WO2010052986A1 - Insolubilizing agent - Google Patents

Insolubilizing agent Download PDF

Info

Publication number
WO2010052986A1
WO2010052986A1 PCT/JP2009/067434 JP2009067434W WO2010052986A1 WO 2010052986 A1 WO2010052986 A1 WO 2010052986A1 JP 2009067434 W JP2009067434 W JP 2009067434W WO 2010052986 A1 WO2010052986 A1 WO 2010052986A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
insolubilizing
burned magnesia
insolubilizing material
component
Prior art date
Application number
PCT/JP2009/067434
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 松山
浩志 林
晃一 内田
宙 平尾
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Publication of WO2010052986A1 publication Critical patent/WO2010052986A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/33Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by chemical fixing the harmful substance, e.g. by chelation or complexation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/24Organic substances containing heavy metals
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state

Definitions

  • the present invention relates to an insolubilizing material capable of suppressing the elution of the heavy metal etc. from the contaminated soil containing the heavy metal etc. or insolubilizing the heavy metal etc. in the waste water containing the heavy metal etc.
  • Patent Document 1 a heavy metal elution suppression solidifying material containing magnesium oxide has been proposed (Patent Document 1). Further, a solidifying and insolubilizing agent for toxic substance-contaminated soil characterized by comprising MgO and / or a MgO-containing material has been proposed (Patent Document 2). Further, by adding and mixing magnesium oxide baked at 700 to 1,000 ° C. and adjusted to a fineness of 4,000 cm 2 / g or more to the contaminated soil, the contaminated soil is solidified, and the pollutant There has been proposed a method for solidifying and insolubilizing contaminated soil and the like (Patent Document 3).
  • a method of incorporating a material into a solidifiable binder comprising mixing the material with a binder as a slurry or for the formation of a subsequent slurry, wherein the binder is a source of caustic magnesium oxide.
  • a method including a step of adding a solidifying agent that promotes solidification of the binder to the slurry has been proposed (Patent Document 4).
  • Latent crystalline magnesia characterized by an angle of 0.5 ° has been proposed (Patent Document 5).
  • the effect elution suppression effect of heavy metals, etc.
  • the elution amount of heavy metals, etc. is set to a predetermined value (for example, environmental standard value) or less. Therefore, there is a problem that the amount of the insolubilizing material used is increased and the cost is increased. Further, in this case, there is a problem that the volume after the addition of the insolubilizing material is increased, and secondary measures are required.
  • an insolubilizing material that can sufficiently insolubilize heavy metals and the like with a small addition amount is desired. Then, an object of this invention is to provide the insolubilization material which can fully suppress elution of heavy metals etc. with little addition amount with respect to soil with high pollution density
  • the present inventor has found that the insolubilized material containing a specific light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia, The inventors have found that the object can be achieved and completed the present invention. That is, the present invention provides the following [1] to [8].
  • This light-burned magnesia partial hydrate has a magnesium oxide content of 50 to 96.5% by mass, a magnesium hydroxide content of 3.5 to 50% by mass, and contains calcium.
  • a light-solubilized magnesia partial hydrate having a rate of 5.0% by mass or less in terms of oxides.
  • the insolubilizing material of the present invention elution of heavy metals and the like can be sufficiently suppressed with a small amount of addition even to soil with high contamination concentration, heavy metal-containing dust such as incinerated ash, and the like.
  • heavy metals can be sufficiently insolubilized with a small addition amount with respect to waste water containing heavy metals. In this case, by separating the drainage into solid and liquid, it is possible to easily obtain a liquid component having a reduced content of heavy metals and the like, and to efficiently perform the drainage treatment.
  • the insolubilizing material of the present invention includes (A) light-burned magnesia partial hydrate as an essential component, and further includes other optional components as necessary.
  • other optional components include (B) a powder mainly composed of calcium carbonate, (C) one or more additives selected from water-soluble sulfates and water-soluble chlorides, and (D) gypsum. It is done.
  • (A) Light-burned magnesia partial hydrate used in the insolubilizing material of the present invention is a light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C. A part is hydrated.
  • powdered magnesia partial hydrate is usually used.
  • minerals mainly composed of magnesium carbonate include magnesite and dolomite.
  • the content of magnesium carbonate in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
  • minerals mainly composed of magnesium hydroxide include brucite.
  • the content of magnesium hydroxide in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
  • Light-burned magnesia contains magnesium oxide as a main component.
  • the light-burned magnesia partial hydrate obtained by partially hydrating light-burned magnesia used in the present invention contains magnesium hydroxide obtained by hydration and magnesium oxide in a specific ratio described later.
  • the firing temperature varies depending on the presence or absence of optional components other than the component (A), but is 550 to 1,400 ° C., preferably 650 to 1,000 ° C. When the temperature is less than 550 ° C., light-burned magnesia is difficult to be generated.
  • the calcination temperature is preferably 750 to 1,000 ° C., more preferably 860 to 950 ° C., and particularly preferably 870 to 920 ° C.
  • the firing temperature is preferably 750 to 900 ° C., more preferably 800 to 900 ° C., from the viewpoint of ease of formation of light-burned magnesia and an effect of suppressing elution of heavy metals. is there.
  • the content of magnesium oxide in the light-burned magnesia partial hydrate varies depending on the presence or absence of optional components other than the component (A), but is 50 to 96.5% by mass, preferably 60 to 95% by mass, More preferred is 70 to 95% by mass, and particularly preferred is 75 to 95% by mass.
  • the magnesium oxide content is preferably 60 to 95% by mass, more preferably 70 to 94% by mass, and particularly preferably 75 to 93% by mass.
  • the content of the magnesium oxide is preferably 65 to 96.5% by mass, more preferably 70 to 95% by mass, and particularly preferably 75 to 95% by mass.
  • the content of magnesium hydroxide in the light-burned magnesia partial hydrate varies depending on the presence or absence of optional components other than the component (A), but is 3.5 to 50% by mass, preferably 3.5 to 40%. % By mass, more preferably 5 to 30% by mass, particularly preferably 6 to 20% by mass.
  • the magnesium hydroxide content is preferably 4 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 6 to 20% by mass.
  • the magnesium hydroxide content is preferably 3.5 to 30% by mass, more preferably 5 to 20% by mass, and particularly preferably 7 to 17% by mass.
  • magnesium oxide When the content of magnesium oxide is less than 50% by mass or the content of magnesium hydroxide exceeds 50% by mass, the effect of insolubilization of heavy metals and the like decreases. On the other hand, when the content of magnesium oxide exceeds 96.5% by mass or the content of magnesium hydroxide is less than 3.5% by mass, particularly in soils highly contaminated with heavy metals, etc., heavy metals The effect which suppresses elution etc. falls.
  • the total content of calcium oxide and / or calcium hydroxide contained in the obtained light calcined magnesia partial hydrate is in terms of oxide in the light calcined magnesia partial hydrate (100% by mass). It is 5.0 mass% or less, preferably 4.0 mass% or less, more preferably 3.0 mass% or less, further preferably 2.5 mass% or less, and particularly preferably 2.0 mass% or less.
  • the content exceeds 5.0% by mass, the effect of suppressing elution of heavy metals and the like is reduced particularly in soils and the like highly contaminated with heavy metals and the like.
  • the light-burned magnesia partial hydrate is composed of other components (specifically, SiO 2 , Fe 2 O 3, etc.) other than the above components (MgO, Mg (OH) 2 , CaO, Ca (OH) 2 ). Impurities).
  • the content of other components is preferably 4.0% by mass or less, more preferably 3.0% by mass or less, and particularly preferably 2.5% by mass or less. When this content rate exceeds 4.0 mass%, the effect which suppresses elution of heavy metals etc. may fall.
  • each component magnesium oxide, magnesium hydroxide, and calcium
  • the content of each component (magnesium oxide, magnesium hydroxide, and calcium) in the obtained light-burned magnesia partial hydrate is within the above specific range.
  • (1) A method of adding water to light-burned magnesia and mixing
  • (2) A method of holding light-burned magnesia in an environment having a relative humidity of 80% or more for one week or more.
  • the hydration reaction may be carried out after mixing with other components (for example, powder containing calcium carbonate as the main component (B)).
  • the Blaine specific surface area of the light magnesia constituting the insolubilized material of the present invention is preferably 2,500 to 20,000 cm 2 / g, more preferably 4,800 to 10,000 cm 2 / g, and still more preferably 5,200. It is ⁇ 8,000 cm 2 / g, particularly preferably 5,500 to 6,500 cm 2 / g.
  • the effect of suppressing elution of heavy metals and the like can be enhanced, and in particular, elution can be suppressed in a small amount even for soils and the like where elution of heavy metals and the like is large. be able to.
  • the Blaine specific surface area is 8,000 cm 2 / g or less, addition in a difficult slurry becomes possible when the Blaine specific surface area exceeds 8,000 cm 2 / g.
  • (B) Powder mainly composed of calcium carbonate For the insolubilizing material of the present invention, (B) a powder mainly composed of calcium carbonate can be used as an optional component. (B) Although it does not specifically limit as powder which has calcium carbonate as a main component, for example, calcium carbonate powder for industrial use, calcium carbonate powder of a reagent, limestone powder, crushed shell of shellfish containing calcium carbonate as a main component, coral A pulverized product or the like can be used. Among these, limestone powder is preferably used from the viewpoint of cost. (B) The content rate of the calcium carbonate in a component becomes like this.
  • the component (B) is used in the process of producing the insolubilized material of the present invention (i) an average particle diameter of 1 to 20 mm (preferably 2 to 10 mm), or (ii) a specific surface area of Blaine of 3,000 to 7,000 cm 2 / The particle size is preferably adjusted so as to be g (preferably 4,000 to 6,000 cm 2 / g).
  • component (i) it is preferable to mix with light-burned magnesia (component (A) before hydration) and pulverize these two materials at the same time, and then subject to hydration, and (ii) In the case of, it is preferable to mix with lightly-burned magnesia whose particle size has been adjusted and then subjected to hydration.
  • Component (B) is blended in an amount of 20 to 70 parts by weight, preferably 25 to 60 parts by weight, more preferably 30 to 50 parts by weight per 100 parts by weight of component (A).
  • the blending amount is less than 20 parts by mass, the elution suppressing effect of heavy metals and the like may be lowered depending on the properties of the component (A).
  • the said compounding quantity exceeds 70 mass parts, the ratio of the (A) component in an insolubilization material falls in connection with it, and the elution inhibitory effect of heavy metals etc. falls.
  • the insolubilizing material of the present invention containing the component (A) and the component (B) can be obtained, for example, by the following methods (a) to (c).
  • a step of hydrating the pulverized product of the mixture to obtain an insolubilized material containing a powder composed of light-burned magnesia partial hydrate and a powder mainly composed of calcium carbonate.
  • the method (a) or (b) is preferred, and the method (a) is more preferred.
  • the light-burned magnesia before pulverization preferably has a particle size of 1 ⁇ m to 50 mm.
  • the calcium carbonate-containing material before pulverization preferably has a particle size of 1 ⁇ m to 50 mm, and more preferably 2 ⁇ m to 20 mm.
  • a light-burned magnesia having a particle size of 1 ⁇ m to 50 mm and a calcium carbonate-containing material having a particle size of 1 ⁇ m to 50 mm are pulverized simultaneously, and the Blaine specific surface area of a pulverized product made of a mixture of these two materials is 2
  • the Blaine specific surface area of a pulverized product made of a mixture of these two materials is 2
  • 500 to 7,000 cm 2 / g preferably 4,500 to 7,000 cm 2 / g, more preferably 5,000 to 6,500 cm 2 / g
  • the ratio of the second peak (frequency%) / first peak (frequency%) is preferably 2 to 4. Further, in the method (a), the light-burned magnesia and the calcium carbonate-containing material are pulverized at the same time, so that the work is simpler than the method (b) or (c) in which these are pulverized separately.
  • the light-burned magnesia preferably has a Blaine specific surface area of 2,500 to 7,000 cm 2 / g, more preferably 4,500 to 7,000 cm 2 / g, particularly Preferably, it is pulverized to 5,000 to 6,500 cm 2 / g.
  • the calcium carbonate-containing material is pulverized so that the specific surface area of branes is preferably 3,000 to 7,000 cm 2 / g, more preferably 4,000 to 6,000 cm 2 / g.
  • the insolubilized material having the above-mentioned preferred particle size configuration can be obtained by mixing the light-burned magnesia pulverized product (or its partially hydrated product) having such a specific surface area with the calcium carbonate-containing pulverized product.
  • the calcium carbonate-containing material already has the above-mentioned Blaine specific surface area, it can be used as it is without being pulverized.
  • the insolubilizing material of this invention can contain the 1 or more types of additive chosen from (C) water-soluble sulfate and water-soluble chloride as needed.
  • the component (A) and the component (B) are used in combination, the effect of suppressing elution of heavy metals and the like can be further improved by adding the component (C).
  • the water-soluble sulfate include powders of ferrous sulfate (iron (II) sulfate), aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate and the like.
  • water-soluble chlorides include ferrous chloride (iron (II) chloride) and ferric chloride (iron (III) chloride). These can be used individually by 1 type or in combination of 2 or more types. Furthermore, these may be used in the form of powder or in the form of an aqueous solution.
  • Compounding amount of component (C) (However, when used as an aqueous solution, it is an amount in terms of solid content. When it is a hydrate, it is based on the mass excluding hydration water. The same applies hereinafter.) Is sufficiently 5% by mass or more in 100% by mass of the entire insolubilized material in order to sufficiently improve the elution suppression effect of heavy metals and the like.
  • the compounding amount of the component (C) is 30% by mass or less in 100% by mass of the entire insolubilized material from the viewpoint that the elution suppressing effect of heavy metals and the like is not improved even if the compounding amount is too large. It is preferable that the content is 25% by mass or less.
  • the particle size of this powder is although it does not specifically limit, From viewpoints of workability
  • the mixture of (A) component or (A) component and (B) component, and (C) component can also be added separately to object soil.
  • the insolubilizing material of the present invention can contain gypsum when it is added to granular or powdery solids such as soil and incinerated fly ash.
  • gypsum By including an appropriate amount of gypsum, the solidification strength of a granular or powdery solid can be increased.
  • the solidification strength can be evaluated by measuring uniaxial compressive strength. Examples of gypsum include anhydrous gypsum, dihydrate gypsum, and hemihydrate gypsum.
  • the blending amount of gypsum is preferably 50 parts by mass or less, more preferably 3 to 35 parts by mass, and still more preferably 8 to 30 parts by mass in terms of anhydride with respect to 100 parts by mass of light-burned magnesia partial hydrate. Particularly preferred is 12 to 25 parts by mass.
  • amount of gypsum exceeds 50 parts by mass, not only the solidification strength is lowered, but also the effect of suppressing elution of heavy metals and the like is lowered.
  • the brane specific surface area of the gypsum constituting the insolubilizing material of the present invention is preferably 3,000 to 8,000 cm 2 / g, more preferably 3,500 to 6,500 cm 2 / g, still more preferably 4,000 to 6 000 cm 2 / g, particularly preferably 4,500 to 5,500 cm 2 / g.
  • the effect of suppressing elution of heavy metals and the like can be enhanced, and in particular, elution can be suppressed in a small amount even for soils and the like where elution of heavy metals and the like is large. be able to.
  • gypsum already has the said Blaine specific surface area, it can use as it is, without grind
  • the Blaine specific surface area of the insolubilized material is more preferably 4,800 to 10,000 cm 2 / g, further preferably 5,200 to 8,000 cm 2 / g, particularly preferably 5,500 to 6,500 cm 2 / g. is there.
  • the n value in the Rosin-Rammler equation is more preferably 0.90 to 1.30, particularly preferably 0.95 to 1.20.
  • the n value in the Rosin-Rammler equation and the average particle size described later can be measured using, for example, Nikkiso Co., Ltd. 9320-X10 (particle size distribution measuring device).
  • 0.05 g of a sample is added to 20 ml of dispersion medium ethanol contained in a 100 ml beaker, and ultrasonic dispersion is performed for 1 minute using an ultrasonic cleaning machine (VS-100, frequency 50 kHz) manufactured by ASONE. Measurement will be performed later. The measurement is performed under the condition that the refractive index of the sample is 1.72. Moreover, the preferable numerical range of the n value in the Blaine specific surface area of the insolubilized material of the present invention and the Rosin-Rammler formula is determined by excluding the component (C).
  • the insolubilizing material of the present invention containing the component (A) and the component (B) preferably has an average particle size of 20 to 40 ⁇ m, more preferably 25 to 35 ⁇ m.
  • the average particle size of the insolubilized material is within the above range, the effect of suppressing elution of heavy metals, etc. can be enhanced. Can be suppressed.
  • the term “average particle size” means a 50% mass cumulative particle size.
  • the first peak is preferably in the range of 1 to 5 ⁇ m
  • the second peak is preferably in the range of 20 to 50 ⁇ m.
  • the insolubilizing material of the present invention can be obtained, for example, by the following method (a) when it comprises only the component (A) (lightly burned magnesia partial hydrate).
  • a method comprising a step of pulverizing light-burned magnesia to obtain a pulverized product having a predetermined particle size, and a step of hydrating the pulverized product to obtain a powder comprising light-burned magnesia partial hydrate.
  • the insolubilizing material of the invention comprises only the component (A) (lightly burned magnesia partial hydrate) and the component (D) (gypsum), it is obtained, for example, by any of the following methods (b) to (d): .
  • a process comprising: obtaining a mixture comprising a powder comprising light-burned magnesia partial hydrate and gypsum powder; and (c) pulverizing the light-burned magnesia to obtain a light-burned magnesia pulverized product having a predetermined particle size.
  • the light baking A step of obtaining a powder comprising light-burned magnesia partial hydrate by hydrating a pulverized gnesia, a step of obtaining gypsum powder having a predetermined particle size by pulverizing gypsum, and the light-burning magnesia partial hydration
  • a method comprising mixing a powder composed of a product and the gypsum powder to obtain a mixture thereof, and among these methods (b) to (d), an effect of suppressing elution of heavy metals and the like, And from the viewpoint of workability, the method (b) or (c) is preferable, and the method (b) is more preferable.
  • the light-burned magnesia before pulverization preferably has a particle size of 1 ⁇ m to 50 mm.
  • the gypsum before pulverization preferably has a particle size of 1 ⁇ m to 100 mm, and more preferably 2 ⁇ m to 50 mm.
  • the addition amount of the insolubilizing material of the present invention when used as an additive to a granular or powdered solid material (for example, soil, incineration ash, etc.), the properties of the addition object, construction conditions, the elution amount and addition of heavy metals, etc.
  • a granular or powdered solid material for example, soil, incineration ash, etc.
  • 50 to 400 kg is preferable, more preferably 100 to 350 kg, per 1 m 3 of a granular or powdery solid.
  • the amount is less than 50 kg, the effect of suppressing elution of heavy metals and the like is insufficient.
  • the amount exceeds 400 kg the improvement effect of elution of heavy metals and the like reaches a peak, and the volume after treatment increases and the treatment cost also increases.
  • the method for adding the insolubilizing material dry addition in which the insolubilizing material is added and mixed in powder form, or slurry addition in which water is added and mixed as a slurry can be employed.
  • the water / insolubilized material mass ratio in the case of slurry addition is preferably 0.5 to 1.5, more preferably 0.8 to 1.2.
  • the insolubilizing material of the present invention is particularly preferably used for soil, but other than soil, for example, sewage sludge incineration ash, chicken manure incineration ash, papermaking sludge incineration ash, incineration ash such as coal incineration ash, incinerator
  • soil for example, sewage sludge incineration ash, chicken manure incineration ash, papermaking sludge incineration ash, incineration ash such as coal incineration ash, incinerator
  • dust such as incinerated fly ash collected by dust collecting means such as bag filters and electric dust collectors from exhaust gas, and for particulate solids such as tunnel sludge, concrete glass and slag contaminated by heavy metals Can be used.
  • the amount of the insolubilizing material of the present invention when used as an additive to waste water, depends on the properties of the object to be added and the construction conditions, the amount of elution of heavy metals, the required performance of the object to be added, etc.
  • the amount is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 4 parts by mass, and particularly preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the waste water. If the amount is less than 0.1 parts by mass, the effect of suppressing elution of heavy metals in the waste water is insufficient. When the amount exceeds 10 parts by mass, the improvement effect of the elution of heavy metals in the wastewater reaches its peak, and the processing cost increases.
  • a pulverized product of 2 / g was obtained.
  • the obtained pulverized product is stored in a storage room with a relative humidity of 100% for 10 days to hydrate part of the light-burned magnesia, and the powder (component (A)) comprising the light-burned magnesia partial hydrate Insolubilized material A containing powder (component (B)) containing calcium carbonate as a main component was obtained.
  • the frequency distribution curve of the particle size for the insolubilized material A has a first peak of 1.5 ⁇ m and a second peak of 30 ⁇ m, a frequency of the first peak of 1%, a frequency of the second peak of 3%, and a second peak ( The ratio of (frequency%) / first peak (frequency%) was 3.
  • Insolubilized material B Insolubilized material B was obtained in the same manner as insolubilized material A except that the hydration condition was changed to 20 days in a storage room at 100% relative humidity.
  • the frequency distribution curve of the particle size for the insolubilized material B has a first peak of 1.5 ⁇ m and a second peak of 30 ⁇ m, a frequency of the first peak of 1%, a frequency of the second peak of 3%, and a second peak ( The ratio of (frequency%) / first peak (frequency%) was 3.
  • Magnesite magnesium carbonate content: 97% by mass
  • Insolubilized material D Insolubilized material D was obtained in the same manner as insolubilized material A except that the hydration conditions were changed to 20 days in a storage room with a relative humidity of 60%.
  • Insolubilized material E (A) Same as insolubilized material A except that magnesite (calcium content: 5.2% by mass in terms of oxide) having a higher calcium content than insolubilized material A was used as the raw material of component (A). Insolubilized material E was obtained.
  • Insolubilized material F Magnesite (magnesium carbonate content: 97% by mass) was calcined at 850 ° C. to obtain light calcined magnesia.
  • the obtained mixture was pulverized to obtain a Brain ratio.
  • a pulverized product having a surface area of 5,500 cm 2 / g was obtained.
  • the obtained pulverized product and magnesium hydroxide were mixed to obtain an insolubilizing material H.
  • Insolubilized material A-1 Ferrous sulfate monohydrate (particle size: 0.1 to 0.3 mm) was added to the insolubilized material A to obtain insolubilized material A-1.
  • the ratio of ferrous sulfate is 10% by mass in 100% by mass of the entire insolubilized material A-1.
  • Insolubilized material A-2) Ferrous sulfate monohydrate (particle size: 0.1 to 0.3 mm) was added to the insolubilized material A to obtain an insolubilized material A-2.
  • the ratio of ferrous sulfate is 20% by mass in 100% by mass of the entire insolubilized material A-2.
  • Insolubilized material A-3 Aluminum sulfate anhydrous salt (particle size: 30 to 60 ⁇ m) was added to the insolubilized material A to obtain an insolubilized material A-3. The proportion of aluminum sulfate in 10% by mass of the entire insolubilized material A-3 is 10% by mass.
  • Insolubilized material A-4) Aluminum sulfate anhydrous salt (particle size: 30 to 60 ⁇ m) was added to the insolubilized material A to obtain an insolubilized material A-4. The proportion of aluminum sulfate is 20% by mass in 100% by mass of the entire insolubilized material A-4.
  • Example 1 to 3 Comparative Examples 1 to 4
  • Example 3 Using the insolubilizing materials A to F (Examples 1 to 3, Comparative Examples 1 to 2 and 4) or without using the insolubilizing materials (Comparative Example 3), the following elution tests 1 to 4 for heavy metals and the like were performed. went. The results are shown in Table 1. Further, for each insolubilized material, the component composition, Blaine specific surface area, n value of rosin-Rammler formula, and average particle diameter were determined by the following methods. These are shown together in Table 1.
  • the environmental standard value of fluorine is 0.8 mg / liter.
  • (Elution test for heavy metals 3; Lead elution test) The amount of insolubilized material shown in Table 1 was added to lead-contaminated soil (water content: 70%), and the amount of lead elution from the improved soil on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 did.
  • the environmental standard value for lead is 0.01 mg / liter.
  • Example 4 to 11 Using the insolubilized materials A-1 to A-8, the elution tests 1, 2, and 4 (elution test for arsenic, fluorine, hexavalent chromium) of heavy metals and the like were performed in the same manner as in Example 1. The results are shown in Table 2.
  • Examples 12 to 14, Comparative Example 5 Elution tests 1 to 4 for heavy metals were conducted with insolubilizing materials A, A-1, and A-5 added to incinerated ash containing heavy metals, or without adding the insolubilizing materials. The test method is the same as in Example 1. The results are shown in Table 3.
  • Comparative Example 1 in which hydration is insufficient and the content of magnesium hydroxide is outside the scope of the present invention, and (A) the content (calculated in terms of oxide) of calcium in the light-burned magnesia partial hydrate is
  • Comparative Example 2 which is outside the scope of the present invention, it may be necessary to add a larger amount of insolubilizing material than Examples 1 to 3 in order to reduce the amount of elution of heavy metals and the like to an environmental standard value or less. Recognize. It turns out that it replaces with the partial hydrate of light-burning magnesia, and the elution suppression effect of heavy metals etc.
  • insolubilized material A material obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. and storing it in a storage room with a relative humidity of 100% for 10 days.
  • Insolubilizing material H A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. for 20 days in a storage room with a relative humidity of 100%.
  • Insolubilizing material I “Insolubilizing material A ”18 parts by mass of natural anhydrous gypsum having a specific surface area of 5,500 cm 2 / g of brain relative to 100 parts by mass and mixed (4)
  • Insolubilized material J Blaine relative to 100 parts by mass of“ insolubilized material B ” 18 parts by mass of natural anhydrous gypsum having a specific surface area of 5,500 cm 2 / g were added and mixed.
  • Insolubilized material K Blaine specific surface area of 5,500 cm 2 / g with respect to 100 parts by mass of “insolubilized material A” 3 masses of natural anhydrous gypsum Added, mixed ones (6) insoluble material L: which "insoluble material A" natural anhydrite of Blaine specific surface area of 5,500cm 2 / g were added 50 parts by weight per 100 parts by weight, were mixed (7)
  • Insolubilizing material M After pulverized light magnesia obtained by firing magnesite at 890 ° C., the particle size was adjusted with an air jet sieving apparatus, and then stored in a storage room with a relative humidity of 100%.
  • Insolubilized material N pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C., and adjusting the particle size with an air jet sieving apparatus, and then relative humidity 100
  • Insolubilized material O A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. in a storage room having a relative humidity of 60%.
  • Insolubilized material P a pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C.
  • Insolubilized material Q a pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C. and stored in a storage room with a relative humidity of 100% for 10 days
  • Insolubilizing material R Magnesium hydroxide 11.5 which is a reagent (manufactured by Kanto Chemical Co., Ltd .; special grade) with respect to 100 parts by mass of pulverized product obtained by pulverizing light-burned magnesia obtained by baking magnesite at 890 ° C.
  • Insolubilized material S pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C., having a relative humidity of 100%
  • Insolubilized material T A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C., stored at a relative humidity of 100% Stored in the room for 10 days
  • Fluorine-contaminated wastewater 0.0058 parts by mass of potassium fluoride (manufactured by Kanto Chemical Co., Inc .; special grade) was added to 100 parts by mass of water to obtain fluorine-contaminated wastewater.
  • Lead-contaminated wastewater 0.0032 parts by mass of lead nitrate (II) (manufactured by Kanto Chemical Co., Ltd .; special grade) was added to 100 parts by mass of water to obtain lead-contaminated wastewater.
  • Dissolution test 1 (arsenic)
  • Soil An insolubilizing material was added to arsenic-contaminated soil (water content ratio: 70%), and the amount of arsenic eluted from the improved soil at 7 days of age was measured according to the Ministry of the Environment Notification No. 46. The environmental standard value for arsenic is 0.01 mg / liter.
  • B Incineration ash An insolubilizing material was added to the incineration ash, and the amount of arsenic eluted from the improved incineration ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46.
  • Dissolution test 2 (fluorine)
  • Soil Fluorine-contaminated soil water content: 75%) was added with an insolubilizing material, and the amount of fluorine eluted from the improved soil at the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value of fluorine is 0.8 mg / liter.
  • B Incineration ash An insolubilizing material was added to the incineration ash, and the amount of fluorine eluted from the improved incineration ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46.
  • Dissolution test 3 (lead)
  • A Soil An insolubilizing material was added to lead-contaminated soil (water content ratio: 70%), and the amount of lead eluted from the improved soil on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value for lead is 0.01 mg / liter.
  • B Wastewater The insolubilizing material was added to the lead-contaminated wastewater, and the amount of arsenic eluted from the wastewater after shaking for 4 hours at 200 times / minute was measured. At this time, the pH after addition of the insolubilizing material was also measured.
  • Dissolution test 4 (hexavalent chromium) An insolubilizing material was added to the incinerated ash, and the elution amount of hexavalent chromium from the improved incinerated ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value for hexavalent chromium is 0.05 mg / liter.
  • Comparative Example 8 since the calcium content (as oxide) exceeds the numerical range defined in the present invention, the amount of arsenic, fluorine, and lead eluted with the same amount of addition as compared with Examples 15-22 Is big.
  • Comparative Example 9 not a light-burned magnesia partial hydrate but a mixture of light-burned magnesia and magnesium hydroxide, which is a reagent, is used. Therefore, compared with Examples 15 to 22, arsenic and fluorine at the same addition amount are used. The amount of lead elution is large. In Comparative Example 10, since the insolubilizing material is not used, the amount of arsenic, fluorine, and lead eluted is very large.
  • Table 5 shows that when the insolubilizing material corresponding to the present invention is used (Examples 23 to 24), the amount of arsenic and the like eluted from the incinerated ash can be kept low with a small addition amount.
  • Comparative Examples 11 and 12 since the magnesium hydroxide content is out of the numerical range defined in the present invention, the elution amounts of arsenic, fluorine, and hexavalent chromium are the same as in Examples 23 to 24. It can be seen that in order to keep it low, the amount of insolubilizing material added must be larger than in Examples 23-24.
  • Examples 25 to 28, Comparative Examples 15 to 20 As shown in Table 6, the amounts of arsenic and the like eluted when various insolubilizing materials were added to the contaminated wastewater (Examples 25 to 28, Comparative Examples 15 to 19) and when no insolubilizing materials were added (Comparative Example 20). It was measured. The results are shown in Table 6. In Table 6, “addition amount to waste water (mass%)” represents the addition amount (mass%) of the insolubilizing material relative to 100 mass% of the waste water before the addition of the insolubilizing material.
  • Table 6 shows that when the insolubilizing material corresponding to the present invention is used (Examples 25 to 28), the amount of arsenic and the like eluted from the contaminated wastewater can be kept below the drainage standard with a small addition amount.
  • Comparative Examples 15 and 16 the magnesium hydroxide content is out of the numerical range defined in the present invention. Therefore, compared with Examples 25 to 28, arsenic, fluorine and lead are eluted at the same addition amount. The balance of quantity is bad.
  • Comparative Examples 17 and 18 since the calcium content (as oxide) exceeds the numerical range defined in the present invention, arsenic, fluorine, and lead at the same addition amount compared to Examples 25 to 28. The amount of elution is large.
  • Comparative Example 19 since a mixture of light-burned magnesia and magnesium hydroxide as a reagent was used instead of light-burned magnesia partial hydrate, arsenic and fluorine at the same addition amount compared to Examples 25 to 28 The amount of lead elution is large. In Comparative Example 20, since no insolubilizing material is used, the amount of elution of arsenic, fluorine, and lead is very large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

An insolubilizing agent which can sufficiently inhibit, even when added in a small amount, heavy metals and so on from being leached from heavily contaminated soil or wastewater.  The insolubilizing agent contains a partial hydrate of soft-burned magnesia, said partial hydrate being prepared by subjecting a soft-burned magnesia obtained by burning a mineral comprising magnesium carbonate and/or magnesium hydroxide as the main component at 550 to 1,400°C to partial hydration.  The content of magnesium oxide in the partial hydrate of soft-burned magnesia is 50 to 96.5mass%, the content of magnesium hydroxide therein is 3.5 to 50mass%, and the content of calcium therein is 5.0mass% or lower in terms of oxide.

Description

不溶化材Insolubilizing material
 本発明は、重金属類等を含む汚染土壌等から当該重金属等が溶出するのを抑制したり、あるいは、重金属類等を含む排水中の当該重金属等を不溶化することのできる不溶化材に関する。 The present invention relates to an insolubilizing material capable of suppressing the elution of the heavy metal etc. from the contaminated soil containing the heavy metal etc. or insolubilizing the heavy metal etc. in the waste water containing the heavy metal etc.
 近年、工場、事業所、産業廃棄物処理場の跡地などにおいて、土壌が鉛、6価クロム、ヒ素等の重金属類やフッ素等(以下、重金属類等ともいう。)で汚染されていることが、しばしば報告されている。このように土壌が重金属類等で汚染されると、その汚染が地下水にまで広がり、人体や穀物にまで影響を及ぼすという安全衛生上の問題がある。また、当該土壌の汚染濃度が環境基準値を超える場合には、跡地をそのまま利用できなくなり、土地を有効利用することができないという問題もある。そのため、重金属類等を不溶化して、汚染の拡大を防止することが望まれている。
 また、重金属類等を含む排水を処理する場合、重金属類等を不溶化することができれば、固液分離によって、重金属類等の含有率が減少した液分を容易に得ることができ、排水処理を効率的に行なうことができる。
In recent years, soil has been contaminated with heavy metals such as lead, hexavalent chromium, and arsenic, fluorine, etc. (hereinafter also referred to as heavy metals) at sites of factories, offices, and industrial waste disposal sites. Often reported. Thus, when soil is contaminated with heavy metals or the like, there is a safety and health problem that the contamination spreads to the ground water and affects the human body and grains. Further, when the soil contamination concentration exceeds the environmental standard value, there is a problem that the site cannot be used as it is and the land cannot be used effectively. Therefore, it is desired to insolubilize heavy metals and the like to prevent the spread of contamination.
In addition, when treating wastewater containing heavy metals, etc., if the heavy metals can be insolubilized, liquid components with a reduced content of heavy metals can be easily obtained by solid-liquid separation, and wastewater treatment can be performed. It can be done efficiently.
 このような事情下において、重金属類等を不溶化するための技術が種々提案されている。
 例えば、酸化マグネシウムを含む重金属溶出抑制固化材が提案されている(特許文献1)。
 また、MgOおよび/またはMgO含有材からなることを特徴とする有害物質汚染土壌用固化不溶化剤が提案されている(特許文献2)。
 また、700~1,000℃で焼成され、粉末度4,000cm/g以上に調整した酸化マグネシウムを、汚染土壌等に添加・混合することにより、該汚染土壌等を固化して、汚染物質の不溶化を行う汚染土壌等の固化・不溶化方法が提案されている(特許文献3)。
 また、固化可能なバインダー中に物質を取り込む方法であって、当該方法が、スラリーとして、又は次のスラリーの形成のために、物質をバインダーと混合する工程を含み、該バインダーが苛性酸化マグネシウム源を含んでおり、及びスラリーに、バインダーの固化を促進する固化剤を加える工程を含む方法が提案されている(特許文献4)。
 さらに、波長1.5405Åにおける粉末X線回折スペクトルが、2θ=42.8°±0.3°にピークの頂点を有し、該ピークのベースラインを基準とした半値幅が0.32~1.5°であることを特徴とする潜晶質マグネシアが提案されている(特許文献5)。
Under such circumstances, various techniques for insolubilizing heavy metals and the like have been proposed.
For example, a heavy metal elution suppression solidifying material containing magnesium oxide has been proposed (Patent Document 1).
Further, a solidifying and insolubilizing agent for toxic substance-contaminated soil characterized by comprising MgO and / or a MgO-containing material has been proposed (Patent Document 2).
Further, by adding and mixing magnesium oxide baked at 700 to 1,000 ° C. and adjusted to a fineness of 4,000 cm 2 / g or more to the contaminated soil, the contaminated soil is solidified, and the pollutant There has been proposed a method for solidifying and insolubilizing contaminated soil and the like (Patent Document 3).
A method of incorporating a material into a solidifiable binder, the method comprising mixing the material with a binder as a slurry or for the formation of a subsequent slurry, wherein the binder is a source of caustic magnesium oxide. And a method including a step of adding a solidifying agent that promotes solidification of the binder to the slurry has been proposed (Patent Document 4).
Further, the powder X-ray diffraction spectrum at a wavelength of 1.5405 mm has a peak apex at 2θ = 42.8 ° ± 0.3 °, and the half width with respect to the baseline of the peak is 0.32 to 1 Latent crystalline magnesia characterized by an angle of 0.5 ° has been proposed (Patent Document 5).
特開2003-117532号公報JP 2003-117532 A 特開2003-225640号公報JP 2003-225640 A 特開2003-334526号公報JP 2003-334526 A 特表2005-523990号公報JP 2005-523990 Gazette 特開2007-22902号公報JP 2007-22902 A
 酸化マグネシウム(軽焼マグネシア等)を不溶化材として用いる特許文献1~5の技術によると、汚染濃度の低い土壌に対しては、重金属類等の溶出を抑制することができる。しかし、汚染濃度の高い土壌に対しては、未だその効果(重金属類等の溶出抑制効果)は不十分であり、重金属類等の溶出量を所定の値(例えば、環境基準値)以下にするためには、不溶化材の使用量が増加し、高コストになるという問題がある。さらにこの場合、不溶化材の添加後のボリュームが大きくなり、副次的な対策が必要になるなどの問題がある。
 一方、重金属類等を含む排水の処理技術の分野においても、少ない添加量で重金属類等を十分に不溶化することのできる不溶化材が望まれている。
 そこで、本発明は、汚染濃度の高い土壌や、排水に対して、少ない添加量で、重金属類等の溶出を十分に抑制することができる不溶化材を提供することを目的とする。
According to the techniques of Patent Documents 1 to 5 using magnesium oxide (lightly burned magnesia or the like) as an insolubilizing material, elution of heavy metals and the like can be suppressed in soil with a low contamination concentration. However, the effect (elution suppression effect of heavy metals, etc.) is still insufficient for highly contaminated soil, and the elution amount of heavy metals, etc. is set to a predetermined value (for example, environmental standard value) or less. Therefore, there is a problem that the amount of the insolubilizing material used is increased and the cost is increased. Further, in this case, there is a problem that the volume after the addition of the insolubilizing material is increased, and secondary measures are required.
On the other hand, in the field of wastewater treatment technology including heavy metals and the like, an insolubilizing material that can sufficiently insolubilize heavy metals and the like with a small addition amount is desired.
Then, an object of this invention is to provide the insolubilization material which can fully suppress elution of heavy metals etc. with little addition amount with respect to soil with high pollution density | concentration, or waste_water | drain.
 本発明者は、上記課題を解決するために鋭意検討した結果、軽焼マグネシアの一部を水和してなる特定の軽焼マグネシア部分水和物を含む不溶化材によれば、本発明の上記目的を達成しうることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[8]を提供するものである。
[1] (A)炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を550~1,400℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が50~96.5質量%、水酸化マグネシウムの含有率が3.5~50質量%であり、カルシウムの含有率が酸化物換算で5.0質量%以下である軽焼マグネシア部分水和物、を含むことを特徴とする不溶化材。
[2] (A)成分が粉末であり、かつ、(A)成分100質量部に対して、(B)炭酸カルシウムを主成分とする粉末を20~70質量部含む上記[1]に記載の不溶化材。
[3] 上記不溶化材は、ブレーン比表面積が2,500~20,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(-bDp n)(式中、Rは積算残分値(%)であり、ふるい残分を表し、Dpは粒径(μm)であり、ふるいの目の寸法を表し、b、nは定数である。)におけるn値が0.80~1.45の粉末である上記[1]又は[2]に記載の不溶化材。
[4] 上記不溶化材は、平均粒径が20~40μmの粉末である上記[1]~[3]のいずれかに記載の不溶化材。
[5] (C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物、を含む上記[1]~[4]のいずれかに記載の不溶化材。
[6] 上記不溶化材は、粒状または粉状の固体物に添加するためのものである上記[1]~[5]のいずれかに記載の不溶化材。
[7] (A)成分100質量部に対して、(D)石膏を50質量部以下の配合量で含む上記[6]に記載の不溶化材。
[8] 上記不溶化材は、排水に添加するためのものである上記[1]~[5]のいずれかに記載の不溶化材。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the insolubilized material containing a specific light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia, The inventors have found that the object can be achieved and completed the present invention.
That is, the present invention provides the following [1] to [8].
[1] (A) Lightly burned magnesia partial water obtained by hydrating a portion of lightly burned magnesia obtained by firing a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C. This light-burned magnesia partial hydrate has a magnesium oxide content of 50 to 96.5% by mass, a magnesium hydroxide content of 3.5 to 50% by mass, and contains calcium. A light-solubilized magnesia partial hydrate having a rate of 5.0% by mass or less in terms of oxides.
[2] The component according to [1], wherein the component (A) is a powder, and (B) 20 to 70 parts by mass of a powder containing calcium carbonate as a main component is included with respect to 100 parts by mass of the component (A). Insolubilized material.
[3] The insolubilized material has a Blaine specific surface area of 2,500 to 20,000 cm 2 / g, and a Rosin-Rammler formula relating to the particle size distribution: R = 100exp (−bD p n ) ( where R Is an integrated residual value (%), which represents the sieve residue, D p is the particle size (μm), represents the size of the sieve eye, and b and n are constants). The insolubilizing material according to the above [1] or [2], which is a powder of 80 to 1.45.
[4] The insolubilizing material according to any one of [1] to [3], wherein the insolubilizing material is a powder having an average particle size of 20 to 40 μm.
[5] The insolubilizing material according to any one of the above [1] to [4], comprising (C) one or more additives selected from water-soluble sulfates and water-soluble chlorides.
[6] The insolubilizing material according to any one of [1] to [5], wherein the insolubilizing material is added to a granular or powdery solid.
[7] The insolubilizing material according to the above [6], which contains (D) gypsum in an amount of 50 parts by mass or less with respect to 100 parts by mass of the component (A).
[8] The insolubilizing material according to any one of [1] to [5], wherein the insolubilizing material is for addition to waste water.
 本発明の不溶化材によると、汚染濃度の高い土壌や、焼却灰等の重金属含有ダスト等に対しても、少ない添加量で、重金属類等の溶出を十分に抑制することができる。
 また、本発明の不溶化材によると、重金属類等を含む排水に対して、少ない添加量で、重金属類等を十分に不溶化することができる。この場合、排水を固液分離することによって、重金属類等の含有率が減少した液分を容易に得ることができ、排水処理を効率的に行なうことができる。
According to the insolubilizing material of the present invention, elution of heavy metals and the like can be sufficiently suppressed with a small amount of addition even to soil with high contamination concentration, heavy metal-containing dust such as incinerated ash, and the like.
Moreover, according to the insolubilizing material of the present invention, heavy metals can be sufficiently insolubilized with a small addition amount with respect to waste water containing heavy metals. In this case, by separating the drainage into solid and liquid, it is possible to easily obtain a liquid component having a reduced content of heavy metals and the like, and to efficiently perform the drainage treatment.
 本発明の不溶化材は、(A)軽焼マグネシア部分水和物、を必須成分として含み、さらに必要に応じて他の任意成分を含む。
 他の任意成分としては、(B)炭酸カルシウムを主成分とする粉末、(C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物、(D)石膏、等が挙げられる。
[(A)軽焼マグネシア部分水和物]
 本発明の不溶化材に用いる(A)軽焼マグネシア部分水和物は、炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を550~1,400℃で焼成して得た軽焼マグネシアの一部を水和してなるものである。
 なお、本発明において、軽焼マグネシア部分水和物は、通常、粉末のものが用いられる。
 炭酸マグネシウムを主成分とする鉱物の例としては、マグネサイト、ドロマイト等が挙げられる。この場合、鉱物中の炭酸マグネシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
 水酸化マグネシウムを主成分とする鉱物の例としては、ブルーサイト等が挙げられる。この場合、鉱物中の水酸化マグネシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
The insolubilizing material of the present invention includes (A) light-burned magnesia partial hydrate as an essential component, and further includes other optional components as necessary.
Examples of other optional components include (B) a powder mainly composed of calcium carbonate, (C) one or more additives selected from water-soluble sulfates and water-soluble chlorides, and (D) gypsum. It is done.
[(A) Lightly burned magnesia partial hydrate]
(A) Light-burned magnesia partial hydrate used in the insolubilizing material of the present invention is a light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C. A part is hydrated.
In the present invention, powdered magnesia partial hydrate is usually used.
Examples of minerals mainly composed of magnesium carbonate include magnesite and dolomite. In this case, the content of magnesium carbonate in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
Examples of minerals mainly composed of magnesium hydroxide include brucite. In this case, the content of magnesium hydroxide in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
 軽焼マグネシアは、酸化マグネシウムを主成分として含む。本発明で用いる、軽焼マグネシアを部分的に水和してなる軽焼マグネシア部分水和物は、水和により得られた水酸化マグネシウムと、酸化マグネシウムとを後述の特定の割合で含む。このような軽焼マグネシア部分水和物を用いることにより、土壌等の固体物中もしくは排水中における重金属類等の溶出に対する高い抑制効果を得ることができる。
 焼成温度は、(A)成分以外の任意成分の有無によっても異なるが、550~1,400℃、好ましくは650~1,000℃である。該温度が550℃未満であると、軽焼マグネシアが生成し難く、一方、1,400℃を超えると、重金属類等の不溶化の効果が低下する。
 (B)成分を用いない場合における該焼成温度は、好ましくは750~1,000℃、より好ましくは860~950℃、特に好ましくは870~920℃である。
 (B)成分を用いる場合における該焼成温度は、軽焼マグネシアの生成の容易さ、及び、重金属類等の溶出抑制効果の観点から、好ましくは750~900℃、より好ましくは800~900℃である。
Light-burned magnesia contains magnesium oxide as a main component. The light-burned magnesia partial hydrate obtained by partially hydrating light-burned magnesia used in the present invention contains magnesium hydroxide obtained by hydration and magnesium oxide in a specific ratio described later. By using such light-burned magnesia partial hydrate, it is possible to obtain a high inhibitory effect on elution of heavy metals or the like in solid matter such as soil or waste water.
The firing temperature varies depending on the presence or absence of optional components other than the component (A), but is 550 to 1,400 ° C., preferably 650 to 1,000 ° C. When the temperature is less than 550 ° C., light-burned magnesia is difficult to be generated. On the other hand, when the temperature exceeds 1,400 ° C., the effect of insolubilizing heavy metals and the like is reduced.
When the component (B) is not used, the calcination temperature is preferably 750 to 1,000 ° C., more preferably 860 to 950 ° C., and particularly preferably 870 to 920 ° C.
In the case of using the component (B), the firing temperature is preferably 750 to 900 ° C., more preferably 800 to 900 ° C., from the viewpoint of ease of formation of light-burned magnesia and an effect of suppressing elution of heavy metals. is there.
 (A)軽焼マグネシア部分水和物中、酸化マグネシウムの含有率は、(A)成分以外の任意成分の有無によっても異なるが、50~96.5質量%、好ましくは60~95質量%、より好ましくは70~95質量%、特に好ましくは75~95質量%である。
 (B)成分を用いない場合における該酸化マグネシウムの含有率は、好ましくは60~95質量%、より好ましくは70~94質量%、特に好ましくは75~93質量%である。
 (B)成分を用いる場合における該酸化マグネシウムの含有率は、好ましくは65~96.5質量%、より好ましくは70~95質量%、特に好ましくは75~95質量%である。
(A) The content of magnesium oxide in the light-burned magnesia partial hydrate varies depending on the presence or absence of optional components other than the component (A), but is 50 to 96.5% by mass, preferably 60 to 95% by mass, More preferred is 70 to 95% by mass, and particularly preferred is 75 to 95% by mass.
When the component (B) is not used, the magnesium oxide content is preferably 60 to 95% by mass, more preferably 70 to 94% by mass, and particularly preferably 75 to 93% by mass.
When the component (B) is used, the content of the magnesium oxide is preferably 65 to 96.5% by mass, more preferably 70 to 95% by mass, and particularly preferably 75 to 95% by mass.
 (A)軽焼マグネシア部分水和物中、水酸化マグネシウムの含有率は、(A)成分以外の任意成分の有無によっても異なるが、3.5~50質量%、好ましくは3.5~40質量%、より好ましくは5~30質量%、特に好ましくは6~20質量%である。
 (B)成分を用いない場合における該水酸化マグネシウムの含有率は、好ましくは4~40質量%、より好ましくは5~30質量%、特に好ましくは6~20質量%である。
 (B)成分を用いる場合における該水酸化マグネシウムの含有率は、好ましくは3.5~30質量%、より好ましくは5~20質量%、特に好ましくは7~17質量%である。
 酸化マグネシウムの含有率が50質量%未満、あるいは水酸化マグネシウムの含有率が50質量%を超えると、重金属類等の不溶化の効果が低下する。一方、酸化マグネシウムの含有率が96.5質量%を超えるか、あるいは、水酸化マグネシウムの含有率が3.5質量%未満であると、特に重金属類等による汚染の高い土壌等において、重金属類等の溶出を抑制する効果が低下する。
(A) The content of magnesium hydroxide in the light-burned magnesia partial hydrate varies depending on the presence or absence of optional components other than the component (A), but is 3.5 to 50% by mass, preferably 3.5 to 40%. % By mass, more preferably 5 to 30% by mass, particularly preferably 6 to 20% by mass.
When the component (B) is not used, the magnesium hydroxide content is preferably 4 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 6 to 20% by mass.
When the component (B) is used, the magnesium hydroxide content is preferably 3.5 to 30% by mass, more preferably 5 to 20% by mass, and particularly preferably 7 to 17% by mass.
When the content of magnesium oxide is less than 50% by mass or the content of magnesium hydroxide exceeds 50% by mass, the effect of insolubilization of heavy metals and the like decreases. On the other hand, when the content of magnesium oxide exceeds 96.5% by mass or the content of magnesium hydroxide is less than 3.5% by mass, particularly in soils highly contaminated with heavy metals, etc., heavy metals The effect which suppresses elution etc. falls.
 本発明において、得られる軽焼マグネシア部分水和物に含まれる酸化カルシウム及び/又は水酸化カルシウムの合計の含有率は、軽焼マグネシア部分水和物(100質量%)中、酸化物換算で、5.0質量%以下、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、さらに好ましくは2.5質量%以下、特に好ましくは2.0質量%以下である。該含有率が5.0質量%を超えると、特に重金属類等による汚染の高い土壌等において、重金属類等の溶出を抑制する効果が低下する。
 なお、軽焼マグネシア部分水和物は、上記成分(MgO、Mg(OH)2、CaO、Ca(OH)2)以外の他の成分(具体的には、SiO2、Fe23等の不純物)を含むことができる。他の成分の含有率は、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、特に好ましくは2.5質量%以下である。該含有率が4.0質量%を超えると、重金属類等の溶出を抑制する効果が低下することがある。
In the present invention, the total content of calcium oxide and / or calcium hydroxide contained in the obtained light calcined magnesia partial hydrate is in terms of oxide in the light calcined magnesia partial hydrate (100% by mass). It is 5.0 mass% or less, preferably 4.0 mass% or less, more preferably 3.0 mass% or less, further preferably 2.5 mass% or less, and particularly preferably 2.0 mass% or less. When the content exceeds 5.0% by mass, the effect of suppressing elution of heavy metals and the like is reduced particularly in soils and the like highly contaminated with heavy metals and the like.
The light-burned magnesia partial hydrate is composed of other components (specifically, SiO 2 , Fe 2 O 3, etc.) other than the above components (MgO, Mg (OH) 2 , CaO, Ca (OH) 2 ). Impurities). The content of other components is preferably 4.0% by mass or less, more preferably 3.0% by mass or less, and particularly preferably 2.5% by mass or less. When this content rate exceeds 4.0 mass%, the effect which suppresses elution of heavy metals etc. may fall.
 軽焼マグネシアを水和する方法としては、得られる軽焼マグネシア部分水和物中の各成分(酸化マグネシウム、水酸化マグネシウム、及びカルシウム)の含有率が上記特定の範囲内となればよく、特に限定されないが、例えば、下記(1)又は(2)の方法が挙げられる。
(1)軽焼マグネシアに水を添加して混合する方法
(2)軽焼マグネシアを相対湿度80%以上の環境下に、1週間以上保持する方法
 なお、詳しくは後述するが、軽焼マグネシアと、他の成分(例えば、(B)成分である炭酸カルシウムを主成分とする粉末)とを混合してから、上記水和反応を行ってもよい。
 また、水和反応の前に、軽焼マグネシア(あるいは、軽焼マグネシアと他の成分との混合物)を粉砕することが好ましい。
As a method for hydrating light-burned magnesia, it is sufficient that the content of each component (magnesium oxide, magnesium hydroxide, and calcium) in the obtained light-burned magnesia partial hydrate is within the above specific range. Although not limited, the following (1) or (2) method is mentioned, for example.
(1) A method of adding water to light-burned magnesia and mixing (2) A method of holding light-burned magnesia in an environment having a relative humidity of 80% or more for one week or more. The hydration reaction may be carried out after mixing with other components (for example, powder containing calcium carbonate as the main component (B)).
Moreover, it is preferable to grind lightly burned magnesia (or a mixture of lightly burned magnesia and other components) before the hydration reaction.
 本発明の不溶化材を構成する軽焼マグネシアのブレーン比表面積は、好ましくは2,500~20,000cm/g、より好ましくは4,800~10,000cm/g、さらに好ましくは5,200~8,000cm/g、特に好ましくは5,500~6,500cm/gである。該値を上記数値範囲内に調整することにより、重金属類等の溶出を抑制する効果を高めることができ、特に、重金属類等の溶出量の大きい土壌等に対しても少量で溶出を抑制することができる。また、ブレーン比表面積が8,000cm/g以下であると、ブレーン比表面積が8,000cm/gを超える場合に困難なスラリーでの添加も可能となる。 The Blaine specific surface area of the light magnesia constituting the insolubilized material of the present invention is preferably 2,500 to 20,000 cm 2 / g, more preferably 4,800 to 10,000 cm 2 / g, and still more preferably 5,200. It is ˜8,000 cm 2 / g, particularly preferably 5,500 to 6,500 cm 2 / g. By adjusting the value within the above numerical range, the effect of suppressing elution of heavy metals and the like can be enhanced, and in particular, elution can be suppressed in a small amount even for soils and the like where elution of heavy metals and the like is large. be able to. Moreover, when the Blaine specific surface area is 8,000 cm 2 / g or less, addition in a difficult slurry becomes possible when the Blaine specific surface area exceeds 8,000 cm 2 / g.
[(B)炭酸カルシウムを主成分とする粉末]
 本発明の不溶化材には、(B)炭酸カルシウムを主成分とする粉末、を任意成分として用いることができる。
 (B)炭酸カルシウムを主成分とする粉末としては、特に限定されないが、例えば、工業用炭酸カルシウム粉末、試薬の炭酸カルシウム粉末、石灰石粉末、炭酸カルシウムを主成分とする貝殻の粉砕物、サンゴの粉砕物等を使用することができる。中でも、コストの観点から、石灰石粉末が好ましく用いられる。
 (B)成分中の炭酸カルシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
 (B)成分は、本発明の不溶化材の製造過程において、(i)平均粒径1~20mm(好ましくは2~10mm)、あるいは、(ii)ブレーン比表面積3,000~7,000cm/g(好ましくは4,000~6,000cm/g)となるように粒度を調整して用いることが好ましい。(i)の場合には、軽焼マグネシア(水和前の(A)成分)と混合して、これら2種の材料を同時に粉砕した後に、水和に供することが好ましく、また、(ii)の場合には、粒度を調整済みの軽焼マグネシアと混合した後に、水和に供することが好ましい。
 (B)成分の配合量は、(A)成分100質量部に対して、20~70質量部、好ましくは25~60質量部、より好ましくは30~50質量部である。上記配合量が20質量部未満であると、(A)成分の性状によっては、重金属類等の溶出抑制効果が低下することがある。一方、上記配合量が70質量部を超えると、それに伴い、不溶化材中の(A)成分の割合が低下し、重金属類等の溶出抑制効果が低下する。
[(B) Powder mainly composed of calcium carbonate]
For the insolubilizing material of the present invention, (B) a powder mainly composed of calcium carbonate can be used as an optional component.
(B) Although it does not specifically limit as powder which has calcium carbonate as a main component, For example, calcium carbonate powder for industrial use, calcium carbonate powder of a reagent, limestone powder, crushed shell of shellfish containing calcium carbonate as a main component, coral A pulverized product or the like can be used. Among these, limestone powder is preferably used from the viewpoint of cost.
(B) The content rate of the calcium carbonate in a component becomes like this. Preferably it is 80 mass% or more, More preferably, it is 85 mass% or more, Most preferably, it is 90 mass% or more.
The component (B) is used in the process of producing the insolubilized material of the present invention (i) an average particle diameter of 1 to 20 mm (preferably 2 to 10 mm), or (ii) a specific surface area of Blaine of 3,000 to 7,000 cm 2 / The particle size is preferably adjusted so as to be g (preferably 4,000 to 6,000 cm 2 / g). In the case of (i), it is preferable to mix with light-burned magnesia (component (A) before hydration) and pulverize these two materials at the same time, and then subject to hydration, and (ii) In the case of, it is preferable to mix with lightly-burned magnesia whose particle size has been adjusted and then subjected to hydration.
Component (B) is blended in an amount of 20 to 70 parts by weight, preferably 25 to 60 parts by weight, more preferably 30 to 50 parts by weight per 100 parts by weight of component (A). When the blending amount is less than 20 parts by mass, the elution suppressing effect of heavy metals and the like may be lowered depending on the properties of the component (A). On the other hand, when the said compounding quantity exceeds 70 mass parts, the ratio of the (A) component in an insolubilization material falls in connection with it, and the elution inhibitory effect of heavy metals etc. falls.
 成分(A)及び成分(B)を含む場合における本発明の不溶化材は、例えば、下記(a)~(c)の方法により得られる。
(a)軽焼マグネシア((A)成分の材料)と炭酸カルシウム含有物((B)成分の材料)とを混合して混合物を得る工程と、前記混合物を粉砕して所定の粒度を有する混合物の粉砕物を得る工程と、前記混合物の粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末と炭酸カルシウムを主成分とする粉末とを含む不溶化材を得る工程と、を含む方法
(b)軽焼マグネシアを粉砕して、所定の粒度を有する軽焼マグネシア粉砕物を得る工程と、炭酸カルシウム含有物を粉砕して、所定の粒度を有する炭酸カルシウム含有粉砕物を得る工程と、前記軽焼マグネシア粉砕物と前記炭酸カルシウム含有粉砕物とを混合して混合物を得る工程と、前記混合物を水和させて、軽焼マグネシア部分水和物からなる粉末と炭酸カルシウムを主成分とする粉末とを含む不溶化材を得る工程と、を含む方法
(c)軽焼マグネシアを粉砕して、所定の粒度を有する軽焼マグネシア粉砕物を得る工程と、前記軽焼マグネシア粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末を得る工程と、炭酸カルシウム含有物を粉砕して、所定の粒度を有する炭酸カルシウム含有粉砕物(炭酸カルシウムを主成分とする粉末)を得る工程と、前記軽焼マグネシア部分水和物からなる粉末と前記炭酸カルシウム含有粉砕物とを混合して不溶化材を得る工程と、を含む方法
 これらのうち、重金属類等の溶出抑制効果、及び作業性の観点から、好ましくは(a)又は(b)の方法であり、より好ましくは(a)の方法である。
The insolubilizing material of the present invention containing the component (A) and the component (B) can be obtained, for example, by the following methods (a) to (c).
(A) a step of mixing lightly burned magnesia (material of component (A)) and calcium carbonate-containing material (material of component (B)) to obtain a mixture, and a mixture having a predetermined particle size by pulverizing the mixture And a step of hydrating the pulverized product of the mixture to obtain an insolubilized material containing a powder composed of light-burned magnesia partial hydrate and a powder mainly composed of calcium carbonate. Method (b) pulverizing light-burned magnesia to obtain a pulverized light-burned magnesia having a predetermined particle size; pulverizing a calcium carbonate-containing material to obtain a calcium carbonate-containing pulverized material having a predetermined particle size; Mixing the light-burned magnesia pulverized product and the calcium carbonate-containing pulverized product to obtain a mixture, hydrating the mixture, and comprising powder of light-burned magnesia partial hydrate and calcium carbonate as the main components And (c) pulverizing light-burned magnesia to obtain a light-burned magnesia pulverized product having a predetermined particle size, and hydrating the light-burned magnesia pulverized product. A step of obtaining a powder composed of light-burned magnesia partial hydrate, and a step of obtaining a calcium carbonate-containing pulverized product (powder mainly composed of calcium carbonate) having a predetermined particle size by pulverizing the calcium carbonate-containing product. And a step of mixing the powder composed of the light-burned magnesia partial hydrate and the calcium carbonate-containing pulverized product to obtain an insolubilizing material. Among these, the elution suppressing effect of heavy metals and the like, and workability From the viewpoint, the method (a) or (b) is preferred, and the method (a) is more preferred.
 上記(a)の方法では、粉砕前の軽焼マグネシアは、粒径が1μm~50mmであることが好ましい。また、粉砕前の炭酸カルシウム含有物は、粒径が1μm~50mmであることが好ましく、2μm~20mmであることがより好ましい。このような粒径を有する粉砕前の軽焼マグネシア及び炭酸カルシウム含有物を用いることにより、混合物である粉砕物、ひいては不溶化材の粒度構成を容易に調整することができる。
 粒径が1μm~50mmである軽焼マグネシアと、粒径が1μm~50mmである炭酸カルシウム含有物とを同時に粉砕して、これら2種の材料の混合物からなる粉砕物のブレーン比表面積を2,500~7,000cm/g(好ましくは4,500~7,000cm/g、より好ましくは5,000~6,500cm/g)の範囲内に調整すると、1~5μmの範囲内の第1ピークと、20~50μmの範囲内の第2ピークとの2つのピークを有する、粒度の頻度分布曲線を形成する不溶化材を得ることができる。この場合、第2ピーク(頻度%)/第1ピーク(頻度%)の比は、好ましくは2~4である。
 また、(a)の方法では、軽焼マグネシアと炭酸カルシウム含有物を同時に粉砕するため、これらを個別に粉砕する(b)又は(c)の方法に比して、作業が簡易であるという利点を有する。
In the method (a), the light-burned magnesia before pulverization preferably has a particle size of 1 μm to 50 mm. Further, the calcium carbonate-containing material before pulverization preferably has a particle size of 1 μm to 50 mm, and more preferably 2 μm to 20 mm. By using the light-burned magnesia and the calcium carbonate-containing material before pulverization having such a particle size, the particle size constitution of the pulverized product as a mixture, and thus the insolubilized material, can be easily adjusted.
A light-burned magnesia having a particle size of 1 μm to 50 mm and a calcium carbonate-containing material having a particle size of 1 μm to 50 mm are pulverized simultaneously, and the Blaine specific surface area of a pulverized product made of a mixture of these two materials is 2 When adjusted within the range of 500 to 7,000 cm 2 / g (preferably 4,500 to 7,000 cm 2 / g, more preferably 5,000 to 6,500 cm 2 / g), it is within the range of 1 to 5 μm. It is possible to obtain an insolubilized material that forms a frequency distribution curve of particle size having two peaks, a first peak and a second peak in the range of 20 to 50 μm. In this case, the ratio of the second peak (frequency%) / first peak (frequency%) is preferably 2 to 4.
Further, in the method (a), the light-burned magnesia and the calcium carbonate-containing material are pulverized at the same time, so that the work is simpler than the method (b) or (c) in which these are pulverized separately. Have
 上記(b)又は(c)の方法においては、軽焼マグネシアは、ブレーン比表面積が好ましくは2,500~7,000cm/g、より好ましくは4,500~7,000cm/g、特に好ましくは5,000~6,500cm/gとなるように粉砕される。また、炭酸カルシウム含有物は、ブレーン比表面積が好ましくは3,000~7,000cm/g、より好ましくは4,000~6,000cm/gとなるように粉砕される。このような比表面積を有する軽焼マグネシア粉砕物(あるいは、その部分水和物)と炭酸カルシウム含有粉砕物とを混合することにより、上述の好ましい粒度構成を有する不溶化材を得ることができる。
 なお、炭酸カルシウム含有物が上記ブレーン比表面積を既に有する場合は、粉砕を行わず、そのまま用いることができる。
In the method (b) or (c), the light-burned magnesia preferably has a Blaine specific surface area of 2,500 to 7,000 cm 2 / g, more preferably 4,500 to 7,000 cm 2 / g, particularly Preferably, it is pulverized to 5,000 to 6,500 cm 2 / g. The calcium carbonate-containing material is pulverized so that the specific surface area of branes is preferably 3,000 to 7,000 cm 2 / g, more preferably 4,000 to 6,000 cm 2 / g. The insolubilized material having the above-mentioned preferred particle size configuration can be obtained by mixing the light-burned magnesia pulverized product (or its partially hydrated product) having such a specific surface area with the calcium carbonate-containing pulverized product.
When the calcium carbonate-containing material already has the above-mentioned Blaine specific surface area, it can be used as it is without being pulverized.
[(C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物]
 本発明の不溶化材は、必要に応じて、(C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物、を含むことができる。特に、成分(A)及び成分(B)を併用する場合において、(C)成分を配合することにより、重金属類等の溶出抑制効果をより向上させることができる。
 水溶性硫酸塩としては、硫酸第一鉄(硫酸鉄(II))、硫酸アルミニウム、硫酸アルミニウムカリウム、硫酸アルミニウムナトリウム等の粉末が挙げられる。水溶性塩化物としては、塩化第一鉄(塩化鉄(II))、塩化第二鉄(塩化鉄(III))等が挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。さらに、これらは、粉末の形態で用いてもよいし、水溶液の形態で用いてもよい。
 (C)成分の配合量(ただし、水溶液として用いる場合は固形分換算の量である。また、水和物である場合は水和水を除く質量を基準とする。以下、同様である。)は、重金属類等の溶出抑制効果の向上を十分に得るために、不溶化材全体100質量%中、好ましくは5質量%以上である。
 また、(C)成分の配合量は、配合量が多過ぎても重金属類等の溶出抑制効果は向上しないこと、及び、コストの観点から、不溶化材全体100質量%中、30質量%以下であることが好ましく、25質量%以下であることがより好ましい。
 なお、(C)成分を粉末の形態で用いる場合、該粉末の粒径は、特に限定されないが、作業性等の観点から、1mm以下が好ましく、0.5mm以下がより好ましい。
 また、(C)成分のみを水溶液で用いる場合、(A)成分もしくは(A)成分と(B)成分の混合物と、(C)成分とを別々に対象土に添加することもできる。
[(C) One or more additives selected from water-soluble sulfates and water-soluble chlorides]
The insolubilizing material of this invention can contain the 1 or more types of additive chosen from (C) water-soluble sulfate and water-soluble chloride as needed. In particular, when the component (A) and the component (B) are used in combination, the effect of suppressing elution of heavy metals and the like can be further improved by adding the component (C).
Examples of the water-soluble sulfate include powders of ferrous sulfate (iron (II) sulfate), aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate and the like. Examples of water-soluble chlorides include ferrous chloride (iron (II) chloride) and ferric chloride (iron (III) chloride). These can be used individually by 1 type or in combination of 2 or more types. Furthermore, these may be used in the form of powder or in the form of an aqueous solution.
Compounding amount of component (C) (However, when used as an aqueous solution, it is an amount in terms of solid content. When it is a hydrate, it is based on the mass excluding hydration water. The same applies hereinafter.) Is sufficiently 5% by mass or more in 100% by mass of the entire insolubilized material in order to sufficiently improve the elution suppression effect of heavy metals and the like.
Moreover, the compounding amount of the component (C) is 30% by mass or less in 100% by mass of the entire insolubilized material from the viewpoint that the elution suppressing effect of heavy metals and the like is not improved even if the compounding amount is too large. It is preferable that the content is 25% by mass or less.
In addition, when (C) component is used with the form of a powder, the particle size of this powder is although it does not specifically limit, From viewpoints of workability | operativity etc., 1 mm or less is preferable and 0.5 mm or less is more preferable.
Moreover, when using only (C) component with aqueous solution, the mixture of (A) component or (A) component and (B) component, and (C) component can also be added separately to object soil.
[(D)石膏]
 本発明の不溶化材は、土壌、焼却飛灰等の粒状または粉状の固体物に添加するためのものである場合、石膏を含むことができる。
 石膏を適量含むことによって、粒状または粉状の固体物の固化強度を増大させることができる。なお、固化強度は、一軸圧縮強度を測定することによって評価することができる。
 石膏の例としては、無水石膏、二水石膏、半水石膏が挙げられる。
 石膏の配合量は、軽焼マグネシア部分水和物100質量部に対して、無水物換算で、好ましくは50質量部以下、より好ましくは3~35質量部、さらに好ましくは8~30質量部、特に好ましくは12~25質量部である。
 石膏の配合量が50質量部を超えると、固化強度が低下するばかりか、重金属類等の溶出を抑制する効果が低下する。
 本発明の不溶化材を構成する石膏のブレーン比表面積は、好ましくは3,000~8,000cm/g、より好ましくは3,500~6,500cm/g、さらに好ましくは4,000~6,000cm/g、特に好ましくは4,500~5,500cm/gである。該値を上記数値範囲内に調整することにより、重金属類等の溶出を抑制する効果を高めることができ、特に、重金属類等の溶出量の大きい土壌等に対しても少量で溶出を抑制することができる。
 なお、石膏が上記ブレーン比表面積を既に有する場合は、粉砕を行わず、そのまま用いることができる。
[(D) gypsum]
The insolubilizing material of the present invention can contain gypsum when it is added to granular or powdery solids such as soil and incinerated fly ash.
By including an appropriate amount of gypsum, the solidification strength of a granular or powdery solid can be increased. The solidification strength can be evaluated by measuring uniaxial compressive strength.
Examples of gypsum include anhydrous gypsum, dihydrate gypsum, and hemihydrate gypsum.
The blending amount of gypsum is preferably 50 parts by mass or less, more preferably 3 to 35 parts by mass, and still more preferably 8 to 30 parts by mass in terms of anhydride with respect to 100 parts by mass of light-burned magnesia partial hydrate. Particularly preferred is 12 to 25 parts by mass.
When the amount of gypsum exceeds 50 parts by mass, not only the solidification strength is lowered, but also the effect of suppressing elution of heavy metals and the like is lowered.
The brane specific surface area of the gypsum constituting the insolubilizing material of the present invention is preferably 3,000 to 8,000 cm 2 / g, more preferably 3,500 to 6,500 cm 2 / g, still more preferably 4,000 to 6 000 cm 2 / g, particularly preferably 4,500 to 5,500 cm 2 / g. By adjusting the value within the above numerical range, the effect of suppressing elution of heavy metals and the like can be enhanced, and in particular, elution can be suppressed in a small amount even for soils and the like where elution of heavy metals and the like is large. be able to.
In addition, when gypsum already has the said Blaine specific surface area, it can use as it is, without grind | pulverizing.
 本発明の不溶化材は、ブレーン比表面積が2,500~20,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(-bDp n)(式中、Rは積算残分値(%)であり、ふるい残分を表し、Dpは粒径(μm)であり、ふるいの目の寸法を表し、b、nは定数である。)におけるn値が0.80~1.45となる粒度構成を有することが好ましい。不溶化材の粒度構成を上記のように調整することにより、重金属類等の溶出を抑制する効果を高めることができ、特に、重金属類等の溶出量の大きい土壌等に対しても少量で溶出を抑制することができる。
 不溶化材のブレーン比表面積は、より好ましくは4,800~10,000cm/g、さらに好ましくは5,200~8,000cm/g、特に好ましくは5,500~6,500cm/gである。
 ロジン・ラムラーの式におけるn値は、より好ましくは0.90~1.30、特に好ましくは0.95~1.20である。
 なお、ロジン・ラムラーの式におけるn値、及び、後述の平均粒径は、例えば、日機装社製9320-X10(粒度分布測定装置)を用いて測定することができる。測定に際しては、100mlビーカー内に収容した分散媒エタノール20mlに対して試料0.05gを加えるものとし、アズワン社製の超音波洗浄機(VS-100・周波数50kHz)を用いて1分間超音波分散後に測定を行う。測定は、試料の屈折率が1.72の条件で行うものとする。
 また、本発明の不溶化材のブレーン比表面積及びロジン・ラムラーの式におけるn値の好ましい数値範囲は、(C)成分を除外して定めたものである。
The insolubilized material of the present invention has a Blaine specific surface area of 2,500 to 20,000 cm 2 / g, and Rosin-Rammler formula for particle size distribution: R = 100 exp (−bD p n ) ( where R is The integrated residual value (%) represents the sieve residue, D p is the particle size (μm), the size of the sieve eye, and b and n are constants). It preferably has a particle size configuration of 80 to 1.45. By adjusting the particle size composition of the insolubilizing material as described above, it is possible to enhance the effect of suppressing the elution of heavy metals and the like. Can be suppressed.
The Blaine specific surface area of the insolubilized material is more preferably 4,800 to 10,000 cm 2 / g, further preferably 5,200 to 8,000 cm 2 / g, particularly preferably 5,500 to 6,500 cm 2 / g. is there.
The n value in the Rosin-Rammler equation is more preferably 0.90 to 1.30, particularly preferably 0.95 to 1.20.
The n value in the Rosin-Rammler equation and the average particle size described later can be measured using, for example, Nikkiso Co., Ltd. 9320-X10 (particle size distribution measuring device). In the measurement, 0.05 g of a sample is added to 20 ml of dispersion medium ethanol contained in a 100 ml beaker, and ultrasonic dispersion is performed for 1 minute using an ultrasonic cleaning machine (VS-100, frequency 50 kHz) manufactured by ASONE. Measurement will be performed later. The measurement is performed under the condition that the refractive index of the sample is 1.72.
Moreover, the preferable numerical range of the n value in the Blaine specific surface area of the insolubilized material of the present invention and the Rosin-Rammler formula is determined by excluding the component (C).
 (A)成分及び(B)成分を含む場合における本発明の不溶化材は、ブレーン比表面積が2,500~7,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(-bDp n)(式中、Rは積算残分値(%)であり、ふるい残分を表し、Dpは粒径(μm)であり、ふるいの目の寸法を表し、b、nは定数である。)におけるn値が0.90~1.20となる粒度構成を有することが好ましい。不溶化材の粒度構成を上記のように調整することにより、重金属類等の溶出抑制効果を高めることができ、重金属類等の溶出量の大きい土壌等に対しても少量で溶出を抑制することができる。
 (A)成分及び(B)成分を含む場合における本発明の不溶化材のブレーン比表面積は、より好ましくは4,500~7,000cm/g、特に好ましくは5,000~6,500cm/gである。ロジン・ラムラーの式におけるn値は、より好ましくは0.95~1.15である。
 また、(A)成分及び(B)成分を含む場合における本発明の不溶化材は、平均粒径が20~40μmであることが好ましく、25~35μmであることがより好ましい。不溶化材の平均粒径が上記範囲内であることにより、重金属類等の溶出抑制効果を高めることができ、重金属類等の溶出量の大きい土壌等に対しても、少量の使用でその溶出を抑制することができる。
 なお、本明細書において、「平均粒径」の語は、50%質量累積粒径を意味する。
 また、(A)成分及び(B)成分を含む場合における本発明の不溶化材においては、上記と同様の方法で測定して得た粒度の頻度分布曲線において、2つのピークがあることが好ましい。ここで、第1ピークは1~5μmの範囲内に、第2ピークは20~50μmの範囲内にあることが好ましい。
The insolubilizing material of the present invention in the case of containing the component (A) and the component (B) has a Blaine specific surface area of 2,500 to 7,000 cm 2 / g and a rosin-Rammler formula relating to the particle size distribution: R = 100exp (-bD p n) (wherein, R is accumulated residue value (%) represents the sieve residue, D p is the particle size ([mu] m), represents the size of the sieve with, b, n is a constant. It is preferable to have a particle size configuration in which the n value in 0.90 to 1.20. By adjusting the particle size composition of the insolubilizing material as described above, it is possible to increase the elution suppression effect of heavy metals, etc., and to suppress the elution in a small amount even for soils with a large amount of elution of heavy metals, etc. it can.
(A) and component (B) Blaine specific surface area of the insoluble material of the present invention when containing the component, more preferably 4,500 ~ 7,000cm 2 / g, particularly preferably 5,000 ~ 6,500cm 2 / g. The n value in the Rosin-Rammler equation is more preferably 0.95 to 1.15.
In addition, the insolubilizing material of the present invention containing the component (A) and the component (B) preferably has an average particle size of 20 to 40 μm, more preferably 25 to 35 μm. When the average particle size of the insolubilized material is within the above range, the effect of suppressing elution of heavy metals, etc. can be enhanced. Can be suppressed.
In the present specification, the term “average particle size” means a 50% mass cumulative particle size.
Moreover, in the insolubilizing material of this invention in the case of containing (A) component and (B) component, it is preferable that there exist two peaks in the frequency distribution curve of the particle size obtained by measuring by the method similar to the above. Here, the first peak is preferably in the range of 1 to 5 μm, and the second peak is preferably in the range of 20 to 50 μm.
 本発明の不溶化材は、(A)成分(軽焼マグネシア部分水和物)のみからなる場合、例えば、下記(a)の方法により得られる。
(a)軽焼マグネシアを粉砕して所定の粒度を有する粉砕物を得る工程と、該粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末を得る工程と、を含む方法
 本発明の不溶化材は、(A)成分(軽焼マグネシア部分水和物)及び(D)成分(石膏)のみからなる場合、例えば、下記(b)~(d)のいずれかの方法により得られる。
(b)軽焼マグネシアと石膏とを混合して混合物を得る工程と、前記混合物を粉砕して所定の粒度を有する混合物の粉砕物を得る工程と、前記混合物の粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末と石膏の粉末とからなる混合物を得る工程と、を含む方法
(c)軽焼マグネシアを粉砕して、所定の粒度を有する軽焼マグネシア粉砕物を得る工程と、石膏を粉砕して、所定の粒度を有する石膏の粉砕物を得る工程と、前記軽焼マグネシア粉砕物と前記石膏の粉砕物とを混合して混合物を得る工程と、前記混合物を水和させて、軽焼マグネシア部分水和物からなる粉末と石膏の粉末とからなる混合物を得る工程と、を含む方法
(d)軽焼マグネシアを粉砕して、所定の粒度を有する軽焼マグネシア粉砕物を得る工程と、前記軽焼マグネシア粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末を得る工程と、石膏を粉砕して、所定の粒度を有する石膏の粉末を得る工程と、前記軽焼マグネシア部分水和物からなる粉末と前記石膏の粉末とを混合して、これらの混合物を得る工程と、を含む方法
 これら(b)~(d)の方法の中で、重金属類等の溶出を抑制する効果、及び作業性の観点から、(b)又は(c)の方法が好ましく、(b)の方法が、より好ましい。
The insolubilizing material of the present invention can be obtained, for example, by the following method (a) when it comprises only the component (A) (lightly burned magnesia partial hydrate).
(A) A method comprising a step of pulverizing light-burned magnesia to obtain a pulverized product having a predetermined particle size, and a step of hydrating the pulverized product to obtain a powder comprising light-burned magnesia partial hydrate. When the insolubilizing material of the invention comprises only the component (A) (lightly burned magnesia partial hydrate) and the component (D) (gypsum), it is obtained, for example, by any of the following methods (b) to (d): .
(B) mixing lightly-burned magnesia and gypsum to obtain a mixture, pulverizing the mixture to obtain a pulverized mixture having a predetermined particle size, and hydrating the pulverized mixture. A process comprising: obtaining a mixture comprising a powder comprising light-burned magnesia partial hydrate and gypsum powder; and (c) pulverizing the light-burned magnesia to obtain a light-burned magnesia pulverized product having a predetermined particle size. Pulverizing gypsum to obtain a gypsum pulverized product having a predetermined particle size, mixing the light-burned magnesia pulverized product and the gypsum pulverized product to obtain a mixture, and hydrating the mixture And (d) pulverizing the light-burned magnesia to obtain a mixture of the powder comprising the light-burned magnesia partial hydrate and the gypsum powder. And the light baking A step of obtaining a powder comprising light-burned magnesia partial hydrate by hydrating a pulverized gnesia, a step of obtaining gypsum powder having a predetermined particle size by pulverizing gypsum, and the light-burning magnesia partial hydration A method comprising mixing a powder composed of a product and the gypsum powder to obtain a mixture thereof, and among these methods (b) to (d), an effect of suppressing elution of heavy metals and the like, And from the viewpoint of workability, the method (b) or (c) is preferable, and the method (b) is more preferable.
 上記の各方法(a)~(d)において、粉砕前の軽焼マグネシアは、粒径が1μm~50mmであることが好ましい。また、粉砕前の石膏は、粒径が1μm~100mmであることが好ましく、2μm~50mmであることがより好ましい。このような粒径を有する粉砕前の軽焼マグネシア及び石膏を用いることにより、本発明の不溶化材の粒度を容易に調整することができる。 In each of the above methods (a) to (d), the light-burned magnesia before pulverization preferably has a particle size of 1 μm to 50 mm. The gypsum before pulverization preferably has a particle size of 1 μm to 100 mm, and more preferably 2 μm to 50 mm. By using light-burned magnesia and gypsum before pulverization having such a particle size, the particle size of the insolubilized material of the present invention can be easily adjusted.
 本発明の不溶化材の添加量は、粒状または粉状の固体物(例えば、土壌、焼却灰等)に対する添加材として用いる場合、添加対象物の性状や施工条件、重金属類等の溶出量や添加対象物の要求性能等にもよるが、一般的には、粒状または粉状の固体物1mあたり50~400kgが好ましく、100~350kgがより好ましい。該量が50kg未満では、重金属類等の溶出の抑制効果が不十分となる。該量が400kgを超えると、重金属類等の溶出の抑制効果の向上が頭打ちとなり、また、処理後の体積が増大するとともに、処理コストも増大する。
 この場合、不溶化材の添加方法としては、不溶化材を粉体のまま添加・混合するドライ添加、あるいは、水を加えてスラリーとして添加・混合するスラリー添加を採用することができる。スラリー添加の場合の水/不溶化材の質量比は、0.5~1.5が好ましく、0.8~1.2がより好ましい。
 本発明の不溶化材は、土壌に対して特に好適に用いられるが、土壌以外のもの、例えば、下水汚泥焼却灰、鶏糞焼却灰、製紙スラッジ焼却灰、石炭焼却灰等の焼却灰、焼却炉の排ガス中からバグフィルター、電気集塵機等のダスト捕集手段によって捕集した焼却飛灰等のダスト類や、重金属類等に汚染されたトンネルズリ、コンクリートガラ、スラグ類等の粒状の固体物にも用いることができる。
The addition amount of the insolubilizing material of the present invention, when used as an additive to a granular or powdered solid material (for example, soil, incineration ash, etc.), the properties of the addition object, construction conditions, the elution amount and addition of heavy metals, etc. Although depending on the required performance of the object, generally 50 to 400 kg is preferable, more preferably 100 to 350 kg, per 1 m 3 of a granular or powdery solid. When the amount is less than 50 kg, the effect of suppressing elution of heavy metals and the like is insufficient. When the amount exceeds 400 kg, the improvement effect of elution of heavy metals and the like reaches a peak, and the volume after treatment increases and the treatment cost also increases.
In this case, as the method for adding the insolubilizing material, dry addition in which the insolubilizing material is added and mixed in powder form, or slurry addition in which water is added and mixed as a slurry can be employed. The water / insolubilized material mass ratio in the case of slurry addition is preferably 0.5 to 1.5, more preferably 0.8 to 1.2.
The insolubilizing material of the present invention is particularly preferably used for soil, but other than soil, for example, sewage sludge incineration ash, chicken manure incineration ash, papermaking sludge incineration ash, incineration ash such as coal incineration ash, incinerator For dust such as incinerated fly ash collected by dust collecting means such as bag filters and electric dust collectors from exhaust gas, and for particulate solids such as tunnel sludge, concrete glass and slag contaminated by heavy metals Can be used.
 本発明の不溶化材の添加量は、排水に対する添加材として用いる場合、添加対象物の性状や施工条件、重金属類等の溶出量や添加対象物の要求性能等にもよるが、一般的には、排水100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.3~4質量部、特に好ましくは0.5~2質量部である。
 該量が0.1質量部未満では、排水中の重金属類等の溶出の抑制効果が不十分となる。該量が10質量部を超えると、排水中の重金属類等の溶出の抑制効果の向上が頭打ちとなり、また、処理コストが増大する。
The amount of the insolubilizing material of the present invention, when used as an additive to waste water, depends on the properties of the object to be added and the construction conditions, the amount of elution of heavy metals, the required performance of the object to be added, etc. The amount is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 4 parts by mass, and particularly preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the waste water.
If the amount is less than 0.1 parts by mass, the effect of suppressing elution of heavy metals in the waste water is insufficient. When the amount exceeds 10 parts by mass, the improvement effect of the elution of heavy metals in the wastewater reaches its peak, and the processing cost increases.
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[1.成分(A)及び成分(B)を含む場合]
[不溶化材の製造]
(不溶化材A)
 マグネサイト(炭酸マグネシウムの含有率:97質量%)を850℃で焼成して軽焼マグネシアを得た。次いで、得られた軽焼マグネシアと平均粒径8mmの炭酸カルシウム含有物(石灰石破砕物;炭酸カルシウムの含有率:95質量%)とを混合した後、混合物を粉砕してブレーン比表面積5,500cm/gの粉砕物を得た。
 得られた粉砕物を相対湿度100%の保管室にて10日間保管することによって、軽焼マグネシアの一部を水和させ、軽焼マグネシア部分水和物からなる粉末((A)成分)と炭酸カルシウムを主成分とする粉末((B)成分)とを含む不溶化材Aを得た。
 不溶化材Aについての粒度の頻度分布曲線は、第1ピークが1.5μm、第2ピークが30μmであり、第1ピークの頻度が1%、第2ピークの頻度が3%、第2ピーク(頻度%)/第1ピーク(頻度%)の比が3であった。
(不溶化材B)
 水和の条件を、相対湿度100%の保管室にて20日間に変更したこと以外は不溶化材Aと同様にして、不溶化材Bを得た。
 不溶化材Bについての粒度の頻度分布曲線は、第1ピークが1.5μm、第2ピークが30μmであり、第1ピークの頻度が1%、第2ピークの頻度が3%、第2ピーク(頻度%)/第1ピーク(頻度%)の比が3であった。
(不溶化材C)
 マグネサイト(炭酸マグネシウムの含有率:97質量%)を850℃で焼成後、粉砕して、ブレーン比表面積5,500cm/gの軽焼マグネシア粉砕物を得た。次いで、得られた軽焼マグネシア粉砕物と、ブレーン比表面積5,000cm/gの炭酸カルシウム含有物(石灰石粉砕物;炭酸カルシウムの含有率:95質量%)とを混合し、得られた混合物を湿度100%の保管室にて10日間保管することによって、軽焼マグネシア粉砕物の一部を水和させ、軽焼マグネシア部分水和物からなる粉末((A)成分)と炭酸カルシウムを主成分とする粉末((B)成分)とを含む不溶化材Cを得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[1. When containing component (A) and component (B)]
[Manufacture of insolubilized materials]
(Insolubilized material A)
Magnesite (magnesium carbonate content: 97% by mass) was calcined at 850 ° C. to obtain light calcined magnesia. Subsequently, after mixing the obtained light-burned magnesia and a calcium carbonate-containing material having an average particle diameter of 8 mm (crushed limestone; calcium carbonate content: 95% by mass), the mixture was pulverized to have a Blaine specific surface area of 5,500 cm. A pulverized product of 2 / g was obtained.
The obtained pulverized product is stored in a storage room with a relative humidity of 100% for 10 days to hydrate part of the light-burned magnesia, and the powder (component (A)) comprising the light-burned magnesia partial hydrate Insolubilized material A containing powder (component (B)) containing calcium carbonate as a main component was obtained.
The frequency distribution curve of the particle size for the insolubilized material A has a first peak of 1.5 μm and a second peak of 30 μm, a frequency of the first peak of 1%, a frequency of the second peak of 3%, and a second peak ( The ratio of (frequency%) / first peak (frequency%) was 3.
(Insolubilized material B)
Insolubilized material B was obtained in the same manner as insolubilized material A except that the hydration condition was changed to 20 days in a storage room at 100% relative humidity.
The frequency distribution curve of the particle size for the insolubilized material B has a first peak of 1.5 μm and a second peak of 30 μm, a frequency of the first peak of 1%, a frequency of the second peak of 3%, and a second peak ( The ratio of (frequency%) / first peak (frequency%) was 3.
(Insolubilized material C)
Magnesite (magnesium carbonate content: 97% by mass) was fired at 850 ° C. and then pulverized to obtain a lightly baked magnesia pulverized product having a Blaine specific surface area of 5,500 cm 2 / g. Subsequently, the obtained light-burned magnesia pulverized product was mixed with a calcium carbonate-containing product having a Blaine specific surface area of 5,000 cm 2 / g (limestone pulverized product; calcium carbonate content: 95% by mass), and the resulting mixture was obtained. Is stored in a storage room at a humidity of 100% for 10 days to hydrate part of the light-burned magnesia pulverized product, and the powder (component (A)) consisting of the light-burned magnesia partial hydrate and calcium carbonate are mainly used. Insolubilized material C containing powder (component (B)) as an ingredient was obtained.
(不溶化材D)
 水和の条件を、相対湿度60%の保管室にて20日間に変更したこと以外は不溶化材Aと同様にして、不溶化材Dを得た。
(不溶化材E)
 (A)成分の原料として、不溶化材Aよりもカルシウムの含有率の大きいマグネサイト(カルシウムの含有率:酸化物換算で5.2質量%)を用いたこと以外は不溶化材Aと同様にして、不溶化材Eを得た。
(不溶化材F)
 マグネサイト(炭酸マグネシウムの含有率:97質量%)を850℃で焼成して軽焼マグネシアを得た。次いで、得られた軽焼マグネシアと平均粒径8mmの炭酸カルシウム含有物(石灰石粉砕物;炭酸カルシウムの含有率:95質量%)とを混合した後、得られた混合物を粉砕して、ブレーン比表面積5,500cm2/gの粉砕物を得た。次いで、得られた粉砕物と水酸化マグネシウム(試薬1級)とを混合して、不溶化材Hを得た。
(Insolubilized material D)
Insolubilized material D was obtained in the same manner as insolubilized material A except that the hydration conditions were changed to 20 days in a storage room with a relative humidity of 60%.
(Insolubilized material E)
(A) Same as insolubilized material A except that magnesite (calcium content: 5.2% by mass in terms of oxide) having a higher calcium content than insolubilized material A was used as the raw material of component (A). Insolubilized material E was obtained.
(Insolubilized material F)
Magnesite (magnesium carbonate content: 97% by mass) was calcined at 850 ° C. to obtain light calcined magnesia. Subsequently, after mixing the obtained light-burned magnesia and a calcium carbonate-containing material having an average particle diameter of 8 mm (pulverized limestone; calcium carbonate content: 95% by mass), the obtained mixture was pulverized to obtain a Brain ratio. A pulverized product having a surface area of 5,500 cm 2 / g was obtained. Subsequently, the obtained pulverized product and magnesium hydroxide (reagent grade 1) were mixed to obtain an insolubilizing material H.
(不溶化材A-1)
 上記不溶化材Aに対して、硫酸第一鉄一水塩(粒径:0.1~0.3mm)を添加して、不溶化材A-1を得た。なお、不溶化材A-1全体100質量%中、硫酸第一鉄の割合は10質量%である。
(不溶化材A-2)
 上記不溶化材Aに対して、硫酸第一鉄一水塩(粒径:0.1~0.3mm)を添加して、不溶化材A-2を得た。なお、不溶化材A-2全体100質量%中、硫酸第一鉄の割合は20質量%である。
(不溶化材A-3)
 上記不溶化材Aに対して、硫酸アルミニウム無水塩(粒径:30~60μm)を添加して、不溶化材A-3を得た。なお、不溶化材A-3全体100質量%中、硫酸アルミニウムの割合は10質量%である。
(不溶化材A-4)
 上記不溶化材Aに対して、硫酸アルミニウム無水塩(粒径:30~60μm)を添加して、不溶化材A-4を得た。なお、不溶化材A-4全体100質量%中、硫酸アルミニウムの割合は20質量%である。
(不溶化材A-5)
 不溶化材Aに対して、塩化第二鉄六水塩(配合割合;10質量%、特級試薬)を添加して、不溶化材A-5を得た。
(不溶化材A-6)
 不溶化材Aに対して、塩化第二鉄六水塩(配合割合;20質量%、特級試薬)を添加して、不溶化材A-6を得た。
(不溶化材A-7)
 不溶化材Aに対して、塩化第一鉄四水塩(配合割合;10質量%、特級試薬)を添加して、不溶化材A-7を得た。
(不溶化材A-8)
 不溶化材Aに対して、塩化第一鉄四水塩(配合割合;20質量%、特級試薬)を添加して、不溶化材A-8を得た。
(Insolubilized material A-1)
Ferrous sulfate monohydrate (particle size: 0.1 to 0.3 mm) was added to the insolubilized material A to obtain insolubilized material A-1. The ratio of ferrous sulfate is 10% by mass in 100% by mass of the entire insolubilized material A-1.
(Insolubilized material A-2)
Ferrous sulfate monohydrate (particle size: 0.1 to 0.3 mm) was added to the insolubilized material A to obtain an insolubilized material A-2. The ratio of ferrous sulfate is 20% by mass in 100% by mass of the entire insolubilized material A-2.
(Insolubilized material A-3)
Aluminum sulfate anhydrous salt (particle size: 30 to 60 μm) was added to the insolubilized material A to obtain an insolubilized material A-3. The proportion of aluminum sulfate in 10% by mass of the entire insolubilized material A-3 is 10% by mass.
(Insolubilized material A-4)
Aluminum sulfate anhydrous salt (particle size: 30 to 60 μm) was added to the insolubilized material A to obtain an insolubilized material A-4. The proportion of aluminum sulfate is 20% by mass in 100% by mass of the entire insolubilized material A-4.
(Insolubilized material A-5)
To insolubilized material A, ferric chloride hexahydrate (mixing ratio; 10 mass%, special grade reagent) was added to obtain insolubilized material A-5.
(Insolubilized material A-6)
To insolubilized material A, ferric chloride hexahydrate (mixing ratio: 20 mass%, special grade reagent) was added to obtain insolubilized material A-6.
(Insolubilized material A-7)
To insolubilized material A, ferrous chloride tetrahydrate (mixing ratio: 10 mass%, special grade reagent) was added to obtain insolubilized material A-7.
(Insolubilized material A-8)
To insolubilized material A, ferrous chloride tetrahydrate (mixing ratio: 20 mass%, special grade reagent) was added to obtain insolubilized material A-8.
[実施例1~3、比較例1~4]
 不溶化材A~Fを用いて(実施例1~3、比較例1~2、4)、あるいは、不溶化材を用いずに(比較例3)、下記の重金属類等の溶出試験1~4を行った。結果を表1に示す。
 また、各不溶化材に対して、成分組成、ブレーン比表面積、ロジン・ラムラー式のn値、平均粒径を下記の方法により求めた。これらを合わせて表1に示す。
(重金属類等の溶出試験1;ヒ素の溶出試験)
 ヒ素汚染土壌(含水比:70%)に対し、表1に示す量の不溶化材を添加し、材齢7日の改良土壌からのヒ素の溶出量を環境省告示46号法に準拠して測定した。なお、ヒ素の環境基準値は0.01mg/リットルである。
(重金属類等の溶出試験2;フッ素の溶出試験)
 フッ素汚染土壌(含水比:75%)に対し、表1に示す量の不溶化材を添加し、材齢7日の改良土壌からのフッ素の溶出量を環境省告示46号法に準拠して測定した。なお、フッ素の環境基準値は0.8mg/リットルである。
(重金属類等の溶出試験3;鉛の溶出試験)
 鉛汚染土壌(含水比:70%)に対し、表1に示す量の不溶化材を添加し、材齢7日の改良土壌からの鉛の溶出量を環境省告示46号法に準拠して測定した。なお、鉛の環境基準値は0.01mg/リットルである。
(重金属類等の溶出試験4;6価クロムの溶出試験)
 6価クロム汚染土壌(含水比:80%)に対し、表1に示す量の不溶化材を添加し、材齢7日の改良土壌からの6価クロムの溶出量を環境省告示46号法に準拠して測定した。なお、6価クロムの環境基準値は0.05mg/リットルである。
[Examples 1 to 3, Comparative Examples 1 to 4]
Using the insolubilizing materials A to F (Examples 1 to 3, Comparative Examples 1 to 2 and 4) or without using the insolubilizing materials (Comparative Example 3), the following elution tests 1 to 4 for heavy metals and the like were performed. went. The results are shown in Table 1.
Further, for each insolubilized material, the component composition, Blaine specific surface area, n value of rosin-Rammler formula, and average particle diameter were determined by the following methods. These are shown together in Table 1.
(Elution test for heavy metals 1; Arsenic elution test)
The amount of insolubilized material shown in Table 1 was added to arsenic-contaminated soil (water content ratio: 70%), and the amount of arsenic eluted from the improved soil at 7 days of age was measured according to the Ministry of the Environment Notification No. 46 did. The environmental standard value for arsenic is 0.01 mg / liter.
(Elution test 2 for heavy metals; fluorine elution test)
The amount of insolubilized material shown in Table 1 was added to fluorine-contaminated soil (water content: 75%), and the amount of fluorine eluted from the improved soil on the 7th day of age was measured according to the Ministry of the Environment Notification No. 46 did. The environmental standard value of fluorine is 0.8 mg / liter.
(Elution test for heavy metals 3; Lead elution test)
The amount of insolubilized material shown in Table 1 was added to lead-contaminated soil (water content: 70%), and the amount of lead elution from the improved soil on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 did. The environmental standard value for lead is 0.01 mg / liter.
(Elution test for heavy metals 4; elution test for hexavalent chromium)
The amount of insolubilized material shown in Table 1 was added to the hexavalent chromium-contaminated soil (water content: 80%), and the amount of hexavalent chromium elution from the improved soil on the 7th day of age was specified in the Ministry of the Environment Notification No. 46 Measured in conformity. The environmental standard value for hexavalent chromium is 0.05 mg / liter.
(成分組成)
 X線回折、熱重量分析および化学分析値から算出した。
(ブレーン比表面積)
 「JIS R 5201」に準じて測定した。
(平均粒径、ロジン・ラムラー式のn値)
 100mlビーカー中に、エタノール(分散媒)20ml、不溶化材0.05gを添加し、アズワン社製の超音波洗浄機(VS-100・周波数50kHz)を用いて1分間超音波分散した。その後、日機装社製9320-X10(粒度分布測定装置)を用いて、平均粒径(50%質量累積粒径)、ロジン・ラムラー式のn値を求めた。なお、試料の屈折率は1.72の条件で行うものとする。
(Component composition)
Calculated from X-ray diffraction, thermogravimetric analysis and chemical analysis values.
(Brain specific surface area)
It measured according to "JISR5201".
(Average particle size, n value of Rosin-Rammler formula)
In a 100 ml beaker, 20 ml of ethanol (dispersion medium) and 0.05 g of an insolubilizing material were added, and ultrasonically dispersed for 1 minute using an ultrasonic cleaner (VS-100, frequency 50 kHz) manufactured by AS ONE. Then, using Nikkiso 9320-X10 (particle size distribution measuring device), the average particle size (50% mass cumulative particle size) and the n-value of the Rosin-Rammler equation were determined. Note that the refractive index of the sample is assumed to be 1.72.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例4~11]
 上記不溶化材A-1~A-8を用いて、実施例1と同様にして、重金属類等の溶出試験1、2、及び4(ヒ素、フッ素、6価クロムの溶出試験)を行った。結果を表2に示す。
[Examples 4 to 11]
Using the insolubilized materials A-1 to A-8, the elution tests 1, 2, and 4 (elution test for arsenic, fluorine, hexavalent chromium) of heavy metals and the like were performed in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例12~14、比較例5]
 重金属類を含む焼却灰に、上記不溶化材A、A-1、A-5を添加して、あるいは、不溶化材を添加せずに、重金属類の溶出試験1~4を行った。なお、試験方法は、実施例1と同様である。結果を表3に示す。
[Examples 12 to 14, Comparative Example 5]
Elution tests 1 to 4 for heavy metals were conducted with insolubilizing materials A, A-1, and A-5 added to incinerated ash containing heavy metals, or without adding the insolubilizing materials. The test method is the same as in Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から、本発明の不溶化材によると、少ない添加量で、重金属類等(ヒ素、フッ素、鉛、6価クロム)の溶出量を環境基準値以下に低減し得ることがわかる(実施例1~3)。一方、水和が不十分で水酸化マグネシウムの含有率が本発明の範囲外である比較例1、及び、(A)軽焼マグネシア部分水和物中のカルシウムの含有率(酸化物換算)が本発明の範囲外である比較例2では、重金属類等の溶出量を環境基準値以下にするためには、実施例1~3に比して多量の不溶化材を添加する必要があることがわかる。軽焼マグネシアの部分水和物に代えて、軽焼マグネシアと試薬である水酸化マグネシウムを併用した比較例4では、重金属類等の溶出抑制効果が不十分であることがわかる。なお、比較例3では、不溶化材を用いていないため、重金属類等が多量に溶出することがわかる。
 また、表2から、硫酸塩(硫酸第一鉄、硫酸アルミニウム)を添加すると、さらに少ない使用量で、重金属類等の溶出量を環境基準値以下に低減し得ることがわかる(実施例4~11)。
 さらに、表3から、本発明の不溶化材は、焼却灰に対しても優れた不溶化効果を有することがわかる。
From Table 1, it can be seen that according to the insolubilizing material of the present invention, the amount of elution of heavy metals (arsenic, fluorine, lead, hexavalent chromium) can be reduced below the environmental standard value with a small addition amount (Example 1). ~ 3). On the other hand, Comparative Example 1 in which hydration is insufficient and the content of magnesium hydroxide is outside the scope of the present invention, and (A) the content (calculated in terms of oxide) of calcium in the light-burned magnesia partial hydrate is In Comparative Example 2, which is outside the scope of the present invention, it may be necessary to add a larger amount of insolubilizing material than Examples 1 to 3 in order to reduce the amount of elution of heavy metals and the like to an environmental standard value or less. Recognize. It turns out that it replaces with the partial hydrate of light-burning magnesia, and the elution suppression effect of heavy metals etc. is inadequate in the comparative example 4 which used together light-burning magnesia and the magnesium hydroxide which is a reagent. In Comparative Example 3, no insolubilizing material is used, so that it can be seen that a large amount of heavy metals are eluted.
In addition, it can be seen from Table 2 that the addition of sulfate (ferrous sulfate, aluminum sulfate) can reduce the amount of elution of heavy metals and the like below the environmental standard value with a smaller amount of use (Examples 4 to 4). 11).
Furthermore, it can be seen from Table 3 that the insolubilizing material of the present invention has an excellent insolubilizing effect even for incineration ash.
[2.成分(B)を含まない場合]
[不溶化材の調製]
 以下の不溶化材G~Tを調製した。
(1)不溶化材G:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて10日間保管したもの
(2)不溶化材H:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて20日間保管したもの
(3)不溶化材I:「不溶化材A」100質量部に対してブレーン比表面積5,500cm2/gの天然無水石膏を18質量部添加し、混合したもの
(4)不溶化材J:「不溶化材B」100質量部に対してブレーン比表面積5,500cm2/gの天然無水石膏を18質量部添加し、混合したもの
(5)不溶化材K:「不溶化材A」100質量部に対してブレーン比表面積5,500cm2/gの天然無水石膏を3質量部添加し、混合したもの
(6)不溶化材L:「不溶化材A」100質量部に対してブレーン比表面積5,500cm2/gの天然無水石膏を50質量部添加し、混合したもの
(7)不溶化材M:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、エア・ジェット式ふるい装置で粒度調整した後、相対湿度100%の保管室にて10日間保管したもの
(8)不溶化材N:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、エア・ジェット式ふるい装置で粒度調整した後、相対湿度100%の保管室にて10日間保管したもの
(9)不溶化材O:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度60%の保管室にて20日間保管したもの
(10)不溶化材P:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて50日間保管したもの
(11)不溶化材Q:カルシウムの含有率の高いマグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて10日間保管したもの
(12)不溶化材R:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物100質量部に対し、試薬(関東化学社製;特級)である水酸化マグネシウム11.5質量部を添加し混合したもの
(13)不溶化材S:カルシウムの含有率の高いマグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて20日間保管したもの
(14)不溶化材T:カルシウムの含有率の高いマグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて10日間保管したもの
[2. When component (B) is not included]
[Preparation of insolubilized material]
The following insolubilized materials G to T were prepared.
(1) Insolubilizing material G: A material obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. and storing it in a storage room with a relative humidity of 100% for 10 days. (2) Insolubilizing material H: A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. for 20 days in a storage room with a relative humidity of 100%. (3) Insolubilizing material I: “Insolubilizing material A ”18 parts by mass of natural anhydrous gypsum having a specific surface area of 5,500 cm 2 / g of brain relative to 100 parts by mass and mixed (4) Insolubilized material J: Blaine relative to 100 parts by mass of“ insolubilized material B ” 18 parts by mass of natural anhydrous gypsum having a specific surface area of 5,500 cm 2 / g were added and mixed. (5) Insolubilized material K: Blaine specific surface area of 5,500 cm 2 / g with respect to 100 parts by mass of “insolubilized material A” 3 masses of natural anhydrous gypsum Added, mixed ones (6) insoluble material L: which "insoluble material A" natural anhydrite of Blaine specific surface area of 5,500cm 2 / g were added 50 parts by weight per 100 parts by weight, were mixed (7) Insolubilizing material M: After pulverized light magnesia obtained by firing magnesite at 890 ° C., the particle size was adjusted with an air jet sieving apparatus, and then stored in a storage room with a relative humidity of 100%. (8) Insolubilized material N: pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C., and adjusting the particle size with an air jet sieving apparatus, and then relative humidity 100 (9) Insolubilized material O: A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. in a storage room having a relative humidity of 60%. For 20 days (10) Insolubilized material P: a pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. and stored for 50 days in a storage room with a relative humidity of 100% (11) Insolubilized material Q: a pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C. and stored in a storage room with a relative humidity of 100% for 10 days (12 ) Insolubilizing material R: Magnesium hydroxide 11.5 which is a reagent (manufactured by Kanto Chemical Co., Ltd .; special grade) with respect to 100 parts by mass of pulverized product obtained by pulverizing light-burned magnesia obtained by baking magnesite at 890 ° C. (13) Insolubilized material S: pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C., having a relative humidity of 100% Storage room (14) Insolubilized material T: A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C., stored at a relative humidity of 100% Stored in the room for 10 days
[汚染土壌等の準備]
 以下の汚染土壌、焼却飛灰、及び排水を準備した。
(1)ヒ素汚染土壌
 湿潤密度1.67g/cm3、含水比51.5%のシルト土2000gに対し、ヒ酸水素ナトリウム・7水和物0.04gを添加して混合し、ヒ素汚染土壌を得た。
(2)フッ素汚染土壌
 湿潤密度1.53g/cm3、含水比76.3%の粘性土2000gに対し、フッ化カリウム0.06gを添加して混合し、フッ素汚染土壌を得た。
(3)鉛汚染土壌
 湿潤密度1.71g/cm3、含水比10.5%の砂質土2000gに対し、硝酸鉛(II)0.50gを添加して混合し、鉛汚染土壌を得た。
(4)焼却灰
 一般家庭ごみの焼却炉から焼却灰(都市ごみ焼却灰)を回収した。
(5)ヒ素汚染排水
 水100質量部に対して、0.0043質量部のヒ酸水素ナトリウム(関東化学社製;特級)を添加して、ヒ素汚染排水を得た。
(6)フッ素汚染排水
 水100質量部に対して、0.0058質量部のフッ化カリウム(関東化学社製;特級)を添加して、フッ素汚染排水を得た。
(7)鉛汚染排水
 水100質量部に対して、0.0032質量部の硝酸鉛(II)(関東化学社製;特級)を添加して、鉛汚染排水を得た。
[Preparation of contaminated soil, etc.]
The following contaminated soil, incineration fly ash, and drainage were prepared.
(1) Arsenic-contaminated soil To arsenic-contaminated soil, 0.04 g of sodium hydrogen arsenate 7-hydrate is added to and mixed with 2000 g of silt soil with a wet density of 1.67 g / cm 3 and a water content of 51.5%. Got.
(2) Fluorine-contaminated soil 0.06 g of potassium fluoride was added to and mixed with 2000 g of viscous soil having a wet density of 1.53 g / cm 3 and a water content ratio of 76.3% to obtain fluorine-contaminated soil.
(3) Lead-contaminated soil 0.50 g of lead (II) nitrate was added to and mixed with 2000 g of sandy soil with a wet density of 1.71 g / cm 3 and a water content ratio of 10.5% to obtain lead-contaminated soil. .
(4) Incineration ash Incineration ash (city waste incineration ash) was recovered from incinerators for general household waste.
(5) Arsenic-contaminated wastewater 0.0043 parts by mass of sodium hydrogen arsenate (manufactured by Kanto Chemical Co., Inc .; special grade) was added to 100 parts by mass of water to obtain arsenic-contaminated wastewater.
(6) Fluorine-contaminated wastewater 0.0058 parts by mass of potassium fluoride (manufactured by Kanto Chemical Co., Inc .; special grade) was added to 100 parts by mass of water to obtain fluorine-contaminated wastewater.
(7) Lead-contaminated wastewater 0.0032 parts by mass of lead nitrate (II) (manufactured by Kanto Chemical Co., Ltd .; special grade) was added to 100 parts by mass of water to obtain lead-contaminated wastewater.
[試験方法]
(1)不溶化材の成分組成
 X線回折、熱重量分析および化学分析値から算出した。
(2)ブレーン比表面積
 「JIS R 5201」に準じて測定した。
(3)ロジン・ラムラー式のn値
 100ミリリットル容量のビーカー中に、エタノール(分散媒)20ミリリットル、不溶化材0.05gを添加し、アズワン社製の超音波洗浄機(VS-100・周波数50kHz)を用いて1分間超音波分散した。その後、日機装社製9320-X10(粒度分布測定装置)を用いて、ロジン・ラムラー式のn値を求めた。なお、試料の屈折率は1.72の条件で行うものとする。
(4)一軸圧縮強度
 汚染土壌に対し、不溶化材を添加し、材齢7日の改良土壌を得た。この改良土壌の一軸圧縮強度を、JIS A 1216に準じて測定した。
[Test method]
(1) Component composition of insolubilized material Calculated from X-ray diffraction, thermogravimetric analysis, and chemical analysis values.
(2) Blaine specific surface area Measured according to "JIS R 5201".
(3) Rosin-Rammler n value In a 100 ml capacity beaker, 20 ml of ethanol (dispersion medium) and 0.05 g of insolubilized material were added, and an ultrasonic cleaner (VS-100, frequency 50 kHz, manufactured by AS ONE) ) For 1 minute. Thereafter, the n value of the rosin-Rammler type was determined using 9320-X10 (particle size distribution measuring device) manufactured by Nikkiso Co., Ltd. Note that the refractive index of the sample is assumed to be 1.72.
(4) Uniaxial compressive strength An insolubilizing material was added to the contaminated soil to obtain improved soil on the age of 7 days. The uniaxial compressive strength of the improved soil was measured according to JIS A 1216.
(5)溶出試験1(ヒ素)
(a)土壌
 ヒ素汚染土壌(含水比:70%)に対し、不溶化材を添加し、材齢7日の改良土壌からのヒ素の溶出量を環境省告示46号法に準拠して測定した。なお、ヒ素の環境基準値は0.01mg/リットルである。
(b)焼却灰
 焼却灰に対し、不溶化材を添加し、材齢7日の改良焼却灰からのヒ素の溶出量を環境省告示46号法に準拠して測定した。
(c)排水
 ヒ素汚染排水に対し、不溶化材を添加し、200回/分で4時間振とうした後の排水からのヒ素の溶出量を測定した。この際、不溶化材の添加後のpHも測定した。
(5) Dissolution test 1 (arsenic)
(A) Soil An insolubilizing material was added to arsenic-contaminated soil (water content ratio: 70%), and the amount of arsenic eluted from the improved soil at 7 days of age was measured according to the Ministry of the Environment Notification No. 46. The environmental standard value for arsenic is 0.01 mg / liter.
(B) Incineration ash An insolubilizing material was added to the incineration ash, and the amount of arsenic eluted from the improved incineration ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46.
(C) Wastewater An insolubilizing material was added to the arsenic-contaminated wastewater, and the amount of arsenic eluted from the wastewater after shaking at 200 times / minute for 4 hours was measured. At this time, the pH after addition of the insolubilizing material was also measured.
(6)溶出試験2(フッ素)
(a)土壌
 フッ素汚染土壌(含水比:75%)に対し、不溶化材を添加し、材齢7日の改良土壌からのフッ素の溶出量を環境省告示46号法に準拠して測定した。なお、フッ素の環境基準値は0.8mg/リットルである。
(b)焼却灰
 焼却灰に対し、不溶化材を添加し、材齢7日の改良焼却灰からのフッ素の溶出量を環境省告示46号法に準拠して測定した。
(c)排水
 フッ素汚染排水に対し、不溶化材を添加し、200回/分で4時間振とうした後の排水からのヒ素の溶出量を測定した。この際、不溶化材の添加後のpHも測定した。
(6) Dissolution test 2 (fluorine)
(A) Soil Fluorine-contaminated soil (water content: 75%) was added with an insolubilizing material, and the amount of fluorine eluted from the improved soil at the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value of fluorine is 0.8 mg / liter.
(B) Incineration ash An insolubilizing material was added to the incineration ash, and the amount of fluorine eluted from the improved incineration ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46.
(C) Wastewater An insolubilizing material was added to the fluorine-contaminated wastewater, and the amount of arsenic eluted from the wastewater after shaking for 4 hours at 200 times / minute was measured. At this time, the pH after addition of the insolubilizing material was also measured.
(7)溶出試験3(鉛)
(a)土壌
 鉛汚染土壌(含水比:70%)に対し、不溶化材を添加し、材齢7日の改良土壌からの鉛の溶出量を環境省告示46号法に準拠して測定した。なお、鉛の環境基準値は0.01mg/リットルである。
(b)排水
 鉛汚染排水に対し、不溶化材を添加し、200回/分で4時間振とうした後の排水からのヒ素の溶出量を測定した。この際、不溶化材の添加後のpHも測定した。
(7) Dissolution test 3 (lead)
(A) Soil An insolubilizing material was added to lead-contaminated soil (water content ratio: 70%), and the amount of lead eluted from the improved soil on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value for lead is 0.01 mg / liter.
(B) Wastewater The insolubilizing material was added to the lead-contaminated wastewater, and the amount of arsenic eluted from the wastewater after shaking for 4 hours at 200 times / minute was measured. At this time, the pH after addition of the insolubilizing material was also measured.
(8)溶出試験4(6価クロム)
 焼却灰に対し、不溶化材を添加し、材齢7日の改良焼却灰からの6価クロムの溶出量を環境省告示46号法に準拠して測定した。なお、6価クロムの環境基準値は0.05mg/リットルである。
(8) Dissolution test 4 (hexavalent chromium)
An insolubilizing material was added to the incinerated ash, and the elution amount of hexavalent chromium from the improved incinerated ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value for hexavalent chromium is 0.05 mg / liter.
[実施例15~22、比較例6~10]
 表4に示すように、汚染土壌に各種の不溶化材を添加した場合(実施例15~22、比較例6~9)及び不溶化材を添加しない場合(比較例10)のヒ素等の溶出量及び一軸圧縮強度(表4中、「一軸強度」と略す。)を測定した。結果を表4に示す。
 なお、表4中、「添加量(kg/m3)」は、不溶化材の添加前の汚染土壌1m3に対する不溶化材の添加量(kg)を表す。
[Examples 15 to 22, Comparative Examples 6 to 10]
As shown in Table 4, when various insolubilizing materials were added to the contaminated soil (Examples 15 to 22, Comparative Examples 6 to 9) and when no insolubilizing materials were added (Comparative Example 10), Uniaxial compressive strength (abbreviated as “uniaxial strength” in Table 4) was measured. The results are shown in Table 4.
In Table 4, “addition amount (kg / m 3 )” represents the addition amount (kg) of the insolubilizing material to 1 m 3 of contaminated soil before the addition of the insolubilizing material.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、本発明に該当する不溶化材を用いた場合(実施例15~22)、少ない添加量で汚染土壌からのヒ素等の溶出量を低く抑えうること、及び、一軸圧縮強度も良好な値であることがわかる。一方、比較例6、7では、水酸化マグネシウムの含有率が本発明で規定する数値範囲から外れているため、実施例15~22に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例8では、カルシウムの含有率(酸化物換算)が本発明で規定する数値範囲を超えているため、実施例15~22に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例9では、軽焼マグネシア部分水和物ではなく、軽焼マグネシアと試薬である水酸化マグネシウムの混合物を用いているため、実施例15~22に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例10では、不溶化材を用いていないため、ヒ素、フッ素、鉛の溶出量が非常に大きい。 From Table 4, when the insolubilizing material corresponding to the present invention is used (Examples 15 to 22), the amount of arsenic and the like eluted from the contaminated soil can be kept low with a small addition amount, and the uniaxial compressive strength is also good. It turns out that it is a value. On the other hand, in Comparative Examples 6 and 7, the magnesium hydroxide content is out of the numerical range defined in the present invention, so that arsenic, fluorine and lead are eluted at the same added amount as compared with Examples 15 to 22. The amount is large. In Comparative Example 8, since the calcium content (as oxide) exceeds the numerical range defined in the present invention, the amount of arsenic, fluorine, and lead eluted with the same amount of addition as compared with Examples 15-22 Is big. In Comparative Example 9, not a light-burned magnesia partial hydrate but a mixture of light-burned magnesia and magnesium hydroxide, which is a reagent, is used. Therefore, compared with Examples 15 to 22, arsenic and fluorine at the same addition amount are used. The amount of lead elution is large. In Comparative Example 10, since the insolubilizing material is not used, the amount of arsenic, fluorine, and lead eluted is very large.
[実施例23~24、比較例11~14]
 表5に示すように、焼却灰に各種の不溶化材を添加した場合(実施例23~24、比較例11~13)及び不溶化材を添加しない場合(比較例14)のヒ素等の溶出量を測定した。結果を表5に示す。
 なお、表5中、「添加量(kg/m3)」は、不溶化材の添加前の焼却灰1m3に対する不溶化材の添加量(kg)を表す。
[Examples 23 to 24, Comparative Examples 11 to 14]
As shown in Table 5, the amounts of arsenic and the like eluted when various insolubilizing materials were added to incinerated ash (Examples 23 to 24, Comparative Examples 11 to 13) and when no insolubilizing materials were added (Comparative Example 14). It was measured. The results are shown in Table 5.
In Table 5, “addition amount (kg / m 3 )” represents the addition amount (kg) of the insolubilizing material relative to 1 m 3 of the incinerated ash before the addition of the insolubilizing material.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5から、本発明に該当する不溶化材を用いた場合(実施例23~24)、少ない添加量で焼却灰からのヒ素等の溶出量を低く抑えうることがわかる。一方、比較例11、12では、水酸化マグネシウムの含有率が本発明で規定する数値範囲から外れているため、実施例23~24と同程度にヒ素、フッ素、6価クロムの各溶出量を低く抑えるためには、不溶化材の添加量を実施例23~24よりも大きくしなければならないことがわかる。比較例13では、カルシウムの含有率(酸化物換算)が本発明で規定する数値範囲を超えているため、実施例23~24と同程度にヒ素、フッ素、6価クロムの各溶出量を低く抑えるためには、不溶化材の添加量を実施例23~24よりも大きくしなければならないことがわかる。比較例14では、不溶化材を用いていないため、ヒ素、フッ素、6価クロムの溶出量が非常に大きい。 Table 5 shows that when the insolubilizing material corresponding to the present invention is used (Examples 23 to 24), the amount of arsenic and the like eluted from the incinerated ash can be kept low with a small addition amount. On the other hand, in Comparative Examples 11 and 12, since the magnesium hydroxide content is out of the numerical range defined in the present invention, the elution amounts of arsenic, fluorine, and hexavalent chromium are the same as in Examples 23 to 24. It can be seen that in order to keep it low, the amount of insolubilizing material added must be larger than in Examples 23-24. In Comparative Example 13, since the calcium content (in oxide equivalent) exceeds the numerical range defined in the present invention, the leaching amounts of arsenic, fluorine, and hexavalent chromium are as low as those in Examples 23 to 24. It can be seen that the amount of insolubilizing material added must be larger than those in Examples 23 to 24 in order to suppress it. In Comparative Example 14, since no insolubilizing material was used, the elution amount of arsenic, fluorine, and hexavalent chromium was very large.
[実施例25~28、比較例15~20]
 表6に示すように、汚染排水に各種の不溶化材を添加した場合(実施例25~28、比較例15~19)及び不溶化材を添加しない場合(比較例20)のヒ素等の溶出量を測定した。結果を表6に示す。
 なお、表6中、「排水に対する添加量(質量%)」は、不溶化材の添加前の排水100質量%に対する不溶化材の添加量(質量%)を表す。
[Examples 25 to 28, Comparative Examples 15 to 20]
As shown in Table 6, the amounts of arsenic and the like eluted when various insolubilizing materials were added to the contaminated wastewater (Examples 25 to 28, Comparative Examples 15 to 19) and when no insolubilizing materials were added (Comparative Example 20). It was measured. The results are shown in Table 6.
In Table 6, “addition amount to waste water (mass%)” represents the addition amount (mass%) of the insolubilizing material relative to 100 mass% of the waste water before the addition of the insolubilizing material.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から、本発明に該当する不溶化材を用いた場合(実施例25~28)、少ない添加量で汚染排水からのヒ素等の溶出量を排水基準以下に低く抑えうることがわかる。一方、比較例15、16では、水酸化マグネシウムの含有率が本発明で規定する数値範囲から外れているため、実施例25~28に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量のバランスが悪い。比較例17、18では、カルシウムの含有率(酸化物換算)が本発明で規定する数値範囲を超えているため、実施例25~28に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例19では、軽焼マグネシア部分水和物ではなく、軽焼マグネシアと試薬である水酸化マグネシウムの混合物を用いているため、実施例25~28に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例20では、不溶化材を用いていないため、ヒ素、フッ素、鉛の溶出量が非常に大きい。 Table 6 shows that when the insolubilizing material corresponding to the present invention is used (Examples 25 to 28), the amount of arsenic and the like eluted from the contaminated wastewater can be kept below the drainage standard with a small addition amount. On the other hand, in Comparative Examples 15 and 16, the magnesium hydroxide content is out of the numerical range defined in the present invention. Therefore, compared with Examples 25 to 28, arsenic, fluorine and lead are eluted at the same addition amount. The balance of quantity is bad. In Comparative Examples 17 and 18, since the calcium content (as oxide) exceeds the numerical range defined in the present invention, arsenic, fluorine, and lead at the same addition amount compared to Examples 25 to 28. The amount of elution is large. In Comparative Example 19, since a mixture of light-burned magnesia and magnesium hydroxide as a reagent was used instead of light-burned magnesia partial hydrate, arsenic and fluorine at the same addition amount compared to Examples 25 to 28 The amount of lead elution is large. In Comparative Example 20, since no insolubilizing material is used, the amount of elution of arsenic, fluorine, and lead is very large.

Claims (8)

  1. (A)炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を550~1,400℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が50~96.5質量%、水酸化マグネシウムの含有率が3.5~50質量%であり、カルシウムの含有率が酸化物換算で5.0質量%以下である軽焼マグネシア部分水和物、
    を含むことを特徴とする不溶化材。
    (A) A lightly burned magnesia partial hydrate obtained by hydrating a portion of lightly burned magnesia obtained by firing a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C. In the light-burned magnesia partial hydrate, the magnesium oxide content is 50 to 96.5% by mass, the magnesium hydroxide content is 3.5 to 50% by mass, and the calcium content is oxidized. Lightly burned magnesia partial hydrate, which is 5.0% by mass or less in terms of product,
    Insolubilizing material characterized by containing.
  2.  (A)成分が粉末であり、かつ、(A)成分100質量部に対して、(B)炭酸カルシウムを主成分とする粉末を20~70質量部含む請求項1に記載の不溶化材。 The insolubilizing material according to claim 1, wherein the component (A) is a powder, and 20 to 70 parts by mass of (B) a powder containing calcium carbonate as a main component per 100 parts by mass of the component (A).
  3.  上記不溶化材は、ブレーン比表面積が2,500~20,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(-bDp n)(式中、Rは積算残分値(%)であり、ふるい残分を表し、Dpは粒径(μm)であり、ふるいの目の寸法を表し、b、nは定数である。)におけるn値が0.80~1.45の粉末である請求項1又は2に記載の不溶化材。 The insolubilizing material is a Blaine specific surface area of 2,500 ~ 20,000cm 2 / g, and wherein the Rosin-Rammler about the particle size distribution: R = 100exp (-bD p n ) ( wherein, R integrated residual it is the partial value (%) represents the sieve residue, D p is the particle size ([mu] m), represents the size of the sieve with, b, n are constants.) n values at 0.80 ~ The insolubilized material according to claim 1 or 2, which is 1.45 powder.
  4.  上記不溶化材は、平均粒径が20~40μmの粉末である請求項1~3のいずれか1項に記載の不溶化材。 The insolubilizing material according to any one of claims 1 to 3, wherein the insolubilizing material is a powder having an average particle diameter of 20 to 40 µm.
  5.  (C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物、を含む請求項1~4のいずれか1項に記載の不溶化材。 The insolubilizing material according to any one of claims 1 to 4, comprising (C) one or more additives selected from water-soluble sulfates and water-soluble chlorides.
  6.  上記不溶化材は、粒状または粉状の固体物に添加するためのものである請求項1~5のいずれか1項に記載の不溶化材。 The insolubilizing material according to any one of claims 1 to 5, wherein the insolubilizing material is for addition to a granular or powdery solid material.
  7.  (A)成分100質量部に対して、(D)石膏を50質量部以下の配合量で含む請求項6に記載の不溶化材。 The insolubilizing material according to claim 6, comprising (D) gypsum in an amount of 50 parts by mass or less with respect to 100 parts by mass of the component (A).
  8.  上記不溶化材は、排水に添加するためのものである請求項1~5のいずれか1項に記載の不溶化材。 The insolubilizing material according to any one of claims 1 to 5, wherein the insolubilizing material is for addition to waste water.
PCT/JP2009/067434 2008-11-07 2009-10-06 Insolubilizing agent WO2010052986A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-286430 2008-11-07
JP2008286430 2008-11-07
JP2008-310430 2008-12-05
JP2008310430A JP4343259B1 (en) 2008-11-07 2008-12-05 Insolubilizing material

Publications (1)

Publication Number Publication Date
WO2010052986A1 true WO2010052986A1 (en) 2010-05-14

Family

ID=41253480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067434 WO2010052986A1 (en) 2008-11-07 2009-10-06 Insolubilizing agent

Country Status (2)

Country Link
JP (1) JP4343259B1 (en)
WO (1) WO2010052986A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092180A (en) * 2010-10-25 2012-05-17 Taiheiyo Cement Corp Additive for neutral solidifying material, neutral solidifying material, and method for suppressing elution of heavy metal
JP2012177051A (en) * 2011-02-28 2012-09-13 Taiheiyo Cement Corp Material for treating heavy metal or the like
JP2012184388A (en) * 2011-02-14 2012-09-27 Ube Industries Ltd Insolubilizing agent, and method for producing the same
WO2017110999A1 (en) * 2015-12-24 2017-06-29 太平洋セメント株式会社 Insolubilization material, insolubilization mixture and insolubilization method
EP3471545A4 (en) * 2016-06-20 2019-12-25 Calix Limited A bioactive material

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068245B2 (en) * 2008-12-04 2012-11-07 太平洋セメント株式会社 Insolubilized material
JP4481360B1 (en) * 2009-10-05 2010-06-16 太平洋セメント株式会社 Insolubilizing material
JP5306957B2 (en) * 2009-10-06 2013-10-02 太平洋セメント株式会社 Dioxin diffusion inhibitor
JP5599256B2 (en) * 2010-08-04 2014-10-01 太平洋セメント株式会社 Heavy metal elution control material and elution control method
JP5682809B2 (en) * 2010-08-31 2015-03-11 住友大阪セメント株式会社 Method for producing heavy metal or fluorine elution reducing material
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals
US9212093B2 (en) * 2011-06-30 2015-12-15 NTH Consultants, Ltd. Hybrid magnesium cement and method of manufacture
CN102895936B (en) * 2011-07-29 2016-09-28 住友大阪水泥股份有限公司 Dissolution reduces material and manufacture method thereof
JP5674152B2 (en) * 2011-08-01 2015-02-25 住友大阪セメント株式会社 Fluorine, arsenic and heavy metal elution reducing material
JP5915202B2 (en) * 2012-01-25 2016-05-11 宇部興産株式会社 Insolubilization method
JP5186610B1 (en) * 2012-05-23 2013-04-17 太平洋セメント株式会社 Fired product
WO2014054131A1 (en) * 2012-10-03 2014-04-10 住友大阪セメント株式会社 Dissolution inhibitor
JP6543451B2 (en) * 2014-10-02 2019-07-10 フタムラ化学株式会社 Composite porous body for air battery electrode and air battery electrode body using the same
JP2016209793A (en) * 2015-05-01 2016-12-15 裕泰 吉川 Harmful component adsorption material, and method for producing the same
JP6675779B2 (en) * 2016-01-25 2020-04-01 太平洋セメント株式会社 Method for producing soil modifying material and method for modifying soil
JP7170570B2 (en) * 2019-03-25 2022-11-14 太平洋セメント株式会社 Insolubilizing material and insolubilizing treatment method
JP7436200B2 (en) 2019-12-26 2024-02-21 太平洋セメント株式会社 Insolubilization treatment method for heavy metals contained in waste

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206722A (en) * 1992-10-29 1994-07-26 Daiseru Amihoshi Sangyo Kk Apparatus for producing active magnesium hydroxide and production process
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2003193462A (en) * 2001-12-27 2003-07-09 Taiheiyo Cement Corp Soil solidification treatment method
JP2004292568A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Soil solidifying material
JP2005238207A (en) * 2004-02-27 2005-09-08 Astec:Kk Engineering method for cleaning contaminated soil
JP2005238198A (en) * 2004-02-27 2005-09-08 Taiheiyo Cement Corp Method for suppressing diffusion of dioxins
JP2007161838A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2007161839A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2008155101A (en) * 2006-12-22 2008-07-10 Taiheiyo Cement Corp Elution restraining material of hexavalent chromium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206722A (en) * 1992-10-29 1994-07-26 Daiseru Amihoshi Sangyo Kk Apparatus for producing active magnesium hydroxide and production process
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2003193462A (en) * 2001-12-27 2003-07-09 Taiheiyo Cement Corp Soil solidification treatment method
JP2004292568A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Soil solidifying material
JP2005238207A (en) * 2004-02-27 2005-09-08 Astec:Kk Engineering method for cleaning contaminated soil
JP2005238198A (en) * 2004-02-27 2005-09-08 Taiheiyo Cement Corp Method for suppressing diffusion of dioxins
JP2007161838A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2007161839A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2008155101A (en) * 2006-12-22 2008-07-10 Taiheiyo Cement Corp Elution restraining material of hexavalent chromium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092180A (en) * 2010-10-25 2012-05-17 Taiheiyo Cement Corp Additive for neutral solidifying material, neutral solidifying material, and method for suppressing elution of heavy metal
JP2012184388A (en) * 2011-02-14 2012-09-27 Ube Industries Ltd Insolubilizing agent, and method for producing the same
JP2012177051A (en) * 2011-02-28 2012-09-13 Taiheiyo Cement Corp Material for treating heavy metal or the like
WO2017110999A1 (en) * 2015-12-24 2017-06-29 太平洋セメント株式会社 Insolubilization material, insolubilization mixture and insolubilization method
EP3471545A4 (en) * 2016-06-20 2019-12-25 Calix Limited A bioactive material

Also Published As

Publication number Publication date
JP2010131535A (en) 2010-06-17
JP4343259B1 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
WO2010052986A1 (en) Insolubilizing agent
JP4481360B1 (en) Insolubilizing material
JP5068245B2 (en) Insolubilized material
JP5757613B2 (en) Processing materials such as heavy metals
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
CN106467745A (en) It is suitable for the steel slag and desulfurized gypsum base soil-solidified-agent of As polluted soil
JP6084745B1 (en) Disposal method of mud generated by muddy water type shield method
JP5315096B2 (en) Heavy metal insolubilization method and heavy metal insolubilization solidification material
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP6338885B2 (en) Oil-contaminated soil solidification treatment material and solidification treatment method
JP5599256B2 (en) Heavy metal elution control material and elution control method
JP5915202B2 (en) Insolubilization method
JP2012055815A (en) Method of suppressing elution of heavy metals
JP5013005B1 (en) Insolubilizer and method for producing the same
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JPH10137716A (en) Waste treating material and treatment of waste
JP6675779B2 (en) Method for producing soil modifying material and method for modifying soil
JP6046476B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP5836096B2 (en) Earthwork materials
JP6465604B2 (en) Insolubilized slurry
JPWO2017179122A1 (en) Cement additive and cement composition
JP2016129869A (en) Insolubilization material and insolubilization slurry
JP6356933B1 (en) Disposal method of mud generated by muddy water type shield method
JP4283701B2 (en) Calcium sulfide manufacturing method, ground improvement material manufacturing method, and processing object processing method
Bouzar et al. Pilot-scale natural carbonation of waste paper fly ash for stabilization of Ba and Pb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824686

Country of ref document: EP

Kind code of ref document: A1