 1975-09-04 1977-03-08 Ebara Infilco Co Ltd Method for concentrating organic sludge
JPS55102677A (en) * 1979-01-29 1980-08-06 Chiyoda Chem Eng & Constr Co Ltd Improvement in strength of hydrous soft ground
JPS5658598A (en) * 1979-10-17 1981-05-21 Agency Of Ind Science & Technol Treatment of muddy water
JPS5658599A (en) * 1979-10-17 1981-05-21 Agency Of Ind Science & Technol Treatment of muddy water discharged from construction work or the like
JPS5676293A (en) * 1979-11-28 1981-06-23 Norihiko Base Application of high polymer flocculant
JPS56100920A (en) * 1980-01-18 1981-08-13 Chiyoda Chem Eng & Constr Co Ltd Improvement of water content poorsoil
JPS57121086A (en) * 1981-01-21 1982-07-28 Tokyo Gas Co Ltd Treatment for regenerating excavated soil
JPS57174523A (en) * 1981-04-22 1982-10-27 Chiyoda Chem Eng & Constr Co Ltd Increase of strength of wet soft soil
JPS58187485A (en) * 1982-04-28 1983-11-01 Kajima Corp Method for improving earth and sand
JPS5992099A (en) * 1982-11-18 1984-05-28 Kurita Water Ind Ltd Dehydration of sludge
JPS6087813A (en) * 1983-10-19 1985-05-17 Toagosei Chem Ind Co Ltd Coagulating, settling and solidifying agent
JPS61227899A (en) * 1985-04-02 1986-10-09 Toshihiro Ijichi Treatment of waste earth

Also Published As

Publication number Publication date
JPH01139198A (en) 1989-05-31

Similar Documents

Publication Publication Date Title
JP2002241154A (en) Cement composition
JP5042589B2 (en) Powder solidifying material for soft mud soil and method for producing the same
JPH05500325A (en) Method of inactivating and/or immobilizing environmentally significant hazardous substances
JP3824844B2 (en) Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances
JP3366617B2 (en) Plastic injection material
JPH0442080B2 (en)
JP6363281B1 (en) One-pack type neutral solidifying agent
JP2002363560A (en) Soil-aggregative caking agent for improvement of highly hydrous soft soil
JP4663999B2 (en) Soil neutral solidification material and soil neutral solidification improvement method
JPH0415038B2 (en)
JPH09314099A (en) Treating agent for heavy metal-containing waste and stabilizing method of heavy metal-containing waste
JP3274376B2 (en) Agglomerating agent for mud, solidifying agent using it
JP2002282894A (en) Agent and method for solidifying sludge
JP3549129B2 (en) Residual soil improver and method for improving residual soil
JPH01176499A (en) Treatment of sludge
JP3407854B2 (en) Rapid hardening soil improvement material
JP2002121552A (en) Solidifier for water-containing soil and process for solidifying water-containing soil using this
JP4006584B2 (en) Fluorine adsorbent and method for treating fluorine in water
JP2000061424A (en) Soil caking agent
JPH07232148A (en) Solidifying agent for treating surplus soil and surplus soil solidification treatment using the same
JP4462853B2 (en) Neutral solidifying material for hydrous soil, soil heavy metal elution control method and dehydration method using the same
KR100538374B1 (en) Preparing method of solidifier and solidification of soil thereof
GB1578098A (en) Hydraulic activated slag binder
JP4070982B2 (en) Neutral solidification material and neutral solidification treatment method
JPS623056A (en) Granulation for coal ash