JP6009118B1 - Treatment method of mud generated by bubble shield method - Google Patents

Treatment method of mud generated by bubble shield method Download PDF

Info

Publication number
JP6009118B1
JP6009118B1 JP2016149160A JP2016149160A JP6009118B1 JP 6009118 B1 JP6009118 B1 JP 6009118B1 JP 2016149160 A JP2016149160 A JP 2016149160A JP 2016149160 A JP2016149160 A JP 2016149160A JP 6009118 B1 JP6009118 B1 JP 6009118B1
Authority
JP
Japan
Prior art keywords
mud
magnesium
calcium
polymer flocculant
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016149160A
Other languages
Japanese (ja)
Other versions
JP2018015731A (en
Inventor
松山 祐介
祐介 松山
守屋 政彦
政彦 守屋
藤田 以和彦
以和彦 藤田
真司 川口
真司 川口
孝 広渡
孝 広渡
朝陽 小野
朝陽 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57140259&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6009118(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016149160A priority Critical patent/JP6009118B1/en
Application granted granted Critical
Publication of JP6009118B1 publication Critical patent/JP6009118B1/en
Publication of JP2018015731A publication Critical patent/JP2018015731A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

【課題】気泡シールド工法で発生する泥土に関して、大きいコーン指数を有する固化体を形成させ、かつ、該固化体からの重金属等の有害物質の溶出量を低減させることができる泥土の処理方法を提供する。【解決手段】気泡シールド工法で発生する泥土に、カチオン性高分子凝集剤を添加することなく、アニオン性高分子凝集剤を添加して混合し、高分子凝集剤を含む泥土を得る凝集剤添加工程、および、該泥土に、固化作用を有するマグネシウム成分および/またはカルシウム成分、並びに金属硫酸塩と金属塩化物の中から選ばれる少なくとも1種からなる金属塩を含む固化不溶化材を添加して、粉砕および混合の処理を行ない、処理済みの泥土を形成させる固化不溶化材添加工程、を含む、泥土の処理方法であって、固化不溶化材添加工程における粉砕が、高分子凝集剤および固化不溶化材を含む泥土の50%通過質量百分率が7mm以下になるまで行なわれる、泥土の処理方法。【選択図】なしAn object of the present invention is to provide a method for treating mud that can form a solidified body having a large cone index and reduce the amount of toxic substances such as heavy metals from the solidified body with respect to the mud generated by the bubble shield method. To do. SOLUTION: Addition of an anionic polymer flocculant to a mud generated by a bubble shield method without adding a cationic polymer flocculant, and mixing to add a flocculant to obtain a mud containing the polymer flocculant Adding a solidification insolubilizing material containing a magnesium salt and / or calcium component having a solidifying action, and a metal salt consisting of at least one metal sulfate and metal chloride to the mud, A method for treating mud, including a solidification and insolubilization material addition step for performing a crushing and mixing treatment to form a treated mud, wherein the crushing in the solidification and insolubilization material addition step is performed by removing the polymer flocculant and the solidification insolubilization material. A method for treating mud, which is carried out until the 50% passing mass percentage of the mud is 7 mm or less. [Selection figure] None

Description

本発明は、気泡シールド工法で発生する泥土の処理方法に関する。   The present invention relates to a method for treating mud generated by a bubble shield method.

従来、気泡シールド工法で発生する泥土を固化して処理することが、行なわれている。
この処理方法の一例として、特許文献1に、気泡シールド工法で発生する建設排泥に、アニオン性高分子凝集剤または天然高分子を添加混合し、造粒した後、無機系固化材を添加混合して固化することを特徴とする気泡シールド工法で発生する建設排泥の処理方法が記載されている。
Conventionally, the mud generated by the bubble shield method is solidified and treated.
As an example of this treatment method, in Patent Document 1, an anionic polymer flocculant or a natural polymer is added to and mixed with construction waste mud generated by the bubble shield method, and then an inorganic solidifying material is added and mixed. A method for treating construction waste mud generated by the bubble shield method characterized by solidifying as described above is described.

一方、重金属等を含む汚染土壌を固化して、重金属等を不溶化するための固化不溶化材として、例えば、特許文献2に、金属硫酸塩および金属塩化物から選ばれる、少なくとも1種以上の水溶性塩類(A)100質量部に対し、下記(B1)〜(B3):
(B1)炭酸マグネシウムおよび/または水酸化マグネシウムを主成分とする固形物を、650〜1000℃で焼成して、酸化マグネシウムを含む焼成物を得た後、該焼成物を部分的に水和させて生成した水酸化マグネシウムを一部に含むマグネシア類、
(B2)1000℃における強熱減量率が、1.5〜12.0質量%であるマグネシア類、
(B3)カルシウムの含有率が、CaO換算で3.0質量%以下であるマグネシア類、
の条件をすべて満たすマグネシア類(B)を、5〜50質量部含むことを特徴とする重金属等処理材が記載されている。
On the other hand, as a solidified insolubilizing material for solidifying contaminated soil containing heavy metals, etc. to insolubilize heavy metals, for example, Patent Document 2 discloses at least one or more water-soluble substances selected from metal sulfates and metal chlorides. The following (B1) to (B3) with respect to 100 parts by mass of the salt (A):
(B1) After firing a solid containing magnesium carbonate and / or magnesium hydroxide as a main component at 650 to 1000 ° C. to obtain a fired product containing magnesium oxide, the fired product is partially hydrated. Magnesia partially containing magnesium hydroxide produced by
(B2) Magnesia whose ignition loss rate at 1000 ° C. is 1.5 to 12.0% by mass,
(B3) Magnesia having a calcium content of 3.0% by mass or less in terms of CaO,
The processing material, such as heavy metal, characterized by containing 5-50 mass parts of magnesias (B) which satisfy | fill all these conditions is described.

特開2006−265885号公報JP 2006-265885 A 特許第5757613号公報Japanese Patent No. 5757613

本発明の目的は、気泡シールド工法で発生する泥土に関して、大きいコーン指数(400kN/m以上)を有する固化体(処理済みの泥土)を形成させ、かつ、該固化体からの重金属等の有害物質の溶出量を低減させることができる泥土の処理方法を提供することである。 The object of the present invention is to form a solidified body (treated mud) having a large cone index (400 kN / m 2 or more) with respect to the mud generated by the bubble shield method, and to remove harmful metals such as heavy metals from the solidified body. An object of the present invention is to provide a method for treating mud that can reduce the elution amount of a substance.

本発明者は、上記課題を解決するために鋭意検討した結果、処理対象物である泥土に対して、特定の高分子凝集剤を添加して混合し、得られた高分子凝集剤を含む泥土に、特定の固化不溶化材を添加して、粉砕および混合の処理を行う泥土の処理方法であって、上記粉砕が、上記高分子凝集剤および固化不溶化材を含む泥土の50%通過質量百分率が7mm以下になるまで行なわれる泥土の処理方法によれば、本発明の目的を達成することができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventor added a specific polymer flocculant to the mud that is the object to be treated and mixed, and the mud containing the obtained polymer flocculant A method for treating mud by adding a specific solidified insolubilizing material, and performing a grinding and mixing treatment, wherein the grinding has a 50% passing mass percentage of the mud containing the polymer flocculant and the solidified insolubilizing material. It has been found that the object of the present invention can be achieved by the mud treatment method performed until the thickness is 7 mm or less, and the present invention has been completed.

本発明は、以下の[1]〜[10]を提供するものである。
[1] 気泡シールド工法で発生する泥土に、カチオン性高分子凝集剤を添加することなく、アニオン性高分子凝集剤を添加して混合し、高分子凝集剤を含む泥土を得る凝集剤添加工程、および、上記高分子凝集剤を含む泥土に、固化作用を有するマグネシウム成分および/またはカルシウム成分、並びに、金属硫酸塩と金属塩化物の中から選ばれる少なくとも1種からなる金属塩を含む固化不溶化材を添加して、粉砕および混合の処理を行ない、処理済みの泥土を形成させる固化不溶化材添加工程、を含む、気泡シールド工法で発生する泥土の処理方法であって、上記固化不溶化材添加工程における粉砕が、上記高分子凝集剤および固化不溶化材を含む泥土の50%通過質量百分率が7mm以下になるまで行なわれることを特徴とする気泡シールド工法で発生する泥土の処理方法。
[2] 上記固化不溶化材添加工程における粉砕が、上記高分子凝集剤と固化不溶化材を含む泥土の80%通過質量百分率が38mm以下になるまで行なわれる前記[1]に記載の泥土の処理方法。
[3] 上記固化不溶化材添加工程における粉砕および混合の処理が、多軸ハンマー式混合機または竪型三軸クラッシャーを用いて行なわれる前記[1]又は[2]に記載の泥土の処理方法。
The present invention provides the following [1] to [10].
[1] An agglomerating agent adding step for obtaining a mud containing a polymer flocculant by adding an anionic polymer flocculant to the mud generated by the bubble shield method without adding a cationic polymer flocculant. And solidification insolubilization containing a magnesium salt and / or calcium component having a solidifying action and a metal salt composed of at least one selected from metal sulfate and metal chloride in the mud containing the polymer flocculant. A method for treating mud generated in the bubble shield method, including a solidified and insolubilized material adding step of adding a material to pulverize and mix to form a treated mud, the solidified and insolubilized material adding step In which the 50% passing mass percentage of the mud containing the polymer flocculant and the solidified insolubilizing material is 7 mm or less. A method for treating mud generated by the yield method.
[2] The method for treating mud according to [1], wherein the pulverization in the solidified and insolubilized material adding step is performed until the 80% passing mass percentage of the mud containing the polymer flocculant and the solidified and insolubilized material becomes 38 mm or less. .
[3] The method for treating mud according to [1] or [2], wherein the pulverization and mixing in the solidified insolubilizing material adding step is performed using a multi-shaft hammer mixer or a vertical triaxial crusher.

[4] 上記アニオン性高分子凝集剤が、逆相エマルション型アニオン性ポリアクリルアミドを含む前記[1]〜[3]のいずれかに記載の泥土の処理方法。
[5] 上記固化不溶化材が、上記マグネシウム成分として下記(1)〜(3)の条件をすべて満たすマグネシウム含有物、上記カルシウム成分として下記(4)の条件を満たすカルシウム含有物、並びに、上記マグネシウム成分およびカルシウム成分として下記(5)の条件を満たすマグネシウムとカルシウム含有物から選ばれる1種以上を、合計で上記金属塩100質量部当たり5〜50質量部の量で含む前記[1]〜[4]のいずれかに記載の泥土の処理方法。
(1)炭酸マグネシウムおよび/または水酸化マグネシウムを主成分とする固形物を、650〜1000℃で焼成して得られる酸化マグネシウムを含むマグネシウム含有物、または、該マグネシウム含有物を部分的に水和させて生成した水酸化マグネシウムを一部に含むマグネシウム含有物
(2)1000℃における強熱減量率が、1.5〜12.0質量%であるマグネシウム含有物
(3)カルシウムの含有率が、CaO換算で3.0質量%以下であるマグネシウム含有物
(4)酸化カルシウムおよび/または水酸化カルシウムの含有率の合計が、CaO換算で70質量%以上であるカルシウム含有物
(5)マグネシウムの含有率が、MgO換算で5〜35質量%であり、カルシウムの含有率が、CaO換算で20〜50質量%であり、上記マグネシウムの含有率と上記カルシウムの含有率の合計が、50質量%以上であるマグネシウムとカルシウム含有物
[6] 上記固化不溶化材が、半水石膏、炭酸カルシウム含有物、珪石粉末、および砕石微粉末から選ばれる少なくとも1種からなる助材を含む前記[1]〜[5]のいずれかに記載の泥土の処理方法。
[4] The method for treating mud according to any one of the above [1] to [3], wherein the anionic polymer flocculant contains a reverse phase emulsion type anionic polyacrylamide.
[5] The solidified and insolubilized material satisfies the following conditions (1) to (3) as the magnesium component, the calcium content that satisfies the following condition (4) as the calcium component, and the magnesium [1] to [1] containing at least one selected from magnesium and calcium-containing materials satisfying the following condition (5) as components and calcium components in an amount of 5 to 50 parts by mass per 100 parts by mass of the metal salt: 4] The method for treating mud according to any one of the above.
(1) Magnesium-containing material containing magnesium oxide obtained by firing a solid material containing magnesium carbonate and / or magnesium hydroxide as a main component at 650 to 1000 ° C., or partially hydrated the magnesium-containing material Magnesium-containing product partially containing magnesium hydroxide produced (2) The ignition loss at 1000 ° C. is 1.5 to 12.0% by mass. Magnesium-containing product (3) The content of calcium is Magnesium-containing material that is 3.0% by mass or less in terms of CaO (4) Calcium-containing material in which the total content of calcium oxide and / or calcium hydroxide is 70% by mass or more in terms of CaO (5) Magnesium content The rate is 5 to 35% by mass in terms of MgO, and the calcium content is 20 to 50% by mass in terms of CaO. Magnesium and calcium-containing material whose total content of gnesium and calcium is 50% by mass or more [6] The solidified insolubilized material is hemihydrate gypsum, calcium carbonate-containing material, silica stone powder, and fine crushed stone powder. The method for treating mud according to any one of the above [1] to [5], comprising an auxiliary material consisting of at least one selected from

[7] 上記気泡シールド工法で発生する泥土が、土壌汚染対策法(平成15年)における第二種特定有害物質の土壌溶出量基準を満たさないものである前記[1]〜[6]のいずれかに記載の泥土の処理方法。
[8] 上記処理済みの泥土の溶出検液のpHが、5.8〜8.6である前記[1]〜[7]のいずれかに記載の泥土の処理方法。
[9] 上記処理済みの泥土が、土壌汚染対策法(平成15年)における第二種特定有害物質の土壌溶出量基準を満たすものである前記[1]〜[8]のいずれかに記載の泥土の処理方法。
[10] 上記気泡シールド工法で発生する泥土1m当たり、上記アニオン性高分子凝集剤の添加量が、0.1〜10kgであり、かつ、上記固化不溶化材の添加量が、20〜250kgである前記[1]〜[9]のいずれかに記載の泥土の処理方法。
[7] Any of the above [1] to [6], wherein the mud generated by the bubble shield method does not satisfy the soil elution amount standard of the second type specific harmful substance in the Soil Contamination Countermeasures Law (2003) A method for treating mud according to crab.
[8] The method for treating mud according to any one of [1] to [7], wherein the pH of the treated mud elution test solution is 5.8 to 8.6.
[9] The method according to any one of [1] to [8], wherein the treated mud satisfies the soil elution amount standard of the second type specified harmful substance in the Soil Contamination Countermeasures Law (2003). How to treat mud.
[10] The amount of the anionic polymer flocculant added is 0.1 to 10 kg and the amount of the solidified and insolubilized material added is 20 to 250 kg per 1 m 3 of mud generated by the bubble shield method. The method for treating mud according to any one of [1] to [9].

本発明によれば、気泡シールド工法で発生する泥土に関して、大きいコーン指数(400kN/m以上)を有する固化体(処理済みの泥土)を形成させ、かつ、該固化体からの重金属等の有害物質の溶出量を低減させることができる。 According to the present invention, with respect to the mud generated by the bubble shield method, a solidified body (treated mud) having a large cone index (400 kN / m 2 or more) is formed, and harmful metals such as heavy metals from the solidified body are formed. The amount of substance elution can be reduced.

本発明の気泡シールド工法で発生する泥土の処理方法は、気泡シールド工法で発生する泥土に、カチオン性高分子凝集剤を添加することなく、アニオン性高分子凝集剤を添加して混合し、高分子凝集剤を含む泥土を得る凝集剤添加工程、および、上記高分子凝集剤を含む泥土に、固化作用を有するマグネシウム成分および/またはカルシウム成分、並びに、金属硫酸塩と金属塩化物の中から選ばれる少なくとも1種からなる金属塩を含む固化不溶化材を添加して、粉砕および混合の処理を行ない、処理済みの泥土を形成させる固化不溶化材添加工程、を含む気泡シールド工法で発生する泥土の処理方法であって、固化不溶化材添加工程における粉砕が、上記高分子凝集剤および固化不溶化材を含む泥土の50%通過質量百分率が7mm以下になるまで行なわれるものである。
以下、工程毎に詳しく説明する。
The method for treating mud generated in the bubble shield method of the present invention is to add and mix an anionic polymer flocculant to the mud generated in the bubble shield method without adding a cationic polymer flocculant. A coagulant addition step for obtaining a mud containing a molecular flocculant, and a magnesium component and / or calcium component having a solidifying action and a metal sulfate and a metal chloride are selected for the mud containing the polymer flocculant. Treatment of mud generated in a bubble shield method including a solidification insolubilization material addition step of adding a solidification insolubilization material containing at least one kind of metal salt to be crushed and mixed to form a treated mud In the method, pulverization in the solidified insolubilizing material addition step is such that the 50% passing mass percentage of the mud containing the polymer flocculant and the solidified insolubilizing material is 7 mm or less. It is intended to be carried out up to that.
Hereinafter, each process will be described in detail.

[凝集剤添加工程]
本工程は、気泡シールド工法で発生する泥土に、カチオン性高分子凝集剤を添加することなく、アニオン性高分子凝集剤を添加して混合し、高分子凝集剤を含む泥土を得る工程である。
本発明の処理対象物は、気泡シールド工法で発生する泥土である。
気泡シールド工法とは、土圧式シールド工法の一種であり、切羽あるいはチャンバ内に、特殊起泡材により作られた気泡を注入しながら、掘進する工法をいう。
本発明の処理対象物である、気泡シールド工法で発生する泥土の好ましい例としては、土壌汚染対策法(平成15年)における第二種特定有害物質の土壌溶出量基準を満たさないもの(換言すると、土壌溶出量基準として定められているカドミウム及びその化合物、六価クロム化合物、水銀及びその化合物、セレン及びその化合物、鉛及びその化合物、ひ素及びその化合物、ふっ素及びその化合物、および、ほう素及びその化合物の中のいずれかについて、土壌溶出量基準(mg/L)の上限値を超えるもの;本明細書中において、これらの有害物質を「重金属等」と総称することがある。)が挙げられる。
[Flocculant addition process]
This step is a step for obtaining a mud containing a polymer flocculant by adding and mixing an anionic polymer flocculant without adding a cationic polymer flocculant to the mud generated by the bubble shield method. .
The object to be treated of the present invention is mud generated by the bubble shield method.
The bubble shield method is a kind of earth pressure shield method, and refers to a method of digging while injecting bubbles made of a special foaming material into the face or chamber.
As a preferable example of the mud generated by the bubble shield method, which is an object to be treated according to the present invention, one that does not satisfy the soil elution amount standard of the second type specified harmful substance in the Soil Contamination Countermeasures Law (2003) (in other words, Cadmium and its compounds, hexavalent chromium compounds, mercury and its compounds, selenium and its compounds, lead and its compounds, arsenic and its compounds, fluorine and its compounds, and boron and Any of the compounds exceeds the upper limit of the soil elution standard (mg / L); in the present specification, these harmful substances may be collectively referred to as “heavy metal etc.”). It is done.

本発明の処理対象物である泥土の含水比は、特に限定されないが、シールド工法における作業性や、処理対象物の含水比の調整に要する処理コストを低減する観点からは、好ましくは30%以上、より好ましくは40%以上、特に好ましくは50%以上であり、処理済みの泥土について、より大きなコーン指数を得る観点からは、好ましくは80%以下、より好ましくは70%以下、特に好ましくは60%以下である。
ここで、含水比(単位:%)とは、泥土に含まれている水の質量を、泥土の絶対乾燥状態の質量で除したものを百分率で表したもの(「水の質量」×100÷「絶対乾燥状態の質量」)をいう。
The moisture content of the mud that is the treatment object of the present invention is not particularly limited, but is preferably 30% or more from the viewpoint of reducing the workability in the shield method and the treatment cost required for adjusting the moisture content of the treatment object. More preferably, it is 40% or more, particularly preferably 50% or more. From the viewpoint of obtaining a larger corn index for the treated mud, it is preferably 80% or less, more preferably 70% or less, particularly preferably 60%. % Or less.
Here, the water content ratio (unit:%) is a value obtained by dividing the mass of water contained in the mud by the mass of the mud in an absolute dry state (“mass of water” × 100 ÷ "Absolute dry mass").

本発明で用いるアニオン性高分子凝集剤の例としては、逆相エマルション型アニオン性ポリアクリルアミド等が挙げられる。
本発明の処理対象物である泥土1m当たりのアニオン性高分子凝集剤の添加量は、好ましくは0.1〜10kg、より好ましくは0.4〜8kg、さらに好ましくは0.5〜5kg、特に好ましくは1.0〜4kgである。
該添加量が0.1kg以上であると、固化体(処理済みの泥土)について、より大きなコーン指数を得ることができる。該添加量が10kg以下であると、泥土と高分子凝集剤の粉砕および混合の処理を、より容易に行うことができ、また、処理コストの過度な増大を避けることができる。
Examples of the anionic polymer flocculant used in the present invention include reverse phase emulsion type anionic polyacrylamide.
The amount of the anionic polymer flocculant added per 1 m 3 of mud that is the object to be treated of the present invention is preferably 0.1 to 10 kg, more preferably 0.4 to 8 kg, still more preferably 0.5 to 5 kg. Especially preferably, it is 1.0-4 kg.
When the added amount is 0.1 kg or more, a larger corn index can be obtained for the solidified body (treated mud). When the addition amount is 10 kg or less, the crushing and mixing of the mud and the polymer flocculant can be performed more easily, and an excessive increase in the processing cost can be avoided.

泥土にアニオン性高分子凝集剤を添加して混合する方法は、特に限定されるものではないが、通常、気泡シールド工法で発生する泥土を、スクリューコンベアを用いて搬送する際に、該泥土にアニオン性高分子凝集剤を添加し、スクリューコンベアにおいて混合する方法が挙げられる。また、バックホウや、各種のミキサ(例えば、強制撹拌型ミキサ、パン型ミキサ、パドルミキサ、ロータリーハンマミキサ、4軸直列混合式ミキサ等)等の混合手段を用いて、泥土にアニオン性高分子凝集剤を添加して混合してもよい。   The method of adding and mixing the anionic polymer flocculant to the mud is not particularly limited, but usually the mud generated by the bubble shield method is transferred to the mud when transported using a screw conveyor. An example is a method in which an anionic polymer flocculant is added and mixed on a screw conveyor. In addition, anionic polymer flocculant is applied to mud using a mixing means such as a backhoe or various mixers (for example, forced stirring mixer, pan mixer, paddle mixer, rotary hammer mixer, 4-axis serial mixing mixer, etc.) May be added and mixed.

[固化不溶化材添加工程]
本工程は、前工程(凝集剤添加工程)で得られた高分子凝集剤を含む泥土に、固化作用を有するマグネシウム成分および/またはカルシウム成分、並びに、金属硫酸塩と金属塩化物の中から選ばれる少なくとも1種からなる金属塩を含む固化不溶化材を添加して、粉砕および混合の処理を行ない、処理済みの泥土を形成させる工程である。
本発明で用いる固化不溶化材は、固化作用を有するマグネシウム成分および/またはカルシウム成分、並びに、金属硫酸塩と金属塩化物の中から選ばれる少なくとも1種からなる金属塩を含むものである。
固化作用を有するマグネシウム成分の例としては、酸化マグネシウム含有物、水酸化マグネシウム含有物等が挙げられる。酸化マグネシウム含有物の例としては、軽焼マグネシアや、軽焼マグネシアの部分水和物等が挙げられる。
固化作用を有するカルシウム成分の例としては、酸化カルシウム含有物、水酸化カルシウム含有物等が挙げられる。酸化カルシウム含有物の例としては、生石灰等が挙げられる。水酸化カルシウム含有物の例としては、消石灰等が挙げられる。
固化作用を有するマグネシウム成分およびカルシウム成分を含むもの(マグネシウム成分およびカルシウム成分が、各々、固化作用を有するもの)の例としては、軽焼ドロマイトや、軽焼ドロマイトの部分水和物等が挙げられる。
[Solidification / insolubilization material addition process]
This step is selected from the magnesium component and / or calcium component having solidification action, and the metal sulfate and metal chloride in the mud containing the polymer flocculant obtained in the previous step (flocculating agent addition step). In this step, a solidified and insolubilized material containing at least one metal salt is added and subjected to pulverization and mixing to form a treated mud.
The solidified and insolubilized material used in the present invention includes a magnesium component and / or calcium component having a solidifying action, and a metal salt composed of at least one selected from metal sulfates and metal chlorides.
Examples of the magnesium component having a solidifying action include a magnesium oxide-containing material and a magnesium hydroxide-containing material. Examples of the magnesium oxide-containing material include light-burned magnesia and light-burned magnesia partial hydrate.
As an example of the calcium component which has a solidification effect | action, a calcium oxide containing material, a calcium hydroxide containing material, etc. are mentioned. Examples of the calcium oxide-containing material include quick lime. Examples of the calcium hydroxide-containing material include slaked lime.
Examples of those containing a solidifying magnesium component and a calcium component (magnesium component and calcium component each having a solidifying effect) include lightly burned dolomite and partially burned dolomite. .

金属硫酸塩の例としては、硫酸第一鉄、硫酸第二鉄、ポリ硫酸第二鉄等の硫酸鉄塩や、硫酸アルミニウム、硫酸アルミニウムカリウム、硫酸アルミニウムナトリウム等の硫酸アルミニウム塩等が挙げられる。なお、後述の半水石膏(助材の一例)は、ここでの金属硫酸塩の例に含まれないものとする。
金属塩化物の例としては、塩化第一鉄、塩化第二鉄等の塩化鉄塩や、ポリ塩化アルミニウム等の塩化アルミニウム塩等が挙げられる。
Examples of metal sulfates include iron sulfate salts such as ferrous sulfate, ferric sulfate, and polyferric sulfate, and aluminum sulfate salts such as aluminum sulfate, potassium aluminum sulfate, and sodium aluminum sulfate. In addition, the below-mentioned hemihydrate gypsum (an example of auxiliary material) shall not be contained in the example of a metal sulfate here.
Examples of metal chlorides include iron chloride salts such as ferrous chloride and ferric chloride, and aluminum chloride salts such as polyaluminum chloride.

本発明で用いる固化不溶化材の好ましい一例として、マグネシウム成分として下記(1)〜(3)の条件をすべて満たすマグネシウム含有物、カルシウム成分として下記(4)の条件を満たすカルシウム含有物、並びに、マグネシウム成分およびカルシウム成分(マグネシウム成分およびカルシウム成分を含むもの)として下記(5)の条件を満たすマグネシウムとカルシウム含有物から選ばれる1種以上を、合計で上述の金属塩(金属硫酸塩と金属塩化物の中から選ばれる少なくとも1種からなるもの)100質量部当たり5〜50質量部、好ましくは10〜45質量部の量で含むものが挙げられる。
(1)炭酸マグネシウムおよび/または水酸化マグネシウムを主成分とする固形物を、650〜1000℃で焼成して得られる酸化マグネシウムを含むマグネシウム含有物、または、該マグネシウム含有物を部分的に水和させて生成した水酸化マグネシウムを一部に含むマグネシウム含有物
(2)1000℃における強熱減量率が、1.5〜12.0質量%であるマグネシウム含有物
(3)カルシウムの含有率が、CaO換算で3.0質量%以下であるマグネシウム含有物
(4)酸化カルシウムおよび/または水酸化カルシウムの含有率の合計が、CaO換算で70質量%以上であるカルシウム含有物
(5)マグネシウムの含有率が、MgO換算で5〜35質量%であり、カルシウムの含有率が、CaO換算で20〜50質量%であり、上記マグネシウムの含有率と上記カルシウムの含有率の合計が、50質量%以上であるマグネシウムとカルシウム含有物
この固化不溶化材(好ましい一例)の詳細は、特許第5757613号公報(上述の特許文献2)に記載されているとおりである。
上記(1)の条件において、「主成分」とは、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上含むことをいう。
As a preferable example of the solidified and insolubilized material used in the present invention, a magnesium-containing material that satisfies all the following conditions (1) to (3) as a magnesium component, a calcium-containing material that satisfies the following (4) condition as a calcium component, and magnesium As a component and a calcium component (including a magnesium component and a calcium component), at least one selected from magnesium and a calcium-containing material satisfying the following condition (5) is added to the above-mentioned metal salt (metal sulfate and metal chloride) And those containing in an amount of 5 to 50 parts by mass, preferably 10 to 45 parts by mass per 100 parts by mass.
(1) Magnesium-containing material containing magnesium oxide obtained by firing a solid material containing magnesium carbonate and / or magnesium hydroxide as a main component at 650 to 1000 ° C., or partially hydrated the magnesium-containing material Magnesium-containing product partially containing magnesium hydroxide produced (2) The ignition loss at 1000 ° C. is 1.5 to 12.0% by mass. Magnesium-containing product (3) The content of calcium is Magnesium-containing material that is 3.0% by mass or less in terms of CaO (4) Calcium-containing material in which the total content of calcium oxide and / or calcium hydroxide is 70% by mass or more in terms of CaO (5) Magnesium content The rate is 5 to 35% by mass in terms of MgO, and the calcium content is 20 to 50% by mass in terms of CaO. Magnesium and calcium-containing material in which the total content of gnesium and the calcium content is 50% by mass or more Details of this solidified insolubilized material (preferred example) are disclosed in Japanese Patent No. 5757613 (the above-mentioned Patent Document 2). As described.
In the above condition (1), the “main component” means that it is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.

固化不溶化材は、上述のマグネシウム成分、および/または、カルシウム成分、並びに、上述の金属塩の他に、泥土の固化または重金属等の不溶化の効果を高めることなどを目的として、各種の助材を含むことができる。
助材の例としては、半水石膏、炭酸カルシウム含有物、珪石粉末、砕石微粉末等が挙げられる。これらの助材の例の詳細は、特許第5757613号公報(上述の特許文献2)に記載されているとおりである。
助材の量は、助材の種類やその目的によっても異なるが、通常、上述の金属塩100質量部当たり、好ましくは500質量部以下、より好ましくは400質量部以下である。
The solidified and insolubilized material is made of various auxiliary materials for the purpose of enhancing the effect of solidifying mud or insolubilizing heavy metals, etc. in addition to the above-mentioned magnesium component and / or calcium component and the above-mentioned metal salt. Can be included.
Examples of the auxiliary material include hemihydrate gypsum, a calcium carbonate-containing material, silica stone powder, and fine crushed stone powder. Details of examples of these auxiliary materials are as described in Japanese Patent No. 5757613 (Patent Document 2 described above).
The amount of auxiliary material varies depending on the type of auxiliary material and its purpose, but is usually preferably 500 parts by mass or less, more preferably 400 parts by mass or less, per 100 parts by mass of the above-mentioned metal salt.

本発明の処理対象物である泥土1m当たりの固化不溶化材の添加量は、好ましくは20〜250kg、より好ましくは30〜200kg、さらに好ましくは40〜170kg、特に好ましくは50〜150kgである。該添加量が20kg以上であると、重金属類等(特に、第二種特定有害物質)の溶出量をより低く抑えることができ、不溶化の効果をより高めることができる。また、固化体(処理済みの泥土)について、より大きなコーン指数を得ることができる。該添加量が250kg以下であると、処理コストの過度な増大を避けることができる。 The addition amount of the solidified insolubilizing material per 1 m 3 of mud that is the object to be treated of the present invention is preferably 20 to 250 kg, more preferably 30 to 200 kg, still more preferably 40 to 170 kg, and particularly preferably 50 to 150 kg. When the added amount is 20 kg or more, the elution amount of heavy metals and the like (particularly the second type specific harmful substance) can be suppressed to a lower level, and the effect of insolubilization can be further enhanced. Moreover, a larger corn index can be obtained for the solidified body (treated mud). When the addition amount is 250 kg or less, an excessive increase in processing cost can be avoided.

固化不溶化材の添加方法の例としては、高分子凝集剤を含む泥土に、予め調製した固化不溶化材を添加する方法や、固化不溶化材を構成する各材料を別々に泥土に添加する方法(例えば、マグネシウム成分と金属塩の混合物と、カルシウム成分と金属塩の混合物を別々に泥土に添加する方法)等が挙げられる。
アニオン性高分子凝集剤および固化不溶化材を含む泥土の粉砕のために用いられる粉砕手段の好ましい例として、多軸ハンマー式混合機、竪型三軸クラッシャー等が挙げられる。また、泥土の含水比が低い場合には自走式破砕機を用いても良い。中でも、竪型三軸クラッシャーは、短時間で粉砕可能な点で、特に好ましい。
多軸ハンマー式混合機または竪型三軸クラッシャーを用いることによって、粉砕と混合を同時に行なうことができ、本発明の処理方法における処理の効率を高めることができる。
アニオン性高分子凝集剤および固化不溶化材を含む泥土の混合のために用いられる混合手段としては、バックホウ、各種のミキサ(例えば、強制撹拌型ミキサ、パン型ミキサ、パドルミキサ、ロータリーハンマミキサ、4軸直列混合式ミキサ等)等が挙げられる。
なお、泥土の粉砕手段として多軸ハンマー式混合機または竪型三軸クラッシャーを用いることによって、泥土と固化不溶化材の混合を十分に行える場合、多軸ハンマー式混合機または竪型三軸クラッシャーを、泥土の混合手段とみなして、その他の混合手段の使用を省略することができる。
粉砕と混合の順序は、混合の後に粉砕を行なってもよいし、粉砕の後に混合を行なってもよい。
Examples of the method of adding the solidified insolubilizing material include a method of adding a solidified insolubilizing material prepared in advance to mud containing a polymer flocculant, and a method of adding each material constituting the solidified insolubilizing material separately to the mud (for example, , A method of adding a mixture of a magnesium component and a metal salt and a mixture of a calcium component and a metal salt separately to the mud).
Preferable examples of the pulverizing means used for pulverizing the mud containing the anionic polymer flocculant and the solidified insolubilizing material include a multi-axis hammer mixer, a vertical triaxial crusher and the like. Moreover, when the moisture content of the mud is low, a self-propelled crusher may be used. Among these, the vertical triaxial crusher is particularly preferable because it can be pulverized in a short time.
By using a multi-shaft hammer mixer or a vertical triaxial crusher, pulverization and mixing can be performed simultaneously, and the processing efficiency in the processing method of the present invention can be increased.
The mixing means used for mixing the mud containing the anionic polymer flocculant and the solidified insolubilizing material includes a backhoe, various mixers (for example, forced stirring mixer, pan mixer, paddle mixer, rotary hammer mixer, 4-axis A serial mixing type mixer, etc.).
If the mud and the solidified insolubilized material can be sufficiently mixed by using a multi-shaft hammer mixer or vertical triaxial crusher as the means for pulverizing the mud, use a multi-shaft hammer mixer or vertical triaxial crusher. It can be regarded as a mud mixing means and the use of other mixing means can be omitted.
The order of pulverization and mixing may be pulverization after mixing or may be mixed after pulverization.

上記粉砕は、アニオン性高分子凝集剤および固化不溶化材を含む泥土の50%通過質量百分率が7mm以下、好ましくは5mm以下、より好ましくは4mm以下、さらに好ましくは3mm以下、特に好ましく2mm以下になるまで行なわれる。該率が7mm以下であれば、固化体(処理済みの泥土)について、大きなコーン指数を得ることができ、固化体(処理済みの泥土)からの有害物質(重金属等)の溶出量を小さくすることができる。
また、上記粉砕は、アニオン性高分子凝集剤および固化不溶化材を含む泥土の80%通過質量百分率が、好ましくは38mm以下、より好ましくは20mm以下、さらに好ましくは16mm以下、さらに好ましくは10mm以下、特に好ましくは5mm以下になるまで行なわれる。該率が38mm以下であれば、固化体(処理済みの泥土)について、より大きなコーン指数を得ることができ、固化体(処理済みの泥土)からの有害物質の溶出量をより小さくすることができる。
なお、「50%通過質量百分率」または「80%通過質量百分率」とは、アニオン性高分子凝集剤および固化不溶化材を含む泥土について、「JIS A 1204(2009)」(土の粒度試験方法)に準拠して粒径加積曲線を作成した場合における、該曲線から得られる「通過質量百分率が50%である上記泥土の粒径」または「通過質量百分率が80%である上記泥土の粒径」をいう。
In the pulverization, the 50% passing mass percentage of the mud containing the anionic polymer flocculant and the solidified insolubilizing material is 7 mm or less, preferably 5 mm or less, more preferably 4 mm or less, further preferably 3 mm or less, and particularly preferably 2 mm or less. Is done. When the rate is 7 mm or less, a large cone index can be obtained for the solidified body (treated mud), and the amount of toxic substances (heavy metal, etc.) eluted from the solidified body (treated mud) is reduced. be able to.
Further, in the above pulverization, the 80% passing mass percentage of the mud containing the anionic polymer flocculant and the solidified insolubilizing material is preferably 38 mm or less, more preferably 20 mm or less, further preferably 16 mm or less, more preferably 10 mm or less, Especially preferably, it is performed until it becomes 5 mm or less. If the rate is 38 mm or less, a larger cone index can be obtained for the solidified body (treated mud), and the amount of toxic substances eluted from the solidified body (treated mud) can be reduced. it can.
“50% passing mass percentage” or “80% passing mass percentage” means “JIS A 1204 (2009)” (soil particle size test method) for mud containing an anionic polymer flocculant and a solidified insolubilizing material. In the case where a particle size accumulation curve is prepared in accordance with the above, the “particle size of the mud having a passing mass percentage of 50%” or “the particle size of the mud having a passing mass percentage of 80% obtained from the curve is obtained. ".

固化不溶化材添加工程で得られる処理済みの泥土(固化体)は、好ましくは、土壌汚染対策法(平成15年)における第二種特定有害物質の土壌溶出量基準を満たすものである。
ここで、第二種特定有害物質の土壌溶出量は、平成15年3月6日環境省告示第18号「土壌溶出量調査に係る測定方法を定める件」に記載されている方法を用いて、溶出検液を作成し、「JIS K 0102(2013)」に準じて測定することができる。
また、固化不溶化材添加工程で得られる処理済みの泥土(固化体)は、好ましくは、その溶出検液のpHが5.8〜8.6の範囲内となるものである。
ここで、処理済みの泥土の溶出検液のpHは、「JIS K 0102(2013) 12.1 ガラス電極法」に準拠して測定することができる。
The treated mud soil (solidified body) obtained in the solidified insolubilizing material addition step preferably satisfies the soil elution standard for the second type specified hazardous substance in the Soil Contamination Countermeasures Law (2003).
Here, the amount of soil leaching of Class II Specified Hazardous Substances was determined using the method described in the Ministry of the Environment Notification No. 18 “Matters for Measuring Soil Elution Amount” on March 6, 2003. Then, an elution test solution can be prepared and measured according to “JIS K 0102 (2013)”.
Further, the treated mud soil (solidified body) obtained in the solidified insolubilizing material adding step preferably has a pH of the elution test solution in the range of 5.8 to 8.6.
Here, the pH of the treated mud elution test solution can be measured according to “JIS K 0102 (2013) 12.1 Glass Electrode Method”.

処理済みの泥土(固化体)のコーン指数は、固化不溶化材添加工程の終了時から6時間経過後の時点における値として、好ましくは400kN/m以上、より好ましくは420kN/m以上、さらに好ましくは460kN/m以上、特に好ましくは500kN/m以上である。
なお、コーン指数が400kN/m以上であれば、処理済みの泥土の運搬が容易となる。
ここで、コーン指数は、「JIS A 1210(2009)」(突固めによる土の締固め試験方法)に準拠して、供試体(未処理の泥土)を作製した後、この供試体についての固化不溶化材添加工程の混合の終了時から6時間経過後の時点で、「JIS A 1228(2009)」(締固めた土のコーン指数試験方法)に準拠して、測定することができる。
Cone index of treated mud (solidified) as the value at a later point in time 6 hours from the time of completion of the solidification insolubilized material addition step, preferably 400 kN / m 2 or more, more preferably 420kN / m 2 or more, further Preferably it is 460 kN / m 2 or more, particularly preferably 500 kN / m 2 or more.
If the cone index is 400 kN / m 2 or more, the treated mud can be easily transported.
Here, the corn index is measured according to “JIS A 1210 (2009)” (a method for testing soil compaction by tamping), and after preparing a specimen (untreated mud), solidification of the specimen. It can be measured in accordance with “JIS A 1228 (2009)” (cone index test method for compacted soil) after 6 hours from the end of mixing in the insolubilizing material addition step.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
使用材料は、以下に示すとおりである。
(a)泥土:起泡剤(太平洋シールドメカニクス社製;商品名「TS−foam」)を用いて気泡注入率(泥土の全体積中の気泡の体積の割合)を30%に調整した表1に示す泥土
(b)アニオン性高分子凝集剤:逆相エマルション型アニオン性ポリアクリルアミド(太平洋シールドメカニクス社製、商品名「SP−α」)
(c)固化不溶化材A〜E:表2に示す各材料からなるもの
(d)マグネシウム含有物:マグネサイト(炭酸マグネシウムの含有率が90質量%以上のもの)を890℃で30分間、電気炉(中外エンジニアリング社製、型式「KSL−2」)を用いて焼成して軽焼マグネシアを得た後、該軽焼マグネシアをボールミルで粉砕し、ブレーン比表面積が6100cm/gとなるように粒度調整したもの
なお、上記マグネシウム含有物は、固化不溶化材の好ましい一例である上述の(1)〜(3)の条件をすべて満たすマグネシウム含有物に該当するものである。また、表2中のカルシウム成分(消石灰)は、固化不溶化材の好ましい一例である上述の(4)の条件を満たすカルシウム含有物に該当するものである。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[Materials used]
The materials used are as shown below.
(A) Mud: Table 1 in which the foam injection rate (ratio of the volume of bubbles in the entire volume of mud) was adjusted to 30% using a foaming agent (trade name “TS-foam” manufactured by Taiheiyo Shield Mechanics Co., Ltd.) (B) Anionic polymer flocculant: reverse phase emulsion type anionic polyacrylamide (trade name “SP-α” manufactured by Taiheiyo Shield Mechanics Co., Ltd.)
(C) Solidified and insolubilized materials A to E: Each material shown in Table 2 (d) Magnesium-containing material: magnesite (magnesium carbonate content of 90% by mass or more) at 890 ° C. for 30 minutes. After firing using a furnace (model “KSL-2” manufactured by Chugai Engineering Co., Ltd.) to obtain light-burned magnesia, the light-burned magnesia is pulverized with a ball mill so that the specific surface area of the brain is 6100 cm 2 / g. Particle size adjusted In addition, the said magnesium containing material corresponds to the magnesium containing material which satisfy | fills all the conditions of above-mentioned (1)-(3) which is a preferable example of a solidification insolubilization material. Moreover, the calcium component (slaked lime) in Table 2 corresponds to a calcium-containing material that satisfies the above condition (4), which is a preferable example of the solidified and insolubilized material.

Figure 0006009118
Figure 0006009118

Figure 0006009118
Figure 0006009118

[実施例1〜8、比較例1〜3]
上記泥土(処理対象物)に表4に示す量の上記アニオン性高分子凝集剤を添加し、強制撹拌型ミキサとして、大平洋機工社製の「強制2軸ミキサ(SD−100)」を使用して、5分間混合し、高分子凝集剤を含む泥土を得た。次いで、この泥土に、表4に示す種類及び量の固化不溶化材を添加し、表3および4に示す粉砕条件(粉砕機および該粉砕機の回転数)で、1〜3秒間、粉砕および混合の処理を行なった。
処理後の泥土について、「JIS A 1204(2009)」(土の粒度試験方法)に準拠して粒径加積曲線を作成し、該曲線から50%通過質量百分率および80%通過質量百分率を得た。
また、表3に示す多軸ハンマー式混合機としては、奥多摩工業社製の「多軸回転ハンマー式混合機(S−4R型)」を使用し、竪型三軸クラッシャーとしては、冨士機社製の「マルチクラッシャー(BB−50)」を使用し、回転数を変化させて粉砕後の粒度分布を変化させた。
粉砕後の泥土には、固化不溶化材が均一に混合していたため、その後の混合工程は省略した。
[Examples 1-8, Comparative Examples 1-3]
The amount of the anionic polymer flocculant shown in Table 4 is added to the mud (treatment object), and a “forced biaxial mixer (SD-100)” manufactured by Taihei Koki Co., Ltd. is used as a forced stirring mixer. And mixed for 5 minutes to obtain a mud containing a polymer flocculant. Subsequently, the solidified insolubilizing material of the type and amount shown in Table 4 was added to the mud, and pulverized and mixed for 1 to 3 seconds under the pulverizing conditions shown in Tables 3 and 4 (the pulverizer and the rotational speed of the pulverizer). Was processed.
Concerning the mud after the treatment, a particle size accumulation curve is prepared according to “JIS A 1204 (2009)” (soil particle size test method), and 50% passing mass percentage and 80% passing mass percentage are obtained from the curve. It was.
In addition, as the multi-axis hammer type mixer shown in Table 3, a “multi-axis rotary hammer type mixer (S-4R type)” manufactured by Okutama Kogyo Co., Ltd. is used. “Multi-crusher (BB-50)” made by the manufacturer was used, and the rotational speed was changed to change the particle size distribution after pulverization.
Since the solidified and insolubilized material was uniformly mixed in the crushed mud, the subsequent mixing step was omitted.

なお、固化不溶化材A〜C、Eは、各材料(金属硫酸塩、マグネシウム成分等)を事前に混合しておき、該混合物(固化不溶化材)を処理対象物に添加することによって用いた。固化不溶化材Dは、硫酸アルミニウムとマグネシウム含有物を事前に混合しておき、該混合物とポリ塩化アルミニウムをそれぞれほぼ同時に処理対象物に添加することによって用いた。
処理済みの泥土について、上述の方法を用いて、コーン指数(固化不溶化材添加工程の終了から6時間後の値)、有害物質(ふっ素およびひ素)の土壌溶出量、および、溶出検液のpHを測定した。なお、測定は10個の検体について行い、その平均値を測定結果とした。結果を表3、4に示す。
The solidified insolubilized materials A to C and E were used by previously mixing each material (metal sulfate, magnesium component, etc.) and adding the mixture (solidified insolubilized material) to the object to be treated. The solidified insolubilizing material D was used by previously mixing aluminum sulfate and a magnesium-containing material, and adding the mixture and polyaluminum chloride to the object to be treated almost simultaneously.
For the treated mud, using the above-mentioned method, the corn index (value after 6 hours from the end of the solidification and insolubilization material addition step), the amount of soil elution of harmful substances (fluorine and arsenic), and the pH of the elution test solution Was measured. The measurement was performed on 10 specimens, and the average value was used as the measurement result. The results are shown in Tables 3 and 4.

Figure 0006009118
Figure 0006009118

Figure 0006009118
Figure 0006009118

表4から、実施例1〜8では、短時間(6時間)で423kN/m以上のコーン指数が得られているため、処理済みの泥土の取扱い(運搬等)が容易になり、かつ、埋立処分場等への処理済みの泥土の運搬等を早期に始めることができる。
また、実施例1〜8では、ふっ素およびひ素の土壌溶出量は、土壌溶出量基準値を満たしていることがわかる。
さらに、実施例1〜8では、溶出検液のpHが6.3〜7.4であり、排出基準値である5.8〜8.6を満たしていることがわかる。
一方、比較例1〜3では、コーン指数が364kN/m以下であり、実施例1〜8に比べて、非常に小さいことがわかる。
また、比較例1〜3では、ふっ素およびひ素の土壌溶出量は、土壌溶出量基準値を満たしていないことがわかる。
From Table 4, in Examples 1-8, since a cone index of 423 kN / m 2 or more is obtained in a short time (6 hours), handling (transportation, etc.) of the treated mud becomes easy, and Transport of treated mud to landfill site etc. can be started early.
Moreover, in Examples 1-8, it turns out that the soil elution amount of a fluorine and arsenic is satisfy | filling the soil elution amount reference value.
Furthermore, in Examples 1-8, it turns out that pH of an elution test solution is 6.3-7.4, and satisfy | fills the discharge | emission reference value 5.8-8.6.
On the other hand, in Comparative Examples 1 to 3, the cone index is 364 kN / m 2 or less, which is very small compared to Examples 1 to 8.
Moreover, in Comparative Examples 1-3, it turns out that the soil elution amount of fluorine and arsenic does not satisfy the soil elution amount reference value.

Claims (10)

気泡シールド工法で発生する泥土に、カチオン性高分子凝集剤を添加することなく、アニオン性高分子凝集剤を添加して混合し、高分子凝集剤を含む泥土を得る凝集剤添加工程、および、
上記高分子凝集剤を含む泥土に、固化作用を有するマグネシウム成分および/またはカルシウム成分、並びに、金属硫酸塩と金属塩化物の中から選ばれる少なくとも1種からなる金属塩を含む固化不溶化材を添加して、粉砕および混合の処理を行ない、処理済みの泥土を形成させる固化不溶化材添加工程、
を含む、気泡シールド工法で発生する泥土の処理方法であって、
上記固化不溶化材添加工程における粉砕が、上記高分子凝集剤および固化不溶化材を含む泥土の50%通過質量百分率が7mm以下になるまで行なわれることを特徴とする気泡シールド工法で発生する泥土の処理方法。
Without adding a cationic polymer flocculant to the mud generated by the bubble shield method, an anionic polymer flocculant is added and mixed to obtain a mud containing a polymer flocculant; and
Addition of solidification and insolubilization material containing magnesium and / or calcium components having solidification action and at least one metal salt selected from metal sulfate and metal chloride to mud containing the polymer flocculant Then, the solidification and insolubilization material addition process for performing the processing of pulverization and mixing, and forming the processed mud,
A method for treating mud generated by the bubble shield method,
Treatment of mud generated in the bubble shield method, characterized in that the crushing in the solidified insolubilizing material adding step is carried out until the 50% passing mass percentage of the mud containing the polymer flocculant and the solidified insolubilized material becomes 7 mm or less. Method.
上記固化不溶化材添加工程における粉砕が、上記高分子凝集剤および固化不溶化材を含む泥土の80%通過質量百分率が38mm以下になるまで行なわれる請求項1に記載の泥土の処理方法。   The method for treating mud according to claim 1, wherein the pulverization in the solidified insolubilizing material adding step is performed until the 80% passing mass percentage of the mud containing the polymer flocculant and the solidified insolubilized material becomes 38 mm or less. 上記固化不溶化材添加工程における粉砕および混合の処理が、多軸ハンマー式混合機または竪型三軸クラッシャーを用いて行なわれる請求項1又は2に記載の泥土の処理方法。   The method for treating mud according to claim 1 or 2, wherein the pulverization and mixing treatment in the solidified insolubilizing material addition step is performed using a multi-shaft hammer mixer or a vertical triaxial crusher. 上記アニオン性高分子凝集剤が、逆相エマルション型アニオン性ポリアクリルアミドを含む請求項1〜3のいずれか1項に記載の泥土の処理方法。   The method for treating mud according to any one of claims 1 to 3, wherein the anionic polymer flocculant contains a reverse phase emulsion type anionic polyacrylamide. 上記固化不溶化材が、上記マグネシウム成分として下記(1)〜(3)の条件をすべて満たすマグネシウム含有物、上記カルシウム成分として下記(4)の条件を満たすカルシウム含有物、並びに、上記マグネシウム成分およびカルシウム成分として下記(5)の条件を満たすマグネシウムとカルシウム含有物から選ばれる1種以上を、合計で上記金属塩100質量部当たり5〜50質量部の量で含む請求項1〜4のいずれか1項に記載の泥土の処理方法。
(1)炭酸マグネシウムおよび/または水酸化マグネシウムを主成分とする固形物を、650〜1000℃で焼成して得られる酸化マグネシウムを含むマグネシウム含有物、または、該マグネシウム含有物を部分的に水和させて生成した水酸化マグネシウムを一部に含むマグネシウム含有物
(2)1000℃における強熱減量率が、1.5〜12.0質量%であるマグネシウム含有物
(3)カルシウムの含有率が、CaO換算で3.0質量%以下であるマグネシウム含有物
(4)酸化カルシウムおよび/または水酸化カルシウムの含有率の合計が、CaO換算で70質量%以上であるカルシウム含有物
(5)マグネシウムの含有率が、MgO換算で5〜35質量%であり、カルシウムの含有率が、CaO換算で20〜50質量%であり、上記マグネシウムの含有率と上記カルシウムの含有率の合計が、50質量%以上であるマグネシウムとカルシウム含有物
The solidified and insolubilized material is a magnesium-containing material that satisfies the following conditions (1) to (3) as the magnesium component, a calcium-containing material that satisfies the following condition (4) as the calcium component, and the magnesium component and calcium: The component according to any one of claims 1 to 4, comprising one or more selected from magnesium and calcium-containing materials satisfying the following condition (5) as components in an amount of 5 to 50 parts by mass per 100 parts by mass of the metal salt. The method for treating mud according to the item.
(1) Magnesium-containing material containing magnesium oxide obtained by firing a solid material containing magnesium carbonate and / or magnesium hydroxide as a main component at 650 to 1000 ° C., or partially hydrated the magnesium-containing material Magnesium-containing product partially containing magnesium hydroxide produced (2) The ignition loss at 1000 ° C. is 1.5 to 12.0% by mass. Magnesium-containing product (3) The content of calcium is Magnesium-containing material that is 3.0% by mass or less in terms of CaO (4) Calcium-containing material in which the total content of calcium oxide and / or calcium hydroxide is 70% by mass or more in terms of CaO (5) Magnesium content The rate is 5 to 35% by mass in terms of MgO, and the calcium content is 20 to 50% by mass in terms of CaO. The total content and the content of the calcium magnesium is magnesium is not less than 50 wt% and the calcium-containing compound
上記固化不溶化材が、半水石膏、炭酸カルシウム含有物、珪石粉末、および砕石微粉末から選ばれる少なくとも1種からなる助材を含む請求項1〜5のいずれか1項に記載の泥土の処理方法。   The treatment of mud according to any one of claims 1 to 5, wherein the solidified and insolubilized material includes an auxiliary material composed of at least one selected from hemihydrate gypsum, a calcium carbonate-containing material, silica stone powder, and fine crushed stone powder. Method. 上記気泡シールド工法で発生する泥土が、土壌汚染対策法(平成15年)における第二種特定有害物質の土壌溶出量基準を満たさないものである請求項1〜6のいずれか1項に記載の泥土の処理方法。   The mud soil generated by the bubble shield construction method does not satisfy the soil elution amount standard of the second type specified harmful substance in the Soil Contamination Countermeasures Law (2003). How to treat mud. 上記処理済みの泥土の溶出検液のpHが、5.8〜8.6である請求項1〜7のいずれか1項に記載の泥土の処理方法。   The method for treating mud according to any one of claims 1 to 7, wherein a pH of the treated mud elution test solution is 5.8 to 8.6. 上記処理済みの泥土が、土壌汚染対策法(平成15年)における第二種特定有害物質の土壌溶出量基準を満たすものである請求項1〜8のいずれか1項に記載の泥土の処理方法。   The method for treating mud according to any one of claims 1 to 8, wherein the treated mud satisfies the soil elution amount standard of the second type specified harmful substance in the Soil Contamination Countermeasures Law (2003). . 上記気泡シールド工法で発生する泥土1m当たり、上記アニオン性高分子凝集剤の添加量が、0.1〜10kgであり、かつ、上記固化不溶化材の添加量が、20〜250kgである請求項1〜9のいずれか1項に記載の泥土の処理方法。 The added amount of the anionic polymer flocculant is 0.1 to 10 kg and the added amount of the solidified insolubilizing material is 20 to 250 kg per 1 m 3 of mud generated by the bubble shield method. The method for treating mud according to any one of 1 to 9.
JP2016149160A 2016-07-29 2016-07-29 Treatment method of mud generated by bubble shield method Active JP6009118B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016149160A JP6009118B1 (en) 2016-07-29 2016-07-29 Treatment method of mud generated by bubble shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149160A JP6009118B1 (en) 2016-07-29 2016-07-29 Treatment method of mud generated by bubble shield method

Publications (2)

Publication Number Publication Date
JP6009118B1 true JP6009118B1 (en) 2016-10-19
JP2018015731A JP2018015731A (en) 2018-02-01

Family

ID=57140259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149160A Active JP6009118B1 (en) 2016-07-29 2016-07-29 Treatment method of mud generated by bubble shield method

Country Status (1)

Country Link
JP (1) JP6009118B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084745B1 (en) * 2016-09-07 2017-02-22 太平洋セメント株式会社 Disposal method of mud generated by muddy water type shield method
CN112456832A (en) * 2020-12-09 2021-03-09 泰安燊豪化工有限公司 Treatment method of salt mud containing high calcium sulfate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6356933B1 (en) * 2018-04-09 2018-07-11 太平洋セメント株式会社 Disposal method of mud generated by muddy water type shield method
JP6416426B1 (en) * 2018-05-10 2018-10-31 テクニカ合同株式会社 Method for reforming foam mixed soil
JP7367487B2 (en) 2019-11-26 2023-10-24 住友大阪セメント株式会社 Solidification insolubilization neutral modifier for low fluidity mud and low fluidity mud modification method using the modifier
JP7277405B2 (en) * 2020-02-28 2023-05-18 宇部マテリアルズ株式会社 Neutral solidification material and soil treatment method
CN111365004B (en) * 2020-03-11 2022-01-25 中铁二局集团有限公司 Shield soil bin ventilation construction method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194891A (en) * 1989-01-24 1990-08-01 Kyoritsu Yuki Co Ltd Treatment of water containing surplus excavation soil
JPH10230296A (en) * 1997-02-18 1998-09-02 Seibutsu Kankyo Syst Kogaku Kenkyusho:Kk Granulating method of waste sludge and waste soil
JP2002282894A (en) * 2001-03-27 2002-10-02 Asahi Organic Chem Ind Co Ltd Agent and method for solidifying sludge
JP2005281345A (en) * 2004-03-26 2005-10-13 Nippon Shokubai Co Ltd Fluidity reducing agent and method for treating water-containing soil
JP2006265885A (en) * 2005-03-23 2006-10-05 Kurita Water Ind Ltd Treating method of construction sludge generated in cellular shield construction method
JP2007098317A (en) * 2005-10-06 2007-04-19 Ohbayashi Corp Insolubilization method of toxic material
JP2009028639A (en) * 2007-07-26 2009-02-12 Sumitomo Osaka Cement Co Ltd Sludge treatment method
JP2012177051A (en) * 2011-02-28 2012-09-13 Taiheiyo Cement Corp Material for treating heavy metal or the like

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194891A (en) * 1989-01-24 1990-08-01 Kyoritsu Yuki Co Ltd Treatment of water containing surplus excavation soil
JPH10230296A (en) * 1997-02-18 1998-09-02 Seibutsu Kankyo Syst Kogaku Kenkyusho:Kk Granulating method of waste sludge and waste soil
JP2002282894A (en) * 2001-03-27 2002-10-02 Asahi Organic Chem Ind Co Ltd Agent and method for solidifying sludge
JP2005281345A (en) * 2004-03-26 2005-10-13 Nippon Shokubai Co Ltd Fluidity reducing agent and method for treating water-containing soil
JP2006265885A (en) * 2005-03-23 2006-10-05 Kurita Water Ind Ltd Treating method of construction sludge generated in cellular shield construction method
JP2007098317A (en) * 2005-10-06 2007-04-19 Ohbayashi Corp Insolubilization method of toxic material
JP2009028639A (en) * 2007-07-26 2009-02-12 Sumitomo Osaka Cement Co Ltd Sludge treatment method
JP2012177051A (en) * 2011-02-28 2012-09-13 Taiheiyo Cement Corp Material for treating heavy metal or the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084745B1 (en) * 2016-09-07 2017-02-22 太平洋セメント株式会社 Disposal method of mud generated by muddy water type shield method
CN112456832A (en) * 2020-12-09 2021-03-09 泰安燊豪化工有限公司 Treatment method of salt mud containing high calcium sulfate

Also Published As

Publication number Publication date
JP2018015731A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6009118B1 (en) Treatment method of mud generated by bubble shield method
JP5757613B2 (en) Processing materials such as heavy metals
JP6084745B1 (en) Disposal method of mud generated by muddy water type shield method
JP5969099B1 (en) Treatment method of mud generated by bubble shield method
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP2007302885A (en) Insolubilizing agent for harmful substance
WO2010052986A1 (en) Insolubilizing agent
JP5315096B2 (en) Heavy metal insolubilization method and heavy metal insolubilization solidification material
JP7422071B2 (en) Heavy metal insolubilization solidification material and method for improving contaminated soil
JP6370074B2 (en) Soil reforming method
JP3706618B2 (en) Solidification / insolubilizer and solidification / insolubilization method for soil, incineration ash, coal ash, and gypsum board waste
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP7073088B2 (en) Soil reforming method
JP6338885B2 (en) Oil-contaminated soil solidification treatment material and solidification treatment method
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP2012046704A (en) Solidification material
JP4694434B2 (en) By-product processing method
JP4663999B2 (en) Soil neutral solidification material and soil neutral solidification improvement method
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JP6356933B1 (en) Disposal method of mud generated by muddy water type shield method
JP6675779B2 (en) Method for producing soil modifying material and method for modifying soil
JP4462853B2 (en) Neutral solidifying material for hydrous soil, soil heavy metal elution control method and dehydration method using the same
JP6046476B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP2016129869A (en) Insolubilization material and insolubilization slurry
JP5077777B2 (en) Elution reduction material and elution reduction treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160805

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160805

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6009118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250