JPH0691999B2 - Treatment method for wet excavated soil - Google Patents

Treatment method for wet excavated soil

Info

Publication number
JPH0691999B2
JPH0691999B2 JP1013206A JP1320689A JPH0691999B2 JP H0691999 B2 JPH0691999 B2 JP H0691999B2 JP 1013206 A JP1013206 A JP 1013206A JP 1320689 A JP1320689 A JP 1320689A JP H0691999 B2 JPH0691999 B2 JP H0691999B2
Authority
JP
Japan
Prior art keywords
water
soil
added
dispersion
hydrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1013206A
Other languages
Japanese (ja)
Other versions
JPH02194891A (en
Inventor
清 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP1013206A priority Critical patent/JPH0691999B2/en
Publication of JPH02194891A publication Critical patent/JPH02194891A/en
Publication of JPH0691999B2 publication Critical patent/JPH0691999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、土圧系シールド工法のトンネル工事現場等か
ら発生する含水掘削残土の流動性を消失させる土質改良
工法に関する。
TECHNICAL FIELD The present invention relates to a soil improvement method for eliminating the fluidity of water-containing excavated residual soil generated at a tunnel construction site or the like of an earth pressure system shield method.

上記掘削残土は、カッターチャンバー内等から排出され
易い様に流動性を有するとともに止水性を保つ性質があ
る。流動性の管理は、スランプ試験により行われスラン
プ値5cm以上の場合が多い。流動性があるとダンプカー
等による輸送が困難であることから従来より各種の流動
性消失法が検討されてきた。
The above-mentioned excavated soil has a fluidity so as to be easily discharged from the inside of the cutter chamber and the like, and has a property of maintaining water stopping property. The fluidity is controlled by a slump test and often has a slump value of 5 cm or more. Since it is difficult to transport it by a dump truck if it has liquidity, various liquidity disappearance methods have been conventionally studied.

[従来の技術] 含水残土の流動性を除去するため、残土ホッパー内自然
放置や天日乾燥等が行われている。
[Prior Art] In order to remove the fluidity of the hydrated residual soil, natural leaching in the residual soil hopper and sun drying are performed.

薬剤を添加する例としてはセメント系(特公昭62−4200
号公報)、石灰系(特公昭62−318号公報)、高吸水性
樹脂(特開昭59−155488号公報)等が公知である他、グ
アーガム等が用いられている。また含水率を下げながら
流動性を保持するため気泡を混入し、消泡により流動性
を除去する気泡シールド工法も提案されている(特公昭
58−47560号公報、特公昭59−4999号公報)。
As an example of adding a chemical, a cement type (Japanese Patent Publication No. 62-4200)
JP-A), lime type (Japanese Patent Publication No. 62-318), superabsorbent resin (JP-A-59-155488) and the like, and guar gum and the like are used. In addition, a bubble shield method has been proposed in which bubbles are mixed in order to maintain the fluidity while reducing the water content, and the fluidity is removed by defoaming (Japanese Patent Publication Sho).
58-47560, Japanese Patent Publication No. 59-4999).

[従来の技術の問題点] 薬剤を用いる処理法においてセメント系ならびに石灰系
の固化剤単独使用の場合は、処理土のpH上昇や経時的な
固化のために植生に不適な性状と成ること、あるいは固
結によるホッパー閉塞トラブルが発生する等の不都合が
あった。
[Problems of the prior art] When a cement-based or lime-based solidifying agent is used alone in a treatment method using a chemical, the property of the treated soil becomes unsuitable for vegetation due to a rise in pH and solidification over time. Alternatively, there are inconveniences such as hopper blockage problems due to solidification.

高吸水性樹脂の使用は高価である。The use of super absorbent resin is expensive.

グアーガムにより処理土はカビの発生や腐敗等により経
時的に変質を起こすため用途が限定される。また、天然
物であり価格の変動も大きく供給量にも不安がある。
The use of guar gum limits the use of the treated soil because it deteriorates over time due to mold and spoilage. In addition, as it is a natural product, price fluctuations are large and there is concern about supply.

アクリル系高分子凝集剤の如き高分子量の合成水溶性高
分子物質を粉末状態で含水土に添加混練すると、均一に
分散せずにママコ状となって混練土中に散在することに
より異物感を生じ、流動性防止効果も発揮できない。
When a high-molecular-weight synthetic water-soluble polymer substance such as an acrylic polymer flocculant is added to a hydrous soil in a powder state and kneaded, it does not uniformly disperse and becomes a mamko shape, which causes a foreign substance feeling. And the effect of preventing fluidity cannot be exerted.

また水処理における一般的な使用形態である低濃度水溶
液として高分子凝集剤を添加した場合は、掘削土に多量
の水を添加することにより処理土の流動性を増大させ
る。
Further, when the polymer flocculant is added as a low-concentration aqueous solution which is a general use form in water treatment, the fluidity of the treated soil is increased by adding a large amount of water to the excavated soil.

[問題点を解決するための手段] 本発明者は上記の問題を解決すべく鋭意検討した結果、
本発明に到達した。
[Means for Solving Problems] As a result of earnest studies to solve the above problems, the present inventor found that
The present invention has been reached.

本発明は前記トンネル工事現場で発生する含水掘削残土
に、アニオン性アクリル系高分子凝集剤分散液を含水掘
削残土1m3に対し、ポリマー純分量として0.1〜5kgを添
加混練した後、石灰系凝固剤を1〜100kg添加混練する
ことを特徴とする。
According to the present invention, the water-containing excavation residual soil generated at the tunnel construction site is kneaded with an anionic acrylic polymer flocculant dispersion liquid in an amount of 0.1 to 5 kg as a polymer pure content per 1 m 3 of the hydrous excavation residual soil, followed by lime-based coagulation. 1 to 100 kg of the agent is added and kneaded.

ここに使用するアクリル系高分子凝集剤分散液は粘度1
万cp以下であり、濃度10%以上であることが望ましい。
The acrylic polymer flocculant dispersion liquid used here has a viscosity of 1
It is desirable that the concentration is 10,000 cp or less and the concentration is 10% or more.

粘度が高すぎると混練不均一となり、濃度が低すぎると
残土に多量の液を加える結果、流動防止に悪影響を与え
る。本発明に用いるアニオン性アクリル系高分子凝集剤
はカルボキシル基を10〜50モル%含有するアニオン性ポ
リアクリルアミドであり、アクリルアミドとアクリル酸
塩の共重合物、アクリルアミドと2−アクリルアミドア
ルキルスルホン酸塩およびアクリル酸塩の共重合物等の
中から分子量100万以上、、好ましくは200万以上のアク
リル系水溶性高分子が適用され、粒径100μm以下の微
粒子として油または塩水溶液中に分散された状態で用い
られる。
If the viscosity is too high, the kneading becomes non-uniform, and if the concentration is too low, a large amount of liquid is added to the residual soil, which adversely affects flow prevention. The anionic acrylic polymer flocculant used in the present invention is an anionic polyacrylamide containing 10 to 50 mol% of carboxyl groups, which is a copolymer of acrylamide and acrylate, acrylamide and 2-acrylamide alkyl sulfonate, and Acrylic water-soluble polymer with a molecular weight of 1 million or more, preferably 2 million or more is applied from copolymers of acrylates, etc., and is dispersed in oil or salt aqueous solution as fine particles with a particle size of 100 μm or less. Used in.

かかる分散液の製造法は公知であり、油中水型エマルジ
ョンは特公昭34−10644号公報、特公昭52−39417号公報
および特公昭55−45783号公報に記載され、塩水溶液中
分散液の製造法は特公昭46−14907号公報および特開昭6
2−20511号公報に記載されている。
A method for producing such a dispersion is known, and water-in-oil emulsions are described in JP-B-34-10644, JP-B-52-39417 and JP-B-55-45783, and a dispersion in a salt aqueous solution is disclosed. The manufacturing method is disclosed in Japanese Examined Patent Publication No. 46-14907 and Japanese Unexamined Patent Publication No.
It is described in JP-A-2-20511.

石灰系凝固剤としては生石灰、消石灰および/またはセ
メントの中から選ばれるカルシウム化合物が使用され
る。これら石灰系凝固剤は水分を含まぬ状態、すなわち
粉末状、粒状、小塊状等の形態で使用することが望まし
く、含水掘削残土に対し、1〜100kg/m3を添加し混練す
る。上記アクリル系高分子凝集剤分散液おおよび石灰系
凝固剤を含水掘削残土に混練するには連続ミキサー、強
制攪拌ミキサー等の混練機を使用する他、パワーシャベ
ル、スクリューコンベア等の土木機械を用いることも可
能である。
As the lime-based coagulant, a calcium compound selected from quick lime, slaked lime and / or cement is used. It is desirable to use these lime-based coagulants in a water-free state, that is, in the form of powder, granules, small lumps, etc., and 1 to 100 kg / m 3 is added to the hydrous excavated residual soil and kneaded. In order to knead the acrylic polymer coagulant dispersion liquid and the lime-based coagulant into the water-containing excavation residual soil, a kneader such as a continuous mixer or a forced agitation mixer is used, and also a civil engineering machine such as a power shovel or a screw conveyor is used. It is also possible.

[作用] 本発明においてアニオン性アクリル系高分子凝集剤は低
粘性の微粒分散液として添加されるため、含水掘削残土
に容易に混合し、土粒子表面に吸着被覆する。次に添加
する石灰系凝固剤は土粒子中のアニオン性親水基および
高分子凝集剤中のカルボキシル基にカルシウムイオンを
付与し、疎水化現象を示すと考えられる。また、生石灰
とセメントには脱水作用があり、相乗作用を呈すること
も考えられる。
[Operation] In the present invention, since the anionic acrylic polymer flocculant is added as a low-viscosity fine particle dispersion, it is easily mixed with the water-containing excavated residual soil and the surface of the soil particles is adsorbed and coated. It is considered that the lime-based coagulant added next imparts calcium ions to the anionic hydrophilic group in the soil particles and the carboxyl group in the polymer flocculant, and exhibits a hydrophobizing phenomenon. In addition, quicklime and cement have a dehydrating action, and it is possible that they exhibit a synergistic action.

[実施例] 次に本発明を実施例によって説明するが、本発明はその
要旨を越えない限り、以下の実施例に制約されるもので
はない。
EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.

(合成例−1) 市販高分子凝集剤(アクリル酸ソーダとアクリルアミド
の共重合体;アニオン化率20モル%;分子量600万)を
ポールミルで粉砕し、200メッシュのふるいを通った微
粉(粉末−1)を9倍量のポリエチレングリコールに分
散させた液を試料−1とし、粉砕前の凝集剤をふるい分
けた20〜40メッシュ部分(粉末−2)を9倍量のポリエ
チレングリコールに混合した液を比較試料−1と呼ぶ。
(Synthesis Example-1) A commercially available polymer flocculant (copolymer of sodium acrylate and acrylamide; anionization rate: 20 mol%; molecular weight: 6 million) was pulverized with a pole mill and passed through a 200-mesh sieve to obtain fine powder (powder- The liquid in which 1) was dispersed in 9 times the amount of polyethylene glycol was used as sample-1, and the liquid in which the 20 to 40 mesh part (powder-2) from which the flocculant before pulverization was sieved was mixed with 9 times the amount of polyethylene glycol was used. It is referred to as Comparative Sample-1.

(合成例−2) 攪拌器、温度計、還流冷却器、窒素導入管を備えた1
の五つ口セパラブルフラスコに中油(比重0.83、引火点
138℃)282gを仕込み、ソルビタンモノオレート10g、IC
I社製ハイパーマーB−246 20gおよび過酸化ラウロイ
ル0.3gを室温にて、添加溶解した。
(Synthesis example-2) 1 equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen introducing pipe
Medium oil in a 5-neck separable flask (specific gravity 0.83, flash point
138 ℃) 282g was charged, sorbitan monooleate 10g, IC
20 g of Hypermer B-246 manufactured by I and 0.3 g of lauroyl peroxide were added and dissolved at room temperature.

別にアクリルアミド262g(90モル%)とアクリル酸ナト
リウム38g(10モル%)をイオン交換水328gに溶解した
モノマー溶液を調整後、前述のセパラブルフラスコ内に
注入し攪拌した。
Separately, a monomer solution prepared by dissolving 262 g (90 mol%) of acrylamide and 38 g (10 mol%) of sodium acrylate in 328 g of ion-exchanged water was prepared, and then poured into the aforementioned separable flask and stirred.

30分間窒素置換を行った後内温を40℃に調整後、アスコ
ルビン酸10%水溶液0.6mlを添加し重合を開始した。内
温を65℃に保持し、5時間重合反応を行った後、得られ
た粒径10μm以下のポリマー微粒子の油中分散液にポリ
オキシエチレンノニルフェニルエーテル20gとポリオキ
シエチレンソルビタントリオレート40gを加えた液を試
料−2と呼ぶ。試料−2の粘度は20℃にて980cpであ
り、ポリマーの分子量は300万であった。
After purging with nitrogen for 30 minutes, the internal temperature was adjusted to 40 ° C., and 0.6 ml of a 10% aqueous ascorbic acid solution was added to initiate polymerization. After maintaining the internal temperature at 65 ° C and carrying out the polymerization reaction for 5 hours, 20 g of polyoxyethylene nonylphenyl ether and 40 g of polyoxyethylene sorbitan trioleate were added to the obtained dispersion liquid of polymer particles having a particle size of 10 μm or less in oil. The added liquid is called sample-2. Sample-2 had a viscosity of 980 cp at 20 ° C. and a polymer molecular weight of 3 million.

(合成例−3) 攪拌器、温度計、還流冷却器、窒素導入管を備えた1
の五つ口のセパラブルフラスコに中油(比重0.83、引火
点138℃)300gを仕込み、ソルビタンモノオレート30gと
2,2′−アゾビスイソブチロニトリル0.3gを室温にて添
加溶解した。別にアクリルアミド133g(50モル%)とア
クリル酸アンモニウム167g(50モル%)をイオン交換水
325gに溶解したモノマー溶液を調整後、前述のセパラブ
ルフラスコ内に注入し攪拌した。
(Synthesis Example-3) 1 equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen introducing pipe
300g of medium oil (specific gravity 0.83, flash point 138 ° C) was charged to a 5-neck separable flask, and sorbitan monooleate 30g was added.
0.3 g of 2,2'-azobisisobutyronitrile was added and dissolved at room temperature. Separately, 133 g (50 mol%) of acrylamide and 167 g (50 mol%) of ammonium acrylate were ion-exchanged water.
After preparing a monomer solution dissolved in 325 g, it was poured into the aforementioned separable flask and stirred.

30分間窒素置換を行った後、内温を60℃とし5時間重合
反応を行った。得られた粒径10μm以下のポリマー微粒
子の油中分散液にポリオキシエチレンソルビタントリオ
レート45gを添加混合した液を試料−3と呼ぶ。試料−
3の粘度は25℃にて1100cpであり分子量は600万であっ
た。
After purging with nitrogen for 30 minutes, the internal temperature was set to 60 ° C. and the polymerization reaction was carried out for 5 hours. A liquid in which 45 g of polyoxyethylene sorbitan trioleate was added and mixed to the obtained dispersion liquid of fine polymer particles having a particle diameter of 10 μm or less in oil is referred to as Sample-3. Sample-
The viscosity of 3 was 1100 cp at 25 ° C. and the molecular weight was 6 million.

(評価方法) 含水土の固化性状は貫入抵抗値の測定により評価する。(Evaluation method) The solidification property of hydrous soil is evaluated by measuring the penetration resistance value.

この試験における貫入抵抗値の測定方法は次のとおり。The method of measuring the penetration resistance value in this test is as follows.

コンクリートの凝結時間測定用の貫入抵抗測定装置に断
面積7.5cm2の貫入針を取りつけ直径15cmの金属円筒内に
満たした処理土に貫入針を10秒間かかって25mm貫入させ
て抵抗値を測定する。
Attach a penetration needle with a cross-sectional area of 7.5 cm 2 to a penetration resistance measuring device for measuring the setting time of concrete, measure the resistance value by allowing the penetration needle to penetrate 25 mm for 10 seconds into the treated soil filled in a metal cylinder with a diameter of 15 cm .

貫入抵抗値が0.3kg/cm2以上であれば一般的に運搬に際
して大きな困難を認められない。
If the penetration resistance value is 0.3 kg / cm 2 or more, generally there is no significant difficulty in transportation.

(実施例−1) 某土木会社の土圧シールド工法によるトンネル工事作業
所の残土貯槽より採取した含水掘削土を5mm目のふるい
により粗大塊を取り除き試験に供した。
(Example-1) The water-containing excavated soil collected from the residual soil storage tank of the tunnel construction work site by the earth pressure shield construction method of a certain civil engineering company was used for a test by removing coarse lumps with a 5 mm sieve.

その掘削残土の物性値は下記のとおりである。The physical properties of the excavated soil are as follows.

シルト粘土分:70.2% 乾固形分 :40.1% 比重 :1.52 スランプ値 :6cm 貫入抵抗値 :0kg/cm2 上記掘削残土3lを卓上型万能ミキサー(JISR−5201の9.
1に記載)に採取し、表−1に記載した量の試料を加
え、一定時間混練後、生石灰を加え、さらに30秒間混練
を行った後、貫入抵抗値を測定した。
Silt clay content: 70.2% Dry solid content: 40.1% Specific gravity: 1.52 Slump value: 6cm Penetration resistance value: 0kg / cm 2 3l of the above excavated soil is a tabletop universal mixer (JIS R-5201 9.
1)), the sample in the amount shown in Table 1 was added, and after kneading for a certain period of time, quicklime was added and kneading was further performed for 30 seconds, and then the penetration resistance value was measured.

結果を表−1に示す。The results are shown in Table-1.

粉末1あるいは粉末2を上記含水残土に添加混練した場
合は多量のママコを発生し均一に混合できなかった。
When powder 1 or powder 2 was added and kneaded to the above-mentioned hydrous soil, a large amount of mamoko was generated and could not be mixed uniformly.

なお添加量は全て含水残土容積に対する薬品純分重量で
表示する。
All additions are expressed as the weight of pure chemicals relative to the volume of water-containing residual soil.

(実施例−2) 実施例−1と同一の掘削残土に対し、同一の攪拌機を用
い、表−2記載量の薬品を添加し、一定時間混練後、貫
入抵抗値を測定した。
(Example-2) To the same excavated soil as in Example-1, the same stirrer was used, the amounts of chemicals shown in Table-2 were added, and after kneading for a certain period of time, the penetration resistance value was measured.

結果を表−2に示す。The results are shown in Table-2.

なお、添加量は全て含水残土容積に対する薬品純分量で
表示する。
In addition, all addition amounts are expressed as the chemical content of chemicals with respect to the volume of residual soil containing water.

〔発明の効果〕 本発明は、土圧系シールド工事より発生する含水掘削残
土に特定のアクリル系水溶性高分子の微粒分散液を添加
混練した後、生石灰、消石灰および/またはセメントか
ら選ばれるカルシウム化合物を添加混練し、水分を除去
することなく含水土の流動性を消失させ、一般土として
取り扱える処理土とする処理方法に関するものである。
[Effect of the Invention] The present invention is a calcium selected from quick lime, slaked lime and / or cement after kneading and adding a fine particle dispersion of a specific acrylic water-soluble polymer to the hydrous excavated residual soil generated by earth pressure system shield work. The present invention relates to a treating method in which a compound is added and kneaded to remove the fluidity of a hydrated soil without removing water to obtain a treated soil that can be treated as general soil.

微粒分散液中においては、水溶性高分子微粒子の表面は
分散媒で覆われているので、含水土に添加しても急激な
溶解増粘が起こらず、ママコを発生せずに均一に含水土
中に分散することができる。
In the fine particle dispersion, the surface of the water-soluble polymer fine particles is covered with the dispersion medium, so that even if added to the hydrated soil, no rapid dissolution / thickening occurs, and the hydrated soil is uniformly generated without the formation of mamako. Can be dispersed within.

水溶性高分子が土粒子に吸着被覆した後に、石灰系凝固
剤から成るカルシウム化合物を添加すると水溶性高分子
のカルボキシル基および土粒子中のアニオン性親水基に
カルシウムイオンが付与されて、粘着性のないサラサラ
した処理土とすることができる。この処理土の性状は一
般土と同一であり、経時的に固化することもなく、処理
土中に異物感を与える物質も発生しない。
When a calcium compound consisting of a lime-based coagulant is added after the water-soluble polymer has been adsorbed and coated on the soil particles, calcium ions are added to the carboxyl groups of the water-soluble polymer and the anionic hydrophilic groups in the soil particles, resulting in an adhesive property. It can be treated soil with no dryness. The properties of this treated soil are the same as those of ordinary soil, they do not solidify over time, and no substance that gives a feeling of foreign matter is generated in the treated soil.

また、本発明の微粒分散液は、吸湿により固結すること
もなく、低粘性であるためにポンプなどにより定量を供
給することも簡易である。
Further, the fine particle dispersion of the present invention does not solidify due to moisture absorption and has a low viscosity, so that it is easy to supply a fixed amount by a pump or the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】土圧系シールド工事より発生するスランプ
値が5cm以上である含水掘削残土に水溶性高分子を添加
混練した後、生石灰、消石灰および/またはセメントか
ら選ばれるカルシウム化合物を添加混練し、水分を除去
することなく該含水土の流動性を消失させるにあたり、 (a)該水溶性高分子を粒径100μm以下の微粒分散液
として添加すること、 (b)該分散液の添加量が該含水土1m3に対しポリマー
純分量として0.1〜5kgであり、該カルシウム化合物の添
加量が該含水土1m3に対し1〜100kgであること、 (c)該分散液中の該水溶性高分子はカルボキシル基を
10〜50モル%含有する分子量100万以上のアニオン性ポ
リアクリルアミドであること、 および、 (d)該分散液を構成する分散媒は該水溶性高分子を溶
解しない液体であることを特徴とする含水掘削残土の処
理方法。
1. A water-soluble polymer is added and kneaded to a hydrous excavated residual soil having a slump value of 5 cm or more generated by earth pressure system shield work, and then a calcium compound selected from quicklime, slaked lime and / or cement is added and kneaded. When the fluidity of the hydrated soil is lost without removing water, (a) the water-soluble polymer is added as a fine particle dispersion having a particle size of 100 μm or less, and (b) the addition amount of the dispersion is a 0.1~5kg to hydrous soil 1 m 3 as the polymer net amount, that amount of the calcium compound is 1~100kg to hydrous soil 1 m 3, (c) water-soluble high in the dispersion The molecule has a carboxyl group
An anionic polyacrylamide containing 10 to 50 mol% and having a molecular weight of 1,000,000 or more, and (d) the dispersion medium constituting the dispersion is a liquid that does not dissolve the water-soluble polymer. Treatment method for residual excavated water.
JP1013206A 1989-01-24 1989-01-24 Treatment method for wet excavated soil Expired - Fee Related JPH0691999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013206A JPH0691999B2 (en) 1989-01-24 1989-01-24 Treatment method for wet excavated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013206A JPH0691999B2 (en) 1989-01-24 1989-01-24 Treatment method for wet excavated soil

Publications (2)

Publication Number Publication Date
JPH02194891A JPH02194891A (en) 1990-08-01
JPH0691999B2 true JPH0691999B2 (en) 1994-11-16

Family

ID=11826683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013206A Expired - Fee Related JPH0691999B2 (en) 1989-01-24 1989-01-24 Treatment method for wet excavated soil

Country Status (1)

Country Link
JP (1) JPH0691999B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529785B2 (en) * 1991-05-22 1996-09-04 三菱化学株式会社 Hydrous soil improver
JPH05192695A (en) * 1991-08-23 1993-08-03 Ribaa Furonto Seibi Center Soil quality improvement of construction surplus soil
GB2276875B (en) * 1993-03-11 1997-04-30 Mhj Ltd Method and a composition for dewatering silt
JP3966916B2 (en) * 1995-12-27 2007-08-29 株式会社日本触媒 Solidifying agent and solidifying method for refining hydrous soil
JP4676632B2 (en) * 2001-03-22 2011-04-27 ハイモ株式会社 Method for controlling solubility of water-in-oil emulsion
JP2005154522A (en) * 2003-11-21 2005-06-16 Nippon Shokubai Co Ltd Method of granulation of water-containing soil and granular soil
JP2005246141A (en) * 2004-03-01 2005-09-15 Ishii Hideo Improvement method for water-containing fine-grained soil
JP5063863B2 (en) * 2005-03-23 2012-10-31 栗田工業株式会社 Treatment method of construction waste mud generated by bubble shield method
JP6009118B1 (en) * 2016-07-29 2016-10-19 太平洋セメント株式会社 Treatment method of mud generated by bubble shield method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2505446A1 (en) * 1974-07-01 1976-01-22 Sandoz Ag NEW ORGANIC COMPOUNDS AND PROCEDURES FOR THEIR PRODUCTION
JPH0631514B2 (en) * 1986-08-08 1994-04-27 株式会社テルナイト How to treat excavated soil
JPS6451198A (en) * 1987-08-21 1989-02-27 Telnite Ltd Modifying method for drilling soil
JPH01139198A (en) * 1987-11-26 1989-05-31 Terunaito:Kk Method for reforming sludge or the like

Also Published As

Publication number Publication date
JPH02194891A (en) 1990-08-01

Similar Documents

Publication Publication Date Title
JPH0691999B2 (en) Treatment method for wet excavated soil
EP3543220A1 (en) Production of calcium hydroxide nanoparticles and their use as accelerators in mineral binder compositions
EP0470650A2 (en) Water-absorbent polymer and its method of production
JPH0691998B2 (en) Treatment method for wet excavated soil
JPH11159281A (en) Processing method of waste in slurry shielding method
JPH08333573A (en) Surplus soil improving agent and improving method
JP4182011B2 (en) Method for modifying and solidifying mud water and using modified solidified soil
JPH032478B2 (en)
JP2529785B2 (en) Hydrous soil improver
JP3795102B2 (en) Sludge solidification material and sludge solidification method
JPH0559886A (en) Mudding material for shield construction method
JPH0557266A (en) Solidificating agent for waste soil
JP4070874B2 (en) Improvement agent and improvement method of hydrous soil
JPH071000A (en) Treatment of poor soil
JPH0649200B2 (en) Treatment method for wet excavated soil
JP3402373B2 (en) How to improve hydrated soil
JP2715017B2 (en) Coagulant for civil engineering
JPH08299994A (en) Surplus soil caking agent and surplus soil caking method
JP4151922B2 (en) Acrylic acid (co) polymer dispersion and use thereof
JPH086350B2 (en) Transportation method of wet soil
JP3644134B2 (en) Treatment agent for hydrous stone powder
JPH0797574A (en) Method for preventing flowing of surface soil
JP3114365B2 (en) Treatment method for soft soil
JPH06145664A (en) Solidifying agent for hydrous soil
JPH05156251A (en) Improving agent for water-containing soil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees