JPH02194891A - Treatment of water containing surplus excavation soil - Google Patents

Treatment of water containing surplus excavation soil

Info

Publication number
JPH02194891A
JPH02194891A JP1320689A JP1320689A JPH02194891A JP H02194891 A JPH02194891 A JP H02194891A JP 1320689 A JP1320689 A JP 1320689A JP 1320689 A JP1320689 A JP 1320689A JP H02194891 A JPH02194891 A JP H02194891A
Authority
JP
Japan
Prior art keywords
soil
water
cement
flocculant
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1320689A
Other languages
Japanese (ja)
Other versions
JPH0691999B2 (en
Inventor
Kiyoshi Aoyama
清 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Yuki Co Ltd
Original Assignee
Kyoritsu Yuki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Yuki Co Ltd filed Critical Kyoritsu Yuki Co Ltd
Priority to JP1013206A priority Critical patent/JPH0691999B2/en
Publication of JPH02194891A publication Critical patent/JPH02194891A/en
Publication of JPH0691999B2 publication Critical patent/JPH0691999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To eliminate the fluidity of hydrous surplus excavation soil by adding a specific amount of anionic acrylic flocculant to said soil having a slump value of not less than 5cm and thereafter further adding a specific amount of quick lime and cement thereto for kneading. CONSTITUTION:1m<3> of the hydrous surplus soil resulting from excavation at tunneling site and having a slump value of not less than 5cm and an anionic acrylic flocculant dispersing liquid containing 0.1-5kg of pure polymer are made up and kneaded together. 1-100kg of quick lime, slaked lime and/or cement are additionally added to the aforesaid kneaded mass so as to be kneaded therewith. The fine particles having a diameter of not more than 100mum of an acrylic water-soluble polymer having a molecular weight of not less than one million and an anionization efficiency of 3-100mol% are suitable for use as the anionic acryl flocculant. Moreover, the quick lime and cement have a dehydrating action, exerting a synergetic effect.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、土庄系シールドまたは推進工法のトンネル工
事現場等から発生する含水掘削残土の流動性を消失きせ
る土質改良工法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a soil improvement method that eliminates the fluidity of water-containing excavated soil generated from tunnel construction sites using the Tonosho shield or propulsion method.

上記掘削残土は、カッターチャンバー内等から排出きれ
易い様に流動性を有するとともに止水性を保つ性質があ
る。流動性の管理は、スランプ試験により行われスラン
プ値5 c rn以上の場合が多い。ダンプカー等によ
る輸送も非効率である事から従来より各種の流動性消失
法が検討きれてきた。
The excavated soil has fluidity so that it can be easily discharged from the cutter chamber, etc., and also has a property of maintaining watertightness. Fluidity is controlled by a slump test, and the slump value is often 5 crn or more. Since transportation by dump trucks and the like is also inefficient, various methods of eliminating fluidity have been investigated.

[従来の技術] 含水残土の流動性を除去する為、残土ホッパー内自然放
置や天日乾燥等が行われている。
[Prior Art] In order to remove the fluidity of water-containing residual soil, methods such as leaving the residual soil naturally in a hopper or drying it in the sun are performed.

薬剤を添加する例としてはセメント系(特公昭62−4
200.特公昭6O−87813)、石灰系(特公昭6
2−31’8)、高吸水性樹脂(特開昭59−1354
88)等が公知である他、グアーガム等が用いられてい
る。また含水率を下げながら流動性を保持する為気泡を
混入し、消泡により流動性を除去する気泡シールド工法
も提案きれている。(特公昭58−47560.特公昭
59−49999)[従来の技術の問題点] 薬剤を用いる処理法においてセメント系ならびに石灰系
の固化剤単独使用の場合は、凝固物が固くなりすぎる為
、ホッパー閉塞の危険性等がある。
An example of adding chemicals is cement-based
200. Tokuko Sho 6 O-87813), lime-based (Toku Sho 6 O-87813)
2-31'8), super absorbent resin (JP-A-59-1354)
88) and the like, guar gum and the like are also used. In addition, a bubble shield method has been proposed in which bubbles are mixed in to maintain fluidity while lowering the moisture content, and the fluidity is removed by defoaming. (Special Publication No. 58-47560. Special Publication No. 59-49999) [Problems with conventional technology] When cement-based or lime-based solidifying agents are used alone in treatment methods using chemicals, the coagulated material becomes too hard, and the hopper There is a risk of blockage, etc.

高吸水性樹脂の使用は高価である。The use of superabsorbent resins is expensive.

グアーガムによる処理土はカビの発生や腐敗等により経
時的に変質を起こす為用途が限定される。また天然物で
あり価格の変動も大苦く供給量にも不安がある。
Soil treated with guar gum deteriorates over time due to the growth of mold and rot, so its uses are limited. Also, since it is a natural product, the price fluctuates greatly and there are concerns about supply.

[問題点を解決する為の手段] 本発明者は上記の問題を解決すべく鋭意検討した結果、
本発明に到達した。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the inventors have found that:
We have arrived at the present invention.

本発明は前記トンネル工事現場で発生する含水掘削残土
に、アニオン性アクリル系高分子凝集剤分散液を含水掘
削残土1m3に対し、ポリマー純分量として0.1〜5
kgを添加混練した後、石灰系凝固剤を1へ一100k
g添加混練する事を特徴とする。
The present invention applies an anionic acrylic polymer flocculant dispersion liquid to the water-containing excavation residue generated at the tunnel construction site in a polymer purity of 0.1 to 5% per 1 m3 of the water-containing excavation residue.
After adding and kneading, add lime-based coagulant to 1 to 100 kg.
It is characterized by adding g and kneading.

ここに使用するアクリル系高分子凝集剤分散液は粘度1
万CP以下であり、濃度10%以上である事が望ましい
The acrylic polymer flocculant dispersion used here has a viscosity of 1
It is desirable that the concentration is 10,000 CP or less and the concentration is 10% or more.

粘度が高すぎると混練不均一となり、濃度が低すぎると
残土に多量の水を加える結果、流動防止に悪影響を与え
る。本発明に用いるアニオン性アクリル系高分子凝集剤
としてはアニオン化率3〜1o○モル%のアクリルアミ
ドとアクリル酸塩の共重合物、アクリルアミドと2−ア
クリルアミドアルキルスルホン塩の共重合物等の中から
分子量100万以上好ましくは200万以上のアクリル
系水溶性高分子が適用され、粒径100tim以下の微
粒子として油または塩水溶液中に分散きせた状態で用い
られる。
If the viscosity is too high, the mixing will be uneven, and if the concentration is too low, a large amount of water will be added to the remaining soil, which will have a negative effect on preventing flow. The anionic acrylic polymer flocculant used in the present invention is selected from copolymers of acrylamide and acrylate salts, copolymers of acrylamide and 2-acrylamide alkyl sulfone salts, etc. with an anionization rate of 3 to 1 mol%. An acrylic water-soluble polymer having a molecular weight of 1 million or more, preferably 2 million or more is used, and is used in the form of fine particles with a particle size of 100tim or less dispersed in oil or salt aqueous solution.

かかる分散液の製造法は公知であり、油中水型エマルジ
ョンは特公昭34−10644、特公昭52−3941
7及び特公昭55−45783に記載され、塩水溶液中
分散液の製造法は特公昭46−14907及び特開昭6
2−2051 1に記載きれている。
The method for producing such a dispersion is known, and water-in-oil emulsions are disclosed in Japanese Patent Publication No. 34-10644 and Japanese Patent Publication No. 52-3941.
7 and Japanese Patent Publication No. 55-45783, and the method for producing a dispersion in a salt aqueous solution is described in Japanese Patent Publication No. 46-14907 and Japanese Patent Publication No. 6
2-2051 It is completely described in 1.

石灰系、凝固剤としては生石灰、消石灰及びセメントの
中から選ばれる1,fil!、又は2種以上の混合物が
使用される。これら石灰系凝固剤は水分を含まぬ状態、
すなわち粉末状、粒状、小塊状等の形体で使用する事が
望ましく、含水掘削残土に対し、1〜100kg/m3
を添加し混練する。上記アクリル系高分子凝集剤分散液
及び石灰系凝固剤を含水掘削残土に混練するには連続ミ
キサー、強制撹拌ミキサー等の混練機を使用する池、パ
ワーシャベル、スクリューコンベア等の土木機械を用い
る事も可能である。
Lime-based, coagulant selected from quicklime, slaked lime and cement 1, fil! , or a mixture of two or more. These lime-based coagulants do not contain water,
In other words, it is preferable to use it in the form of powder, granules, small lumps, etc., and the amount is 1 to 100 kg/m3 for the water-containing excavated soil.
Add and knead. To mix the above acrylic polymer flocculant dispersion and lime-based coagulant into the water-containing excavated soil, use a kneader such as a continuous mixer or forced stirring mixer, a pond, a power shovel, a screw conveyor, or other civil engineering equipment. is also possible.

[作用] 本発明においてアニオン性アクリル系高分子凝集剤は低
粘度の微粒子分散液として添加きれる為、含水掘削残土
に容易に混合し、土粒子表面に吸着被覆する。次に添加
する石灰系凝固剤は土粒子中のアニオン性親水基及び高
分子凝集剤にカルシウムイオンを付与し、疎水化現象を
示すと考えられる。又、生石灰とセメントには脱水作用
があり、相乗作用を呈する事も考えられる。
[Function] In the present invention, since the anionic acrylic polymer flocculant can be added as a low-viscosity fine particle dispersion, it is easily mixed into the water-containing excavated soil and adsorbed onto the surface of the soil particles. It is thought that the lime-based coagulant added next imparts calcium ions to the anionic hydrophilic groups in the soil particles and the polymer flocculant, thereby exhibiting a hydrophobic phenomenon. Also, quicklime and cement have a dehydrating effect, and it is possible that they have a synergistic effect.

[実施例] 次に本発明を実施例によって説明するが、本発明はその
要旨を越えない限り、以下の実施例に制約されるもので
はない。
[Examples] Next, the present invention will be explained by examples, but the present invention is not limited to the following examples unless the gist thereof is exceeded.

合成例−1 市販高分子凝集剤(アクリル酸ソーダとアクリルアミド
の共重合体:アニオン化率20モル%;分子量600万
)をボールミルで粉砕し、200メツシユのふるいを通
った微粉を9倍量のボリエ、チレングリコールに分散さ
せた液を試料−1とし、粉砕前の凝集剤をふるい分けた
20〜40メツシュ部分を9倍量のポリエチレングリコ
ールに混合した液を比較試料−1と呼ぶ。
Synthesis Example-1 A commercially available polymer flocculant (copolymer of sodium acrylate and acrylamide: anionization rate 20 mol%; molecular weight 6 million) was ground in a ball mill, and the fine powder that passed through a 200-mesh sieve was 9 times the amount A liquid obtained by dispersing Borie in ethylene glycol is referred to as Sample-1, and a liquid obtained by mixing 20 to 40 mesh portions obtained by sieving out the flocculant before pulverization in 9 times the amount of polyethylene glycol is referred to as Comparative Sample-1.

合成例−2 撹拌器、温度計、還流冷却器、窒素導入管を備えたIQ
の五つ口のセパラブルフラスコに中油(比重0.83、
引火点138℃)282gを仕込み、ソルビタンモノオ
レート108、ICI社製ハイパーマーB−24620
g及び過酸化ラウロイル0.3gを室温にて、添加溶解
しlで。別にアクリルアミド262gとアクリル酸ナト
リウム38gをイオン交換水328gに溶解したモノマ
ー溶液を調整後、前述のセパラブルフラスコ内に注入し
撹拌した。30分間窒素置換を行った後内温を40℃に
調整後、アスコルビン酸10%水溶液0.6mlを添加
し重合を開始した。
Synthesis Example-2 IQ equipped with a stirrer, thermometer, reflux condenser, and nitrogen introduction tube
Medium oil (specific gravity 0.83,
282g of sorbitan monooleate 108 (flash point: 138°C), Hypermer B-24620 manufactured by ICI Co., Ltd.
g and 0.3 g of lauroyl peroxide were added and dissolved at room temperature. Separately, a monomer solution was prepared by dissolving 262 g of acrylamide and 38 g of sodium acrylate in 328 g of ion-exchanged water, and then poured into the above-mentioned separable flask and stirred. After purging with nitrogen for 30 minutes and adjusting the internal temperature to 40°C, 0.6 ml of a 10% ascorbic acid aqueous solution was added to initiate polymerization.

内温を65℃に保持し、5時間重合反応を行った後、得
られたエマルジョンにポリオキシエチレンノニルフェニ
ルエーテル20gとポリオキシエチレンソルビタントリ
オレート40gを加えた液を試料−2と呼ぶ。試料−2
の粘度は20℃にて980cpであり、ポリマーの分子
量は300万であった。
After the internal temperature was maintained at 65° C. and the polymerization reaction was carried out for 5 hours, 20 g of polyoxyethylene nonylphenyl ether and 40 g of polyoxyethylene sorbitan triolate were added to the resulting emulsion, and the liquid was referred to as sample-2. Sample-2
The viscosity of the polymer was 980 cp at 20° C., and the molecular weight of the polymer was 3 million.

合成例−3 撹拌器、温度計、還流冷却器、窒素導入管を備えたIQ
の五つ口のセパプルフラスコに中油(比重0.83、引
火点138℃)300gを仕込み、ソルビタンモノオレ
ート30gと2.2゛−アゾビスイソブチロニトリル0
.3gを室温にて添加溶解した。別にアクリルアミド1
33gとアクリル酸アンモニウム167gをイオン交換
水325gに溶解したモノマー溶液を調整後、前述のセ
パラブルフラスコ内に注入し撹拌した。
Synthesis Example-3 IQ equipped with a stirrer, thermometer, reflux condenser, and nitrogen introduction tube
300 g of medium oil (specific gravity 0.83, flash point 138°C) was placed in a five-neck sepaple flask, and 30 g of sorbitan monooleate and 2.2゛-azobisisobutyronitrile were added.
.. 3 g was added and dissolved at room temperature. Separately, acrylamide 1
After preparing a monomer solution in which 33 g of ammonium acrylate and 167 g of ammonium acrylate were dissolved in 325 g of ion-exchanged water, it was poured into the above-mentioned separable flask and stirred.

30分間窒素置換を行った後、内温を60℃とし5時間
重合反応を行った。得られたエマルジョンにポリオキシ
エチレンソルビタントリオレート45gを添加混合した
液を試料−3と呼ぶ。試料−3の粘度は25℃にて11
00cpであり分子量は600万であった。
After purging with nitrogen for 30 minutes, the internal temperature was raised to 60°C and a polymerization reaction was carried out for 5 hours. A liquid obtained by adding and mixing 45 g of polyoxyethylene sorbitan triolate to the obtained emulsion is referred to as Sample-3. The viscosity of sample-3 is 11 at 25℃
00 cp and the molecular weight was 6 million.

0評価方法 含水掘削残土の固化状態は貫入抵抗値の測定により評価
する。
0 Evaluation method The solidification state of the water-containing excavated soil is evaluated by measuring the penetration resistance value.

この試験における貫入抵抗値の測定方法は次のとおり。The method for measuring the penetration resistance value in this test is as follows.

コンクリートの凝結時間測定用の貫入抵抗測定装置に断
面積7.5cm2の貫入針を取りつけ直径15cmの金
属円筒内に満たした処理土に貫入針を10秒間かかって
25 m m貫入させて抵抗値を測定する。
A penetration needle with a cross-sectional area of 7.5 cm2 was attached to a penetration resistance measuring device for measuring the setting time of concrete, and the penetration needle was penetrated 25 mm into the treated soil filled in a metal cylinder with a diameter of 15 cm for 10 seconds to measure the resistance value. Measure.

貫入抵抗値が0.3kg/cm2以上であれば一般的に
運搬に際して大きな困難を認められない。
If the penetration resistance value is 0.3 kg/cm2 or more, generally no major difficulties will be recognized during transportation.

実施例−1 某土木会社の土庄シールド工法によるトンネル工事作業
所の排泥貯槽より採取した含水開削残土を5mm目のふ
るいにより粗大塊を取り除き試験に供した。
Example 1 Water-containing excavation residual soil collected from a sludge storage tank at a tunnel construction site using the Tonosho shield method of a certain civil engineering company was sieved to remove coarse lumps using a 5 mm sieve, and then subjected to a test.

その掘削残土の物性値は下記のとおりである。The physical properties of the excavated soil are as follows.

上記掘削残土3Qを卓上型万能ミキサー(JISR−5
201の9゜1に記載)に採取し、表−1に記載した量
の試料を加え、一定時間混練後、生石灰を加え、さらに
30秒間混練を行った後、貫入抵抗値を測定した。結果
を表−1に示す。なお添加量は全て含水残土容積に対す
る薬品純分重量で表示する。
The above excavated soil 3Q was mixed with a tabletop all-purpose mixer (JISR-5).
201, 9.1), added the amount of sample shown in Table 1, kneaded for a certain period of time, added quicklime, kneaded for an additional 30 seconds, and then measured the penetration resistance value. The results are shown in Table-1. All addition amounts are expressed as the pure weight of the chemical relative to the volume of the remaining water-containing soil.

実施例−2 実施例−1と同一の1屈削残土に対し、同一の撹拌機を
用い、表−2記載量の薬品を添加し、一定時間混練後、
貫入抵抗値を測定した。結果を表−2に示す。
Example-2 Using the same stirrer, the amount of chemicals listed in Table-2 was added to the same left-over soil as in Example-1, and after kneading for a certain period of time,
The penetration resistance value was measured. The results are shown in Table-2.

なお、添加量は全て含水残土容積に対する薬品純分量で
表示する。
All addition amounts are expressed as the pure amount of the chemical relative to the volume of the remaining water-containing soil.

表−1 表−2Table-1 Table-2

Claims (2)

【特許請求の範囲】[Claims] (1)スランプ値が5cm以上である含水掘削残土1m
^3に対し、ポリマー純分量が0.1〜5kg量のアニ
オン性アクリル系凝集剤分 散液を添加混練した後、生石灰、消石灰及 びまたはセメントを1〜100kg添加混 練する事を特徴とする含水掘削残土の処理 方法。
(1) 1 m of water-containing excavated soil with a slump value of 5 cm or more
Water-containing excavation characterized by adding and kneading an anionic acrylic flocculant dispersion having a polymer pure amount of 0.1 to 5 kg to ^3, and then adding and kneading 1 to 100 kg of quicklime, slaked lime, and/or cement. How to dispose of leftover soil.
(2)分子量100万以上であり、アニオン化率3〜1
00モル%であるアクリル系水溶性 高分子を粒径100μm以下の微粒子とし て含有する分散液を使用する事を特徴とす る特許請求範囲第1項記載の含水掘削残土 の処理方法。
(2) Molecular weight of 1 million or more and anionization rate of 3 to 1
2. A method for treating water-containing excavated soil as claimed in claim 1, characterized in that a dispersion containing 00 mol% of an acrylic water-soluble polymer in the form of fine particles with a particle size of 100 μm or less is used.
JP1013206A 1989-01-24 1989-01-24 Treatment method for wet excavated soil Expired - Fee Related JPH0691999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013206A JPH0691999B2 (en) 1989-01-24 1989-01-24 Treatment method for wet excavated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013206A JPH0691999B2 (en) 1989-01-24 1989-01-24 Treatment method for wet excavated soil

Publications (2)

Publication Number Publication Date
JPH02194891A true JPH02194891A (en) 1990-08-01
JPH0691999B2 JPH0691999B2 (en) 1994-11-16

Family

ID=11826683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013206A Expired - Fee Related JPH0691999B2 (en) 1989-01-24 1989-01-24 Treatment method for wet excavated soil

Country Status (1)

Country Link
JP (1) JPH0691999B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345685A (en) * 1991-05-22 1992-12-01 Mitsubishi Kasei Corp Conditioner for water-containing soil
JPH05192695A (en) * 1991-08-23 1993-08-03 Ribaa Furonto Seibi Center Soil quality improvement of construction surplus soil
GB2276875A (en) * 1993-03-11 1994-10-12 Mhj Ltd Methods and a composition for dewatering silt
JPH09176644A (en) * 1995-12-27 1997-07-08 Okumuragumi Doboku Kogyo Kk Agent for solidifying water-containing soil and method therefor
JP2002332358A (en) * 2001-03-22 2002-11-22 Hymo Corp Method for adjusting solubility of water-in-oil emulsion
JP2005154522A (en) * 2003-11-21 2005-06-16 Nippon Shokubai Co Ltd Method of granulation of water-containing soil and granular soil
JP2005246141A (en) * 2004-03-01 2005-09-15 Ishii Hideo Improvement method for water-containing fine-grained soil
JP2006265885A (en) * 2005-03-23 2006-10-05 Kurita Water Ind Ltd Treating method of construction sludge generated in cellular shield construction method
JP6009118B1 (en) * 2016-07-29 2016-10-19 太平洋セメント株式会社 Treatment method of mud generated by bubble shield method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518250A (en) * 1974-07-01 1976-01-23 Sandoz Ag
JPS6344097A (en) * 1986-08-08 1988-02-25 株式会社テルナイト Method of treating excavated soil
JPS6451198A (en) * 1987-08-21 1989-02-27 Telnite Ltd Modifying method for drilling soil
JPH01139198A (en) * 1987-11-26 1989-05-31 Terunaito:Kk Method for reforming sludge or the like

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518250A (en) * 1974-07-01 1976-01-23 Sandoz Ag
JPS6344097A (en) * 1986-08-08 1988-02-25 株式会社テルナイト Method of treating excavated soil
JPS6451198A (en) * 1987-08-21 1989-02-27 Telnite Ltd Modifying method for drilling soil
JPH01139198A (en) * 1987-11-26 1989-05-31 Terunaito:Kk Method for reforming sludge or the like

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345685A (en) * 1991-05-22 1992-12-01 Mitsubishi Kasei Corp Conditioner for water-containing soil
JPH05192695A (en) * 1991-08-23 1993-08-03 Ribaa Furonto Seibi Center Soil quality improvement of construction surplus soil
GB2276875A (en) * 1993-03-11 1994-10-12 Mhj Ltd Methods and a composition for dewatering silt
GB2276875B (en) * 1993-03-11 1997-04-30 Mhj Ltd Method and a composition for dewatering silt
JPH09176644A (en) * 1995-12-27 1997-07-08 Okumuragumi Doboku Kogyo Kk Agent for solidifying water-containing soil and method therefor
JP2002332358A (en) * 2001-03-22 2002-11-22 Hymo Corp Method for adjusting solubility of water-in-oil emulsion
JP4676632B2 (en) * 2001-03-22 2011-04-27 ハイモ株式会社 Method for controlling solubility of water-in-oil emulsion
JP2005154522A (en) * 2003-11-21 2005-06-16 Nippon Shokubai Co Ltd Method of granulation of water-containing soil and granular soil
JP2005246141A (en) * 2004-03-01 2005-09-15 Ishii Hideo Improvement method for water-containing fine-grained soil
JP2006265885A (en) * 2005-03-23 2006-10-05 Kurita Water Ind Ltd Treating method of construction sludge generated in cellular shield construction method
JP6009118B1 (en) * 2016-07-29 2016-10-19 太平洋セメント株式会社 Treatment method of mud generated by bubble shield method

Also Published As

Publication number Publication date
JPH0691999B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4089831A (en) Composition and method for dispersing flocculant polymers
EP0255283B1 (en) Products and processes for the flocculation of aqueous suspensions
JPH02194891A (en) Treatment of water containing surplus excavation soil
US4010135A (en) Composition and method for dispersing high molecular weight flocculant polymers in water
JPH11159281A (en) Processing method of waste in slurry shielding method
JPH02194890A (en) Treatment of water-containing surplus excavation soil
JP4182011B2 (en) Method for modifying and solidifying mud water and using modified solidified soil
JP3422554B2 (en) Solidifying agent for treating hydrous slurry excavated soil and method for treating hydrous slurry excavated soil
JPH0753280B2 (en) Treatment method of excavated shear mixed with air bubbles
JP7318902B2 (en) Excavation Additives and Mud Pressure Shield Construction Method
JP2007009108A (en) Water-absorbing material
JP7245678B2 (en) SOIL IMPROVEMENT MATERIAL, CEMENT MILK, AND SOIL IMPROVEMENT METHOD
JPH0559886A (en) Mudding material for shield construction method
JPH02107400A (en) Method for treating excavated surplus soil containing water
JP5189272B2 (en) Ground stabilization admixture, ground stabilization material and ground stabilization method using the same
JP2715017B2 (en) Coagulant for civil engineering
JPH071000A (en) Treatment of poor soil
JP2529785B2 (en) Hydrous soil improver
JPH0797574A (en) Method for preventing flowing of surface soil
JPH08299994A (en) Surplus soil caking agent and surplus soil caking method
JP2007245027A (en) Method of processing sun-dried water purification sludge
JPH09316450A (en) Treatment of hydrous excavation residual soil
JP2004043754A (en) Solidifying agent for civil engineering
JP3114365B2 (en) Treatment method for soft soil
JPH05156251A (en) Improving agent for water-containing soil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees