JP4343259B1 - Insolubilizing material - Google Patents

Insolubilizing material Download PDF

Info

Publication number
JP4343259B1
JP4343259B1 JP2008310430A JP2008310430A JP4343259B1 JP 4343259 B1 JP4343259 B1 JP 4343259B1 JP 2008310430 A JP2008310430 A JP 2008310430A JP 2008310430 A JP2008310430 A JP 2008310430A JP 4343259 B1 JP4343259 B1 JP 4343259B1
Authority
JP
Japan
Prior art keywords
mass
light
burned magnesia
content
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008310430A
Other languages
Japanese (ja)
Other versions
JP2010131535A (en
Inventor
祐介 松山
晃一 内田
宙 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2008310430A priority Critical patent/JP4343259B1/en
Priority to PCT/JP2009/067434 priority patent/WO2010052986A1/en
Application granted granted Critical
Publication of JP4343259B1 publication Critical patent/JP4343259B1/en
Publication of JP2010131535A publication Critical patent/JP2010131535A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/33Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by chemical fixing the harmful substance, e.g. by chelation or complexation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/24Organic substances containing heavy metals
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】重金属類等による汚染濃度の高い土壌に対しても、少ない添加量で、重金属類等の溶出を十分に抑制することができる不溶化材を提供する。
【解決手段】不溶化材は、(A)炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を650〜1,000℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が65〜96.5質量%、水酸化マグネシウムの含有率が3.5〜30質量%であり、カルシウムの含有率が酸化物換算で3.0質量%以下である軽焼マグネシア部分水和物からなる粉末100質量部と、(B)炭酸カルシウムを主成分とする粉末20〜70質量部を含む。
【選択図】なし
To provide an insolubilizing material capable of sufficiently suppressing elution of heavy metals and the like with a small addition amount even in soil with a high contamination concentration due to heavy metals and the like.
The insolubilizing material is obtained by hydrating a part of lightly burned magnesia obtained by firing (A) a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 650 to 1,000 ° C. A light-burned magnesia partial hydrate having a magnesium oxide content of 65-96.5% by mass and a magnesium hydroxide content of 3.5-30% by mass. Yes, 100 parts by mass of powder composed of light-burned magnesia partial hydrate having a calcium content of 3.0% by mass or less in terms of oxides, and (B) 20-70 parts by mass of powder mainly composed of calcium carbonate including.
[Selection figure] None

Description

本発明は、重金属類等を含む汚染土壌等から、当該重金属等が溶出するのを抑制することのできる不溶化材に関する。   The present invention relates to an insolubilizing material capable of suppressing elution of heavy metals and the like from contaminated soil containing heavy metals and the like.

近年、工場、事業所、産業廃棄物処理場の跡地などにおいて、土壌が鉛、6価クロム、ヒ素等の重金属類やフッ素等(以下、重金属類等ともいう。)で汚染されていることが、しばしば報告されている。このように土壌が重金属類等で汚染されると、その汚染が地下水にまで広がり、人体や穀物にまで影響を及ぼすという安全衛生上の問題がある。また、当該土壌の汚染濃度が環境基準値を超える場合には、跡地をそのまま利用できなくなり、土地を有効利用することができないという問題もある。
ここで、汚染土壌中の重金属類等を不溶化して、これら重金属類等が土壌から溶出するのを抑制・防止するための技術が種々提案されている。
例えば、酸化マグネシウムを含む重金属溶出抑制固化材が提案されている(特許文献1)。
また、MgOおよび/またはMgO含有材からなることを特徴とする有害物質汚染土壌用固化不溶化剤が提案されている(特許文献2)。
また、700〜1,000℃で焼成され、粉末度4,000cm/g以上に調整した酸化マグネシウムを、汚染土壌等に添加・混合することにより、該汚染土壌等を固化して、汚染物質の不溶化を行う汚染土壌等の固化・不溶化方法が提案されている(特許文献3)。
また、固化可能なバインダー中に物質を取り込む方法であって、当該方法が、スラリーとして、又は次のスラリーの形成のために、物質をバインダーと混合する工程を含み、該バインダーが苛性酸化マグネシウム源を含んでおり、及びスラリーに、バインダーの固化を促進する固化剤を加える工程を含む方法が提案されている(特許文献4)。
さらに、波長1.5405Åにおける粉末X線回折スペクトルが、2θ=42.8°±0.3°にピークの頂点を有し、該ピークのベースラインを基準とした半値幅が0.32〜1.5°であることを特徴とする潜晶質マグネシアが提案されている(特許文献5)。
特開2003−117532号公報 特開2003−225640号公報 特開2003−334526号公報 特表2005−523990号公報 特開2007−22902号公報
In recent years, soil has been contaminated with heavy metals such as lead, hexavalent chromium, and arsenic, fluorine, etc. (hereinafter also referred to as heavy metals) at sites of factories, offices, and industrial waste disposal sites. Often reported. Thus, when soil is contaminated with heavy metals or the like, there is a safety and health problem that the contamination spreads to the ground water and affects the human body and grains. Further, when the soil contamination concentration exceeds the environmental standard value, there is a problem that the site cannot be used as it is and the land cannot be used effectively.
Here, various techniques for insolubilizing heavy metals and the like in contaminated soil and suppressing and preventing these heavy metals and the like from eluting from the soil have been proposed.
For example, a heavy metal elution suppression solidifying material containing magnesium oxide has been proposed (Patent Document 1).
Further, a solidifying and insolubilizing agent for toxic substance-contaminated soil characterized by comprising MgO and / or a MgO-containing material has been proposed (Patent Document 2).
In addition, by adding and mixing magnesium oxide baked at 700 to 1,000 ° C. and adjusted to a fineness of 4,000 cm 2 / g or more to the contaminated soil, the contaminated soil is solidified and contaminated. There has been proposed a method for solidifying and insolubilizing contaminated soil and the like (Patent Document 3).
A method of incorporating a material into a solidifiable binder, the method comprising mixing the material with a binder as a slurry or for the formation of a subsequent slurry, wherein the binder is a source of caustic magnesium oxide. And a method including a step of adding a solidifying agent that promotes solidification of the binder to the slurry has been proposed (Patent Document 4).
Further, the powder X-ray diffraction spectrum at a wavelength of 1.5405 mm has a peak apex at 2θ = 42.8 ° ± 0.3 °, and the half-value width based on the baseline of the peak is 0.32-1. Latent crystalline magnesia characterized by an angle of 0.5 ° has been proposed (Patent Document 5).
JP 2003-117532 A JP 2003-225640 A JP 2003-334526 A JP 2005-523990 A JP 2007-22902 A

酸化マグネシウム(軽焼マグネシア等)を不溶化材として用いる特許文献1〜5の技術によると、汚染濃度の低い土壌に対しては、重金属類等の溶出を抑制することができる。しかし、汚染濃度の高い土壌に対しては、未だその効果(重金属類等の溶出抑制効果)は不十分であり、重金属類等の溶出量を所定の値(例えば、環境基準値)以下にするためには、不溶化材の使用量が増加し、高コストになるという問題がある。さらにこの場合、不溶化材の添加後のボリュームが大きくなり、副次的な対策が必要になるなどの問題がある。
そこで、本発明は、汚染濃度の高い土壌等に対しても、少ない添加量で、重金属類等の溶出を十分に抑制することができる不溶化材を提供することを目的とする。
According to the techniques of Patent Documents 1 to 5 using magnesium oxide (lightly burned magnesia or the like) as an insolubilizing material, elution of heavy metals and the like can be suppressed for soil having a low contamination concentration. However, the effect (elution suppression effect of heavy metals, etc.) is still insufficient for highly contaminated soil, and the elution amount of heavy metals, etc. is set to a predetermined value (for example, environmental standard value) or less. Therefore, there is a problem that the amount of the insolubilizing material used is increased and the cost is increased. Further, in this case, there is a problem that the volume after the addition of the insolubilizing material is increased, and secondary measures are required.
Then, an object of this invention is to provide the insolubilization material which can fully suppress elution of heavy metals etc. with little addition amount with respect to soil etc. with high pollution concentration.

本発明者は、上記課題を解決するために鋭意検討した結果、軽焼マグネシアの一部を水和してなる特定の軽焼マグネシア部分水和物からなる粉末と、炭酸カルシウムを85質量%以上の含有率で含む粉末とを特定の割合で含む不溶化材によれば、本発明の上記目的を達成することができることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventor has found that a powder made of a specific light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia, and 85% by mass or more of calcium carbonate. According to the insolubilizing material containing a specific amount of the powder containing at a specific content, it has been found that the above object of the present invention can be achieved, and the present invention has been completed.

すなわち、本発明は、以下の[1]〜[4]を提供するものである。
[1] 下記(A)成分100質量部に対して、下記(B)成分を20〜70質量部含むことを特徴とする不溶化材。
(A)炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を650〜1,000℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が65〜96.5質量%、水酸化マグネシウムの含有率が3.5〜30質量%であり、カルシウムの含有率が酸化物換算で3.0質量%以下である軽焼マグネシア部分水和物からなる粉末
(B)炭酸カルシウムを85質量%以上の含有率で含む粉末
[2] ブレーン比表面積が4,500〜7,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(−bDp n)(式中、Rは積算残分値(%)であり、篩残分を表し、Dpは粒径(μm)であり、篩の目の寸法を表し、b、nは定数である。)におけるn値が0.90〜1.20である上記[1]に記載の不溶化材。
[3] 平均粒径が20〜40μmである上記[1]又は[2]に記載の不溶化材。
[4] さらに、(C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物、を含む上記[1]〜[3]のいずれか1つに記載の不溶化材。
That is, the present invention provides the following [1] to [4].
[1] An insolubilizing material containing 20 to 70 parts by mass of the following (B) component with respect to 100 parts by mass of the following (A) component.
(A) A light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 650 to 1,000 ° C. In the light-burned magnesia partial hydrate, the magnesium oxide content is 65-96.5% by mass, the magnesium hydroxide content is 3.5-30% by mass, and the calcium content is oxidized. Powder consisting of light-burned magnesia partial hydrate which is 3.0% by mass or less in terms of product (B) Powder containing calcium carbonate at a content of 85% by mass or more [2] Blaine specific surface area is 4,500-7, 000cm was 2 / g, and wherein the rosin-Rammler about the particle size distribution: R = 100exp (-bD p n ) ( wherein, R is accumulated residue value (%) represents the sieve residue, D p is the particle size (μm), the sieve Of represent the dimensions, b, n are constants. N value in) is insolubilized material according to [1] is 0.90 to 1.20.
[3] The insolubilized material according to [1] or [2], wherein the average particle size is 20 to 40 μm.
[4] The insolubilizing material according to any one of [1] to [3], further including (C) one or more additives selected from water-soluble sulfates and water-soluble chlorides.

本発明の不溶化材によると、特定の軽焼マグネシア部分水和物からなる粉末と、炭酸カルシウムを85質量%以上の含有率で含む粉末とを、特定の割合で含むことにより、汚染濃度の高い土壌等に対しても、少ない添加量で、重金属類等の溶出を十分に抑制することができる。 According to the insolubilizing material of the present invention, the contamination concentration is high by including a specific light-burned magnesia partial hydrate and a powder containing calcium carbonate at a content of 85% by mass or more at a specific ratio. Elution of heavy metals and the like can be sufficiently suppressed even with soil and the like with a small addition amount.

本発明の不溶化材は、(A)軽焼マグネシア部分水和物からなる粉末、及び(B)炭酸カルシウムを85質量%以上の含有率で含む粉末、を必須成分として含み、さらに必要に応じて他の任意成分を含む。
[(A)軽焼マグネシア部分水和物からなる粉末]
本発明の不溶化材に用いる(A)軽焼マグネシア部分水和物は、炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を650〜1,000℃で焼成して得た軽焼マグネシアの一部を水和してなるものである。
炭酸マグネシウムを主成分とする鉱物の例としては、マグネサイト、ドロマイト等が挙げられる。この場合、鉱物中の炭酸マグネシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
水酸化マグネシウムを主成分とする鉱物の例としては、ブルーサイト等が挙げられる。この場合、鉱物中の水酸化マグネシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
軽焼マグネシアは、酸化マグネシウムを主成分として含む。本発明で用いる、軽焼マグネシアを部分的に水和してなる軽焼マグネシア部分水和物は、水和により得られた水酸化マグネシウムと、酸化マグネシウムとを後述の特定の割合で含む。このような軽焼マグネシア部分水和物を用いることにより、重金属類等の溶出に対し、高い抑制効果を得ることができる。
焼成する際の温度は、650〜1,000℃、好ましくは750〜900℃、より好ましくは800〜900℃である。該温度が650℃未満であると、軽焼マグネシアが生成し難く、一方、1,000℃を超えると、重金属類等の溶出抑制効果が低下する。
The insolubilizing material of the present invention contains (A) a powder made of lightly burned magnesia partial hydrate, and (B) a powder containing calcium carbonate at a content of 85% by mass or more as essential components, and further if necessary. Contains other optional ingredients.
[(A) Powder made of light-burned magnesia partial hydrate]
The (A) light-burned magnesia partial hydrate used in the insolubilizing material of the present invention is a light-burned magnesia obtained by firing a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 650 to 1,000 ° C. A part is hydrated.
Examples of minerals mainly composed of magnesium carbonate include magnesite and dolomite. In this case, the content of magnesium carbonate in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
Examples of minerals mainly composed of magnesium hydroxide include brucite. In this case, the content of magnesium hydroxide in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
Light-burned magnesia contains magnesium oxide as a main component. The light-burned magnesia partial hydrate obtained by partially hydrating light-burned magnesia used in the present invention contains magnesium hydroxide obtained by hydration and magnesium oxide in a specific ratio described later. By using such a light-burned magnesia partial hydrate, a high suppression effect can be obtained for elution of heavy metals and the like.
The temperature at the time of baking is 650-1,000 degreeC, Preferably it is 750-900 degreeC, More preferably, it is 800-900 degreeC. When the temperature is lower than 650 ° C., light-burned magnesia is hardly generated, while when it exceeds 1,000 ° C., the elution suppression effect of heavy metals and the like is reduced.

(A)軽焼マグネシア部分水和物中、酸化マグネシウムの含有率は65〜96.5質量%、好ましくは70〜95質量%、より好ましくは75〜95質量%である。
(A)軽焼マグネシア部分水和物中、水酸化マグネシウムの含有率は3.5〜30質量%、好ましくは5〜20質量%、より好ましくは7〜17質量%である。
酸化マグネシウムの含有率が65質量%未満、あるいは水酸化マグネシウムの含有率が30質量%を超えると、重金属類等の溶出抑制効果が低下する。一方、酸化マグネシウムの含有率が96.5質量%を超えるか、あるいは、水酸化マグネシウムの含有率が3.5質量%未満であると、特に重金属類等による汚染の高い土壌において、その溶出を抑制する効果が低下する。
(A) The content rate of magnesium oxide in a light-burned magnesia partial hydrate is 65-96.5 mass%, Preferably it is 70-95 mass%, More preferably, it is 75-95 mass%.
(A) The content rate of magnesium hydroxide in a light-burned magnesia partial hydrate is 3.5-30 mass%, Preferably it is 5-20 mass%, More preferably, it is 7-17 mass%.
If the magnesium oxide content is less than 65% by mass or the magnesium hydroxide content exceeds 30% by mass, the elution suppression effect of heavy metals and the like is reduced. On the other hand, if the magnesium oxide content exceeds 96.5% by mass or the magnesium hydroxide content is less than 3.5% by mass, the elution of the magnesium oxide particularly in soils highly contaminated with heavy metals and the like The suppression effect is reduced.

本発明において、得られる軽焼マグネシア部分水和物に含まれる酸化カルシウム及び/又は水酸化カルシウムの合計の含有率は、軽焼マグネシア部分水和物(100質量%)中、酸化物換算で、3.0質量%以下、好ましくは2.5質量%以下、より好ましくは2.0質量%以下である。該含有率が3.0質量%を超えると、特に重金属類等による汚染の高い土壌において、その重金属類の溶出抑制効果が低下する。
なお、軽焼マグネシア部分水和物は、上記成分(MgO、Mg(OH)2、CaO、Ca(OH)2)以外の成分(具体的には、SiO2、Fe23等の不純物)を4.0質量%以下の含有率で含むことができる。該含有率が4.0質量%を超えると、重金属類等の溶出抑制効果が低下する。
In the present invention, the total content of calcium oxide and / or calcium hydroxide contained in the obtained light calcined magnesia partial hydrate is in terms of oxide in the light calcined magnesia partial hydrate (100% by mass). It is 3.0 mass% or less, Preferably it is 2.5 mass% or less, More preferably, it is 2.0 mass% or less. When this content rate exceeds 3.0 mass%, the elution inhibitory effect of the heavy metals will fall especially in soil highly contaminated with heavy metals.
Incidentally, light burned magnesia partially hydrated, the components (MgO, Mg (OH) 2 , CaO, Ca (OH) 2) other than the component (specifically, impurities such as SiO 2, Fe 2 O 3) In a content of 4.0% by mass or less. When this content rate exceeds 4.0 mass%, the elution suppression effect of heavy metals etc. will fall.

軽焼マグネシアを水和する方法としては、得られる軽焼マグネシア部分水和物中の各成分(酸化マグネシウム、水酸化マグネシウム、及びカルシウム)の含有率が上記特定の範囲内となればよく、特に限定されないが、例えば、下記(1)又は(2)の方法が挙げられる。
(1)軽焼マグネシアに水を添加して混合する方法
(2)軽焼マグネシアを相対湿度80%以上の環境下に、1週間以上保持する方法
なお、詳しくは後述するが、軽焼マグネシアと、(B)炭酸カルシウムを主成分とする粉末とを混合してから、上記水和反応を行ってもよい。
また、水和反応の前に、軽焼マグネシア(あるいは、軽焼マグネシアと、(B)炭酸カルシウムを主成分とする粉末との混合物)を粉砕することが好ましい。
As a method for hydrating light-burned magnesia, it is sufficient that the content of each component (magnesium oxide, magnesium hydroxide, and calcium) in the obtained light-burned magnesia partial hydrate is within the above specific range. Although not limited, the following (1) or (2) method is mentioned, for example.
(1) A method of adding water to light-burned magnesia and mixing (2) A method of holding light-burned magnesia in an environment having a relative humidity of 80% or more for one week or more. (B) The hydration reaction may be carried out after mixing with powder containing calcium carbonate as a main component.
Moreover, it is preferable to grind lightly burned magnesia (or a mixture of lightly burned magnesia and (B) a powder containing calcium carbonate as a main component) before the hydration reaction.

[(B)炭酸カルシウムを主成分とする粉末]
本発明の不溶化材には、(B)炭酸カルシウムを85質量%以上の含有率で含む粉末、が必須成分として用いられる。
(B)炭酸カルシウムを85質量%以上の含有率で含む粉末としては、特に限定されないが、例えば、工業用炭酸カルシウム粉末、試薬の炭酸カルシウム粉末、石灰石粉末、炭酸カルシウムを主成分とする貝殻の粉砕物、サンゴの粉砕物等を使用することができる。中でも、コストの観点から、石灰石粉末が好ましく用いられる。
(B)成分中の炭酸カルシウムの含有率は85質量%以上好ましくは90質量%以上である。
(B)成分は、本発明の不溶化材の製造過程において、(i)平均粒径1〜20mm(好ましくは2〜10mm)、あるいは、(ii)ブレーン比表面積3,000〜7,000cm/g(好ましくは4,000〜6,000cm/g)となるように粒度を調整して用いることが好ましい。(i)の場合には、軽焼マグネシア(水和前の(A)成分)と混合して、これら2種の材料を同時に粉砕した後に、水和に供することが好ましく、また、(ii)の場合には、粒度を調整済みの軽焼マグネシアと混合した後に、水和に供することが好ましい。
(B)成分の配合量は、(A)成分100質量部に対して、20〜70質量部、好ましくは25〜60質量部、より好ましくは30〜50質量部である。上記配合量が20質量部未満であると、重金属類等の溶出抑制効果が低下する。一方、上記配合量が70質量部を超えると、それに伴い、不溶化材中の(A)成分の割合が低下し、重金属類等の溶出抑制効果が低下する。
[(B) Powder mainly composed of calcium carbonate]
In the insolubilizing material of the present invention, (B) a powder containing calcium carbonate at a content of 85% by mass or more is used as an essential component.
(B) Although it does not specifically limit as a powder which contains calcium carbonate by 85 mass% or more , For example, the calcium carbonate powder for industrial use, the calcium carbonate powder of a reagent, limestone powder, and the shell which has calcium carbonate as a main component A pulverized material, a pulverized coral material, or the like can be used. Among these, limestone powder is preferably used from the viewpoint of cost.
(B) The content rate of the calcium carbonate in a component is 85 mass% or more , Preferably it is 90 mass% or more.
In the process of producing the insolubilized material of the present invention, the component (B) is (i) an average particle diameter of 1 to 20 mm (preferably 2 to 10 mm), or (ii) a Blaine specific surface area of 3,000 to 7,000 cm 2 / It is preferable to adjust the particle size to be g (preferably 4,000 to 6,000 cm 2 / g). In the case of (i), it is preferable to mix with light-burned magnesia (component (A) before hydration) and pulverize these two materials at the same time, and then subject to hydration, and (ii) In the case of, it is preferable to mix with lightly-burned magnesia whose particle size has been adjusted and then subjected to hydration.
(B) The compounding quantity of a component is 20-70 mass parts with respect to 100 mass parts of (A) component, Preferably it is 25-60 mass parts, More preferably, it is 30-50 mass parts. When the blending amount is less than 20 parts by mass, the elution suppressing effect of heavy metals and the like is reduced. On the other hand, when the said compounding quantity exceeds 70 mass parts, the ratio of the (A) component in an insolubilization material falls in connection with it, and the elution inhibitory effect of heavy metals etc. falls.

(A)成分及び(B)成分を含む本発明の不溶化材は、ブレーン比表面積が4,500〜7,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(−bDp n)(式中、Rは積算残分値(%)であり、篩残分を表し、Dpは粒径(μm)であり、篩の目の寸法を表し、b、nは定数である。)におけるn値が0.90〜1.20となる粒度構成を有することが好ましい。不溶化材の粒度構成を上記のように調整することにより、重金属類等の溶出抑制効果を高めることができ、重金属類等の溶出量の大きい土壌に対しても少量で溶出を抑制することができる。
不溶化材のブレーン比表面積は、より好ましくは5,000〜6,500cm/gである。ロジン・ラムラーの式におけるn値は、より好ましくは0.95〜1.15である。
また、得られる不溶化材は、平均粒径が20〜40μmであることが好ましく、25〜35μmであることがより好ましい。不溶化材の平均粒径が上記範囲内であることにより、重金属類等の溶出抑制効果を高めることができ、重金属類等の溶出量の大きい土壌に対しても、少量の使用でその溶出を抑制することができる。
なお、ロジン・ラムラーの式におけるn値、及び、平均粒径は、例えば、日機装社製9320−X10(粒度分布測定装置)を用いて測定することができる。測定に際しては、100mlビーカー内に収容した分散媒エタノール20mlに対して試料0.05gを加えるものとし、アズワン社製の超音波洗浄機(VS−100・周波数50kHz)を用いて1分間超音波分散後に測定を行う。測定は、試料の屈折率が1.72の条件で行うものとする。
なお、本明細書において、「平均粒径」の語は、50%質量累積粒径を意味する。
また、本発明の不溶化材においては、上記と同様の方法で測定して得た粒度の頻度分布曲線において、2つのピークがあることが好ましい。ここで、第1ピークは1〜5μmの範囲内に、第2ピークは20〜50μmの範囲内にあることが好ましい。
The insolubilized material of the present invention containing the component (A) and the component (B) has a Blaine specific surface area of 4,500 to 7,000 cm 2 / g, and the Rosin-Rammler formula for the particle size distribution: R = 100exp ( -bD p n) (wherein, R accumulated residue value (%), and represents the sieve residue, D p is the particle size ([mu] m), represents the size of the sieve, b, n is It is preferable to have a particle size constitution in which the n value in the constant is 0.90 to 1.20. By adjusting the particle size composition of the insolubilizing material as described above, the elution suppression effect of heavy metals and the like can be enhanced, and elution can be suppressed in a small amount even for soil with a large amount of elution of heavy metals and the like. .
More preferably, the insolubilized material has a Blaine specific surface area of 5,000 to 6,500 cm 2 / g. The n value in the Rosin-Rammler equation is more preferably 0.95 to 1.15.
Moreover, it is preferable that an average particle diameter is 20-40 micrometers, and, as for the insolubilization material obtained, it is more preferable that it is 25-35 micrometers. When the average particle size of the insolubilized material is within the above range, the effect of suppressing the elution of heavy metals can be enhanced, and the elution can be suppressed with a small amount of use even for soil with a large amount of elution of heavy metals. can do.
The n value and the average particle diameter in the Rosin-Rammler equation can be measured using, for example, 9320-X10 (particle size distribution measuring device) manufactured by Nikkiso Co., Ltd. In the measurement, 0.05 g of a sample is added to 20 ml of a dispersion medium ethanol contained in a 100 ml beaker, and ultrasonic dispersion is performed for 1 minute using an ultrasonic cleaning machine (VS-100, frequency 50 kHz) manufactured by ASONE. Measurement will be performed later. The measurement is performed under the condition that the refractive index of the sample is 1.72.
In the present specification, the term “average particle size” means a 50% mass cumulative particle size.
Moreover, in the insolubilizing material of this invention, it is preferable that there are two peaks in the frequency distribution curve of the particle size obtained by measuring by the same method as described above. Here, the first peak is preferably in the range of 1 to 5 μm, and the second peak is preferably in the range of 20 to 50 μm.

[(C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物]
本発明の不溶化材は、必要に応じて、(C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物、を含むことができる。(C)成分を配合することにより、重金属類等の溶出抑制効果をより向上させることができる。
水溶性硫酸塩としては、硫酸第一鉄(硫酸鉄(II))、硫酸アルミニウム、硫酸アルミニウムカリウム、硫酸アルミニウムナトリウム等の粉末が挙げられる。水溶性塩化物としては、塩化第一鉄(塩化鉄(II))、塩化第二鉄(塩化鉄(III))等が挙げられる。これらは、1種単独で、あるいは2種以上を組み合わせて用いることができる。さらに、これらは、粉末の形態で用いてもよいし、水溶液の形態で用いてもよい。
(C)成分の配合量(ただし、水溶液として用いる場合は固形分換算の量である。また、水和物である場合は水和水を除く質量を基準とする。以下、同様である。)は、重金属類等の溶出抑制効果の向上の効果を十分に得るために、不溶化材全体100質量%中、好ましくは5質量%以上である。
また、(C)成分の配合量は、配合量が多過ぎても重金属類等の溶出抑制効果は向上しないこと、及び、コストの観点から、不溶化材全体100質量%中、30質量%以下であることが好ましく、25質量%以下であることがより好ましい。
なお、(C)成分を粉末の形態で用いる場合、該粉末の粒径は、特に限定されないが、作業性等の観点から、1mm以下が好ましく、0.5mm以下がより好ましい。
[(C) One or more additives selected from water-soluble sulfates and water-soluble chlorides]
The insolubilizing material of this invention can contain the 1 or more types of additive chosen from (C) water-soluble sulfate and water-soluble chloride as needed. (C) By mix | blending component, the elution inhibitory effect of heavy metals etc. can be improved more.
Examples of the water-soluble sulfate include powders of ferrous sulfate (iron (II) sulfate), aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate and the like. Examples of water-soluble chlorides include ferrous chloride (iron (II) chloride) and ferric chloride (iron (III) chloride). These can be used singly or in combination of two or more. Furthermore, these may be used in the form of powder or in the form of an aqueous solution.
Compounding amount of component (C) (However, when used as an aqueous solution, it is an amount in terms of solid content. When it is a hydrate, it is based on the mass excluding hydration water. The same applies hereinafter.) In order to sufficiently obtain the effect of improving the elution suppression effect of heavy metals and the like, the total amount of the insolubilized material is 100% by mass, preferably 5% by mass or more.
Moreover, the compounding amount of the component (C) is 30% by mass or less in 100% by mass of the entire insolubilized material from the viewpoint that the elution suppressing effect of heavy metals and the like is not improved even if the compounding amount is too large. It is preferable that the content is 25% by mass or less.
In addition, when (C) component is used with the form of a powder, the particle size of this powder is although it does not specifically limit, From viewpoints of workability | operativity etc., 1 mm or less is preferable and 0.5 mm or less is more preferable.

このような本発明の不溶化材は、例えば、下記(a)〜(c)の方法により得られる。
(a)軽焼マグネシア((A)成分の材料)と炭酸カルシウム含有物((B)成分の材料)とを混合して混合物を得る工程と、前記混合物を粉砕して所定の粒度を有する混合物の粉砕物を得る工程と、前記混合物の粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末と炭酸カルシウムを主成分とする粉末とを含む不溶化材を得る工程と、を含む方法
(b)軽焼マグネシアを粉砕して、所定の粒度を有する軽焼マグネシア粉砕物を得る工程と、炭酸カルシウム含有物を粉砕して、所定の粒度を有する炭酸カルシウム含有粉砕物を得る工程と、前記軽焼マグネシア粉砕物と前記炭酸カルシウム含有粉砕物とを混合して混合物を得る工程と、前記混合物を水和させて、軽焼マグネシア部分水和物からなる粉末と炭酸カルシウムを主成分とする粉末とを含む不溶化材を得る工程と、を含む方法
(c)軽焼マグネシアを粉砕して、所定の粒度を有する軽焼マグネシア粉砕物を得る工程と、前記軽焼マグネシア粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末を得る工程と、炭酸カルシウム含有物を粉砕して、所定の粒度を有する炭酸カルシウム含有粉砕物(炭酸カルシウムを主成分とする粉末)を得る工程と、前記軽焼マグネシア部分水和物からなる粉末と前記炭酸カルシウム含有粉砕物とを混合して不溶化材を得る工程と、を含む方法
これらのうち、重金属類等の溶出抑制効果、及び作業性の観点から、好ましくは(a)又は(b)の方法であり、より好ましくは(a)の方法である。
Such an insolubilizing material of the present invention can be obtained, for example, by the following methods (a) to (c).
(A) a step of mixing lightly burned magnesia (material of component (A)) and calcium carbonate-containing material (material of component (B)) to obtain a mixture, and a mixture having a predetermined particle size by pulverizing the mixture And a step of hydrating the pulverized product of the mixture to obtain an insolubilized material containing a powder composed of light-burned magnesia partial hydrate and a powder mainly composed of calcium carbonate. Method (b) pulverizing light-burned magnesia to obtain a pulverized light-burned magnesia having a predetermined particle size; pulverizing a calcium carbonate-containing material to obtain a calcium carbonate-containing pulverized material having a predetermined particle size; Mixing the light-burned magnesia pulverized product and the calcium carbonate-containing pulverized product to obtain a mixture, hydrating the mixture, and comprising powder of light-burned magnesia partial hydrate and calcium carbonate as the main components And (c) pulverizing light-burned magnesia to obtain a light-burned magnesia pulverized product having a predetermined particle size, and hydrating the light-burned magnesia pulverized product. A step of obtaining a powder composed of light-burned magnesia partial hydrate, and a step of obtaining a calcium carbonate-containing pulverized product (powder mainly composed of calcium carbonate) having a predetermined particle size by pulverizing the calcium carbonate-containing product. And a step of mixing the powder composed of the light-burned magnesia partial hydrate and the calcium carbonate-containing pulverized product to obtain an insolubilizing material. Among these, the elution suppressing effect of heavy metals and the like, and workability From the viewpoint, the method (a) or (b) is preferred, and the method (a) is more preferred.

上記(a)の方法では、粉砕前の軽焼マグネシアは、粒径が1μm〜50mmであることが好ましい。また、粉砕前の炭酸カルシウム含有物は、粒径が1μm〜50mmであることが好ましく、2μm〜20mmであることがより好ましい。このような粒径を有する粉砕前の軽焼マグネシア及び炭酸カルシウム含有物を用いることにより、混合物である粉砕物、ひいては不溶化材の粒度構成を容易に調整することができる。
粒径が1μm〜50mmである軽焼マグネシアと、粒径が1μm〜50mmである炭酸カルシウム含有物とを同時に粉砕して、これら2種の材料の混合物からなる粉砕物のブレーン比表面積を4,500〜7,000cm/g(好ましくは5,000〜6,500cm/g)の範囲内に調整すると、1〜5μmの範囲内の第1ピークと、20〜50μmの範囲内の第2ピークとの2つのピークを有する、粒度の頻度分布曲線を形成する不溶化材を得ることができる。この場合、第2ピーク(頻度%)/第1ピーク(頻度%)の比は、好ましくは2〜4である。
また、(a)の方法では、軽焼マグネシアと炭酸カルシウム含有物を同時に粉砕するため、これらを個別に粉砕する(b)又は(c)の方法に比して、作業が簡易であるという利点を有する。
In the method (a), the light-burned magnesia before pulverization preferably has a particle size of 1 μm to 50 mm. The calcium carbonate-containing material before pulverization preferably has a particle size of 1 μm to 50 mm, and more preferably 2 μm to 20 mm. By using the light-burned magnesia and the calcium carbonate-containing material before pulverization having such a particle size, the particle size constitution of the pulverized product as a mixture, and thus the insolubilized material, can be easily adjusted.
A light-burned magnesia having a particle size of 1 μm to 50 mm and a calcium carbonate-containing material having a particle size of 1 μm to 50 mm are pulverized at the same time, and the brane specific surface area of a pulverized product made of a mixture of these two materials is 4 500~7,000cm 2 / g (preferably 5,000~6,500cm 2 / g) to adjust the range of the first peak in the range of 1 to 5 [mu] m, the second range of 20~50μm An insolubilized material that forms a frequency distribution curve of particle size having two peaks can be obtained. In this case, the ratio of the second peak (frequency%) / first peak (frequency%) is preferably 2 to 4.
Further, in the method (a), the light-burned magnesia and the calcium carbonate-containing material are pulverized at the same time, so that the work is simpler than the method (b) or (c) in which these are pulverized separately. Have

上記(b)又は(c)の方法においては、軽焼マグネシアは、ブレーン比表面積が好ましくは4,500〜7,000cm/g、より好ましくは5,000〜6,500cm/gとなるように粉砕される。また、炭酸カルシウム含有物は、ブレーン比表面積が好ましくは3,000〜7,000cm/g、より好ましくは4,000〜6,000cm/gとなるように粉砕される。このような比表面積を有する軽焼マグネシア粉砕物(あるいは、その部分水和物)と炭酸カルシウム含有粉砕物とを混合することにより、上述の好ましい粒度構成を有する不溶化材を得ることができる。
なお、炭酸カルシウム含有物が上記ブレーン比表面積を既に有する場合は、粉砕を行わず、そのまま用いることができる。
In the above method (b) or (c), light burned magnesia, Blaine specific surface area is preferably 4,500~7,000cm 2 / g, more preferably a 5,000~6,500cm 2 / g So that it is crushed. Moreover, calcium carbonate inclusions, Blaine specific surface area of preferably 3,000~7,000cm 2 / g, more preferably ground to a 4,000~6,000cm 2 / g. The insolubilized material having the above-mentioned preferred particle size configuration can be obtained by mixing the light-burned magnesia pulverized product (or its partially hydrated product) having such a specific surface area with the calcium carbonate-containing pulverized product.
When the calcium carbonate-containing material already has the above-mentioned Blaine specific surface area, it can be used as it is without being pulverized.

本発明の不溶化材の添加量は、対象土の性状や施工条件、重金属類等の溶出量や処理土の要求性能等にもよるが、一般的には、対象土1mあたり50〜400kgが好ましく、100〜350kgがより好ましい。
不溶化材の添加方法としては、対象土に不溶化材を粉体のまま添加・混合するドライ添加、あるいは、水を加えてスラリーとして添加・混合するスラリー添加を採用することができる。スラリー添加の場合の水/不溶化材の質量比は、0.5〜1.5が好ましく、0.8〜1.2がより好ましい。
なお、(C)成分のみを水溶液で用いる場合、(A)成分もしくは(A)成分と(B)成分の混合物と、(C)成分とを別々に対象土に添加することもできる。
また、本発明の不溶化材は、土壌に対して好適に用いられるが、土壌以外のもの、例えば、灰類、ダスト類などにも用いることができる。この場合の添加量及び添加方法は、土壌に対して用いる場合と同じである。
Although the amount of the insolubilizing material of the present invention depends on the properties and construction conditions of the target soil, the amount of elution of heavy metals, the required performance of the treated soil, etc., in general, 50 to 400 kg per 1 m 3 of the target soil. Preferably, 100 to 350 kg is more preferable.
As a method for adding the insolubilizing material, it is possible to employ dry addition in which the insolubilizing material is added to and mixed with the target soil as powder, or slurry addition in which water is added and mixed as a slurry. 0.5-1.5 are preferable and, as for the mass ratio of the water / insolubilized material in the case of slurry addition, 0.8-1.2 are more preferable.
In addition, when using only (C) component with aqueous solution, the mixture of (A) component or (A) component and (B) component, and (C) component can also be added separately to object soil.
Moreover, although the insolubilizing material of this invention is used suitably with respect to soil, it can be used also for things other than soil, for example, ash, dusts, etc. The addition amount and addition method in this case are the same as those used for soil.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[不溶化材の製造]
(不溶化材A)
マグネサイト(炭酸マグネシウムの含有率:97質量%)を850℃で焼成して軽焼マグネシアを得た。次いで、得られた軽焼マグネシアと平均粒径8mmの炭酸カルシウム含有物(石灰石破砕物;炭酸カルシウムの含有率:95質量%)とを混合した後、混合物を粉砕してブレーン比表面積5,500cm/gの粉砕物を得た。
得られた粉砕物を相対湿度100%の保管室にて10日間保管することによって、軽焼マグネシアの一部を水和させ、軽焼マグネシア部分水和物からなる粉末((A)成分)と炭酸カルシウムを主成分とする粉末((B)成分)とを含む不溶化材Aを得た。
不溶化材Aについての粒度の頻度分布曲線は、第1ピークが1.5μm、第2ピークが30μmであり、第1ピークの頻度が1%、第2ピークの頻度が3%、第2ピーク(頻度%)/第1ピーク(頻度%)の比が3であった。
(不溶化材B)
水和の条件を、相対湿度100%の保管室にて20日間に変更したこと以外は不溶化材Aと同様にして、不溶化材Bを得た。
不溶化材Bについての粒度の頻度分布曲線は、第1ピークが1.5μm、第2ピークが30μmであり、第1ピークの頻度が1%、第2ピークの頻度が3%、第2ピーク(頻度%)/第1ピーク(頻度%)の比が3であった。
(不溶化材C)
マグネサイト(炭酸マグネシウムの含有率:97質量%)を850℃で焼成後、粉砕して、ブレーン比表面積5,500cm/gの軽焼マグネシア粉砕物を得た。次いで、得られた軽焼マグネシア粉砕物と、ブレーン比表面積5,000cm/gの炭酸カルシウム含有物(石灰石粉砕物;炭酸カルシウムの含有率:95質量%)とを混合し、得られた混合物を湿度100%の保管室にて10日間保管することによって、軽焼マグネシア粉砕物の一部を水和させ、軽焼マグネシア部分水和物からなる粉末((A)成分)と炭酸カルシウムを主成分とする粉末((B)成分)とを含む不溶化材Cを得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[Manufacture of insolubilized materials]
(Insolubilized material A)
Magnesite (magnesium carbonate content: 97% by mass) was calcined at 850 ° C. to obtain light calcined magnesia. Subsequently, after mixing the obtained light-burned magnesia and a calcium carbonate-containing material having an average particle diameter of 8 mm (crushed limestone; calcium carbonate content: 95% by mass), the mixture was pulverized to have a Blaine specific surface area of 5,500 cm. A pulverized product of 2 / g was obtained.
The obtained pulverized product is stored in a storage room with a relative humidity of 100% for 10 days to hydrate part of the light-burned magnesia, and the powder (component (A)) comprising the light-burned magnesia partial hydrate Insolubilized material A containing powder (component (B)) containing calcium carbonate as a main component was obtained.
The frequency distribution curve of the particle size for the insolubilized material A has a first peak of 1.5 μm and a second peak of 30 μm, a frequency of the first peak of 1%, a frequency of the second peak of 3%, and a second peak ( The ratio of (frequency%) / first peak (frequency%) was 3.
(Insolubilized material B)
Insolubilized material B was obtained in the same manner as insolubilized material A except that the hydration condition was changed to 20 days in a storage room at 100% relative humidity.
The frequency distribution curve of the particle size for the insolubilized material B has a first peak of 1.5 μm and a second peak of 30 μm, a frequency of the first peak of 1%, a frequency of the second peak of 3%, and a second peak ( The ratio of (frequency%) / first peak (frequency%) was 3.
(Insolubilized material C)
Magnesite (magnesium carbonate content: 97% by mass) was fired at 850 ° C. and then pulverized to obtain a lightly baked magnesia pulverized product having a specific surface area of 5,500 cm 2 / g. Subsequently, the obtained light-burned magnesia pulverized product was mixed with a calcium carbonate-containing product having a Blaine specific surface area of 5,000 cm 2 / g (limestone pulverized product; calcium carbonate content: 95% by mass), and the resulting mixture was obtained. Is stored in a storage room at a humidity of 100% for 10 days to hydrate part of the light-burned magnesia pulverized product, and the powder (component (A)) consisting of the light-burned magnesia partial hydrate and calcium carbonate are mainly used. Insolubilized material C containing powder (component (B)) as an ingredient was obtained.

(不溶化材D)
水和の条件を、相対湿度60%の保管室にて20日間に変更したこと以外は不溶化材Aと同様にして、不溶化材Dを得た。
(不溶化材E)
マグネサイトを850℃で焼成後、粉砕して、ブレーン比表面積5,500cm/gの軽焼マグネシア粉砕物を得た。次いで、得られた軽焼マグネシア粉砕物を相対湿度100%の保管室にて10日間保管することによって、軽焼マグネシア粉砕物の一部を水和させ、軽焼マグネシア部分水和物からなる粉末((A)成分)である不溶化材Eを得た。
(不溶化材F)
水和の条件を、相対湿度60%の保管室にて20日間に変更したこと以外は不溶化材Eと同様にして、不溶化材Fを得た。
(不溶化材G)
(A)成分の原料として、不溶化材Aよりもカルシウムの含有率の大きいマグネサイト(カルシウムの含有率:酸化物換算で4.2質量%)を用いたこと以外は不溶化材Aと同様にして、不溶化材Gを得た。
(不溶化材H)
マグネサイト(炭酸マグネシウムの含有率:97質量%)を850℃で焼成して軽焼マグネシアを得た。次いで、得られた軽焼マグネシアと平均粒径8mmの炭酸カルシウム含有物(石灰石粉砕物;炭酸カルシウムの含有率:95質量%)とを混合した後、得られた混合物を粉砕して、ブレーン比表面積5,500cm2/gの粉砕物を得た。次いで、得られた粉砕物と水酸化マグネシウム(試薬1級)とを混合して、不溶化材Hを得た。
(Insolubilized material D)
Insolubilized material D was obtained in the same manner as insolubilized material A except that the hydration conditions were changed to 20 days in a storage room with a relative humidity of 60%.
(Insolubilized material E)
The magnesite was fired at 850 ° C. and then pulverized to obtain a pulverized light magnesia having a Blaine specific surface area of 5,500 cm 2 / g. Next, the obtained light-burned magnesia pulverized product is stored in a storage room with a relative humidity of 100% for 10 days to hydrate a part of the light-burned magnesia pulverized product, thereby forming a powder comprising the light-burned magnesia partial hydrate. An insolubilized material E (component (A)) was obtained.
(Insolubilized material F)
Insolubilized material F was obtained in the same manner as insolubilized material E, except that the hydration conditions were changed to 20 days in a storage room with a relative humidity of 60%.
(Insolubilized material G)
(A) Same as insolubilized material A, except that magnesite (calcium content: 4.2% by mass in terms of oxide) having a higher calcium content than insolubilized material A was used as the raw material of component (A). The insolubilized material G was obtained.
(Insolubilized material H)
Magnesite (magnesium carbonate content: 97% by mass) was calcined at 850 ° C. to obtain light calcined magnesia. Subsequently, after mixing the obtained light-burned magnesia and a calcium carbonate-containing material having an average particle diameter of 8 mm (pulverized limestone; calcium carbonate content: 95% by mass), the obtained mixture was pulverized to obtain a Brain ratio. A pulverized product having a surface area of 5,500 cm 2 / g was obtained. Subsequently, the obtained pulverized product and magnesium hydroxide (reagent grade 1) were mixed to obtain an insolubilizing material H.

(不溶化材A−1)
上記不溶化材Aに対して、硫酸第一鉄一水塩(粒径:0.1〜0.3mm)を添加して、不溶化材A−1を得た。なお、不溶化材A−1全体100質量%中、硫酸第一鉄の割合は10質量%である。
(不溶化材A−2)
上記不溶化材Aに対して、硫酸第一鉄一水塩(粒径:0.1〜0.3mm)を添加して、不溶化材A−2を得た。なお、不溶化材A−2全体100質量%中、硫酸第一鉄の割合は20質量%である。
(不溶化材A−3)
上記不溶化材Aに対して、硫酸アルミニウム無水塩(粒径:30〜60μm)を添加して、不溶化材A−3を得た。なお、不溶化材A−3全体100質量%中、硫酸アルミニウムの割合は10質量%である。
(不溶化材A−4)
上記不溶化材Aに対して、硫酸アルミニウム無水塩(粒径:30〜60μm)を添加して、不溶化材A−4を得た。なお、不溶化材A−4全体100質量%中、硫酸アルミニウムの割合は20質量%である。
(不溶化材A−5)
不溶化材Aに対して、塩化第二鉄六水塩(配合割合;10質量%、特級試薬)を添加して、不溶化材A−5を得た。
(不溶化材A−6)
不溶化材Aに対して、塩化第二鉄六水塩(配合割合;20質量%、特級試薬)を添加して、不溶化材A−6を得た。
(不溶化材A−7)
不溶化材Aに対して、塩化第一鉄四水塩(配合割合;10質量%、特級試薬)を添加して、不溶化材A−7を得た。
(不溶化材A−8)
不溶化材Aに対して、塩化第一鉄四水塩(配合割合;20質量%、特級試薬)を添加して、不溶化材A−8を得た。
(Insolubilized material A-1)
To the insolubilized material A, ferrous sulfate monohydrate (particle size: 0.1 to 0.3 mm) was added to obtain insolubilized material A-1. In addition, in 100 mass% of the whole insolubilized material A-1, the ratio of ferrous sulfate is 10 mass%.
(Insolubilized material A-2)
To the insolubilized material A, ferrous sulfate monohydrate (particle size: 0.1 to 0.3 mm) was added to obtain insolubilized material A-2. In addition, in 100 mass% of the whole insolubilized material A-2, the ratio of ferrous sulfate is 20 mass%.
(Insolubilized material A-3)
Aluminum sulfate anhydrous salt (particle size: 30 to 60 μm) was added to the insolubilized material A to obtain an insolubilized material A-3. In addition, in 100 mass% of the whole insolubilized material A-3, the ratio of aluminum sulfate is 10 mass%.
(Insolubilized material A-4)
Aluminum sulfate anhydrous salt (particle size: 30 to 60 μm) was added to the insolubilized material A to obtain an insolubilized material A-4. In addition, in 100 mass% of the whole insolubilized material A-4, the ratio of aluminum sulfate is 20 mass%.
(Insolubilized material A-5)
To insolubilized material A, ferric chloride hexahydrate (mixing ratio: 10 mass%, special grade reagent) was added to obtain insolubilized material A-5.
(Insolubilized material A-6)
To the insolubilized material A, ferric chloride hexahydrate (mixing ratio: 20% by mass, special grade reagent) was added to obtain insolubilized material A-6.
(Insolubilized material A-7)
To insolubilized material A, ferrous chloride tetrahydrate (mixing ratio: 10 mass%, special grade reagent) was added to obtain insolubilized material A-7.
(Insolubilized material A-8)
To insolubilized material A, ferrous chloride tetrahydrate (mixing ratio; 20 mass%, special grade reagent) was added to obtain insolubilized material A-8.

[実施例1〜3、比較例1〜6]
不溶化材A〜Hを用いて(実施例1〜3、比較例1〜6)、あるいは、不溶化材を用いずに(比較例5)、下記の重金属類等の溶出試験1〜4を行った。結果を表1に示す。
また、各不溶化材に対して、成分組成、ブレーン比表面積、ロジン・ラムラー式のn値、平均粒径を下記の方法により求めた。これらを合わせて表1に示す。
(重金属類等の溶出試験1;ヒ素の溶出試験)
ヒ素汚染土壌(含水率:70質量%)に対し、表1に示す量の不溶化材を添加し、材齢7日の改良土壌からのヒ素の溶出量を環境省告示46号法に準拠して測定した。なお、ヒ素の環境基準値は0.01mg/リットルである。
(重金属類等の溶出試験2;フッ素の溶出試験)
フッ素汚染土壌(含水率:75質量%)に対し、表1に示す量の不溶化材を添加し、材齢7日の改良土壌からのフッ素の溶出量を環境省告示46号法に準拠して測定した。なお、フッ素の環境基準値は0.8mg/リットルである。
(重金属類等の溶出試験3;鉛の溶出試験)
鉛汚染土壌(含水率:70質量%)に対し、表1に示す量の不溶化材を添加し、材齢7日の改良土壌からの鉛の溶出量を環境省告示46号法に準拠して測定した。なお、鉛の環境基準値は0.01mg/リットルである。
(重金属類等の溶出試験4;6価クロムの溶出試験)
6価クロム汚染土壌(含水率:80質量%)に対し、表1に示す量の不溶化材を添加し、材齢7日の改良土壌からの6価クロムの溶出量を環境省告示46号法に準拠して測定した。なお、6価クロムの環境基準値は0.05mg/リットルである。
(成分組成)
X線回折、熱重量分析および化学分析値から算出した。
(ブレーン比表面積)
「JIS R 5201」に準じて測定した。
(平均粒径、ロジン・ラムラー式のn値)
100mlビーカー中に、エタノール(分散媒)20ml、不溶化材0.05gを添加し、アズワン社製の超音波洗浄機(VS−100・周波数50kHz)を用いて1分間超音波分散した。その後、日機装社製9320−X10(粒度分布測定装置)を用いて、平均粒径(50%質量累積粒径)、ロジン・ラムラー式のn値を求めた。なお、試料の屈折率は1.72の条件で行うものとする。
[Examples 1 to 3, Comparative Examples 1 to 6]
Using the insolubilized materials A to H (Examples 1 to 3, Comparative Examples 1 to 6) or without using the insolubilized material (Comparative Example 5), the following elution tests 1 to 4 for heavy metals were performed. . The results are shown in Table 1.
Further, for each insolubilized material, the component composition, Blaine specific surface area, n value of rosin-Rammler formula, and average particle diameter were determined by the following methods. These are shown together in Table 1.
(Elution test for heavy metals 1; Arsenic elution test)
To the arsenic-contaminated soil (moisture content: 70% by mass), the amount of insolubilized material shown in Table 1 was added, and the amount of arsenic eluted from the improved soil at the age of 7 days was determined according to the Ministry of the Environment Notification No. 46 It was measured. The environmental standard value for arsenic is 0.01 mg / liter.
(Elution test 2 for heavy metals; fluorine elution test)
The amount of insolubilized material shown in Table 1 is added to fluorine-contaminated soil (moisture content: 75% by mass), and the amount of fluorine eluted from the improved soil at the age of 7 days is based on the Ministry of the Environment Notification No. 46 It was measured. The environmental standard value of fluorine is 0.8 mg / liter.
(Elution test for heavy metals 3; Lead elution test)
To the lead-contaminated soil (moisture content: 70% by mass), the amount of insolubilizing material shown in Table 1 was added, and the amount of lead elution from the improved soil on the age of 7 days was in accordance with the Ministry of the Environment Notification No. 46 It was measured. The environmental standard value for lead is 0.01 mg / liter.
(Elution test for heavy metals 4; elution test for hexavalent chromium)
The amount of insolubilized material shown in Table 1 is added to hexavalent chromium-contaminated soil (water content: 80% by mass), and the amount of hexavalent chromium eluted from the improved soil on the age of 7 days is determined by the Ministry of the Environment Notification No. 46 Measured according to The environmental standard value for hexavalent chromium is 0.05 mg / liter.
(Component composition)
Calculated from X-ray diffraction, thermogravimetric analysis and chemical analysis values.
(Brain specific surface area)
It measured according to "JISR5201".
(Average particle size, n value of Rosin-Rammler formula)
In a 100 ml beaker, 20 ml of ethanol (dispersion medium) and 0.05 g of an insolubilizing material were added, and ultrasonically dispersed for 1 minute using an ultrasonic cleaner (VS-100, frequency 50 kHz) manufactured by ASONE. Then, using Nikkiso Co., Ltd. 9320-X10 (particle size distribution measuring apparatus), the average particle diameter (50% mass cumulative particle diameter) and the n value of the rosin-Rammler type were determined. Note that the refractive index of the sample is assumed to be 1.72.

Figure 0004343259
Figure 0004343259

[実施例4〜11]
上記不溶化材A−1〜A−8を用いて、実施例1と同様にして、重金属類等の溶出試験1、2、及び4(ヒ素、フッ素、6価クロムの溶出試験)を行った。結果を表2に示す。
[Examples 4 to 11]
Using the insolubilized materials A-1 to A-8, the elution tests 1, 2, and 4 (elution test for arsenic, fluorine, and hexavalent chromium) of heavy metals and the like were performed in the same manner as in Example 1. The results are shown in Table 2.

Figure 0004343259
Figure 0004343259

[実施例12〜14、比較例7]
重金属類を含む焼却飛灰に、上記不溶化材A、A−1、A−5を添加して、あるいは、不溶化材を添加せずに、重金属類の溶出試験1〜4を行った。なお、試験方法は、実施例1と同様である。結果を表3に示す。
[Examples 12 to 14, Comparative Example 7]
The insolubilization materials A, A-1, and A-5 were added to the incinerated fly ash containing heavy metals, or the elution tests 1 to 4 of heavy metals were performed without adding the insolubilizing materials. The test method is the same as in Example 1. The results are shown in Table 3.

Figure 0004343259
Figure 0004343259

表1から、本発明の不溶化材によると、少ない添加量で、重金属類等(ヒ素、フッ素、鉛、6価クロム)の溶出量を環境基準値以下に低減し得ることがわかる(実施例1〜3)。一方、水和が不十分で水酸化マグネシウムの含有率が本発明の範囲外である比較例1、(B)成分を含まない比較例2、(B)成分を含まず、水酸化マグネシウムの含有率も本発明の範囲外である比較例3、及び(A)軽焼マグネシア部分水和物中のカルシウムの含有率(酸化物換算)が本発明の範囲外である比較例4では、重金属類等の溶出量を環境基準値以下にするためには、実施例1〜3に比して多量の不溶化材を添加する必要があることがわかる。軽焼マグネシアの部分水和物に代えて、軽焼マグネシアと試薬である水酸化マグネシウムを併用した比較例6では、重金属類等の溶出抑制効果が不十分であることがわかる。なお、比較例5では、不溶化材を用いていないため、重金属類等が多量に溶出することがわかる。
また、表2から、硫酸塩(硫酸第一鉄、硫酸アルミニウム)を添加すると、さらに少ない使用量で、重金属類等の溶出量を環境基準値以下に低減し得ることがわかる(実施例4〜7)。
さらに、表3から、本発明の不溶化材は、焼却飛灰に対しても優れた不溶化効果を有することがわかる。
From Table 1, it can be seen that according to the insolubilizing material of the present invention, the amount of elution of heavy metals (arsenic, fluorine, lead, hexavalent chromium) can be reduced below the environmental standard value with a small addition amount (Example 1). ~ 3). On the other hand, Comparative Example 1 in which hydration is insufficient and the content of magnesium hydroxide is outside the scope of the present invention, Comparative Example 2 not including the component (B), Component (B) not included, content of magnesium hydroxide In Comparative Example 3 in which the rate is also outside the scope of the present invention, and (A) Comparative Example 4 in which the content (calculated in terms of oxide) of calcium in the light-burned magnesia partial hydrate is outside the scope of the present invention, heavy metals It can be seen that a larger amount of insolubilizing material needs to be added than in Examples 1 to 3 in order to make the amount of elution of etc. below the environmental standard value. It turns out that the elution suppression effect of heavy metals etc. is inadequate in the comparative example 6 which uses lightly-burned magnesia partial hydrate together with light-burning magnesia and magnesium hydroxide which is a reagent. In Comparative Example 5, it can be seen that a large amount of heavy metals are eluted because no insolubilizing material is used.
Moreover, it can be seen from Table 2 that the addition of sulfate (ferrous sulfate, aluminum sulfate) can reduce the elution amount of heavy metals and the like to an environmental standard value or less with a smaller amount of use (Examples 4 to 4). 7).
Furthermore, it can be seen from Table 3 that the insolubilizing material of the present invention has an excellent insolubilizing effect even with incineration fly ash.

Claims (4)

下記(A)成分100質量部に対して、下記(B)成分を20〜70質量部含むことを特徴とする不溶化材。
(A)炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を650〜1,000℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が65〜96.5質量%、水酸化マグネシウムの含有率が3.5〜30質量%であり、カルシウムの含有率が酸化物換算で3.0質量%以下である軽焼マグネシア部分水和物からなる粉末
(B)炭酸カルシウムを85質量%以上の含有率で含む粉末
20-70 mass parts of following (B) components are included with respect to 100 mass parts of following (A) component, The insolubilization material characterized by the above-mentioned.
(A) A light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 650 to 1,000 ° C. In the light-burned magnesia partial hydrate, the magnesium oxide content is 65-96.5% by mass, the magnesium hydroxide content is 3.5-30% by mass, and the calcium content is oxidized. Powder consisting of lightly burned magnesia partial hydrate which is 3.0% by mass or less in terms of product (B) Powder containing calcium carbonate at a content of 85% by mass or more
ブレーン比表面積が4,500〜7,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(−bDp n)(式中、Rは積算残分値(%)であり、篩残分を表し、Dpは粒径(μm)であり、篩の目の寸法を表し、b、nは定数である。)におけるn値が0.90〜1.20である請求項1に記載の不溶化材。 Blaine specific surface area of 4,500~7,000cm 2 / g, and wherein the Rosin-Rammler about the particle size distribution: R = 100exp (-bD p n ) ( wherein, R accumulated residue value (%) and a represents a sieve residue, D p is the particle size ([mu] m), represents the size of the sieve, b, n is the n value at a constant.) is 0.90 to 1.20 The insolubilized material according to claim 1. 平均粒径が20〜40μmである請求項1又は2に記載の不溶化材。   The insolubilized material according to claim 1 or 2, wherein the average particle size is 20 to 40 µm. さらに、(C)水溶性硫酸塩及び水溶性塩化物から選ばれた1種以上の添加物、を含む請求項1〜3のいずれか1項に記載の不溶化材。   The insolubilized material according to any one of claims 1 to 3, further comprising (C) one or more additives selected from water-soluble sulfates and water-soluble chlorides.
JP2008310430A 2008-11-07 2008-12-05 Insolubilizing material Active JP4343259B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008310430A JP4343259B1 (en) 2008-11-07 2008-12-05 Insolubilizing material
PCT/JP2009/067434 WO2010052986A1 (en) 2008-11-07 2009-10-06 Insolubilizing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008286430 2008-11-07
JP2008310430A JP4343259B1 (en) 2008-11-07 2008-12-05 Insolubilizing material

Publications (2)

Publication Number Publication Date
JP4343259B1 true JP4343259B1 (en) 2009-10-14
JP2010131535A JP2010131535A (en) 2010-06-17

Family

ID=41253480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310430A Active JP4343259B1 (en) 2008-11-07 2008-12-05 Insolubilizing material

Country Status (2)

Country Link
JP (1) JP4343259B1 (en)
WO (1) WO2010052986A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481360B1 (en) * 2009-10-05 2010-06-16 太平洋セメント株式会社 Insolubilizing material

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068245B2 (en) * 2008-12-04 2012-11-07 太平洋セメント株式会社 Insolubilized material
JP5306957B2 (en) * 2009-10-06 2013-10-02 太平洋セメント株式会社 Dioxin diffusion inhibitor
JP5599256B2 (en) * 2010-08-04 2014-10-01 太平洋セメント株式会社 Heavy metal elution control material and elution control method
JP5682809B2 (en) * 2010-08-31 2015-03-11 住友大阪セメント株式会社 Method for producing heavy metal or fluorine elution reducing material
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals
JP5599061B2 (en) * 2010-10-25 2014-10-01 太平洋セメント株式会社 Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP5013005B1 (en) * 2011-02-14 2012-08-29 宇部興産株式会社 Insolubilizer and method for producing the same
JP5757613B2 (en) * 2011-02-28 2015-07-29 太平洋セメント株式会社 Processing materials such as heavy metals
US9212093B2 (en) * 2011-06-30 2015-12-15 NTH Consultants, Ltd. Hybrid magnesium cement and method of manufacture
CN102895936B (en) * 2011-07-29 2016-09-28 住友大阪水泥股份有限公司 Dissolution reduces material and manufacture method thereof
JP5674152B2 (en) * 2011-08-01 2015-02-25 住友大阪セメント株式会社 Fluorine, arsenic and heavy metal elution reducing material
JP5915202B2 (en) * 2012-01-25 2016-05-11 宇部興産株式会社 Insolubilization method
JP5186610B1 (en) * 2012-05-23 2013-04-17 太平洋セメント株式会社 Fired product
WO2014054131A1 (en) * 2012-10-03 2014-04-10 住友大阪セメント株式会社 Dissolution inhibitor
JP6543451B2 (en) * 2014-10-02 2019-07-10 フタムラ化学株式会社 Composite porous body for air battery electrode and air battery electrode body using the same
JP2016209793A (en) * 2015-05-01 2016-12-15 裕泰 吉川 Harmful component adsorption material, and method for producing the same
JP6656912B2 (en) * 2015-12-24 2020-03-04 太平洋セメント株式会社 Sorting method of insolubilizing material
JP6675779B2 (en) * 2016-01-25 2020-04-01 太平洋セメント株式会社 Method for producing soil modifying material and method for modifying soil
EP3471545A4 (en) * 2016-06-20 2019-12-25 Calix Limited A bioactive material
JP7170570B2 (en) * 2019-03-25 2022-11-14 太平洋セメント株式会社 Insolubilizing material and insolubilizing treatment method
JP7436200B2 (en) 2019-12-26 2024-02-21 太平洋セメント株式会社 Insolubilization treatment method for heavy metals contained in waste

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764556B2 (en) * 1992-10-29 1995-07-12 ダイセル網干産業株式会社 Apparatus and method for producing active magnesium hydroxide
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2003193462A (en) * 2001-12-27 2003-07-09 Taiheiyo Cement Corp Soil solidification treatment method
JP2004292568A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Soil solidifying material
JP4235688B2 (en) * 2004-02-27 2009-03-11 株式会社アステック Purification method for contaminated soil
JP2005238198A (en) * 2004-02-27 2005-09-08 Taiheiyo Cement Corp Method for suppressing diffusion of dioxins
JP5383964B2 (en) * 2005-12-13 2014-01-08 宇部マテリアルズ株式会社 Soil hardening material
JP5362171B2 (en) * 2005-12-13 2013-12-11 宇部マテリアルズ株式会社 Soil hardening material
JP4745955B2 (en) * 2006-12-22 2011-08-10 太平洋セメント株式会社 Hexavalent chromium elution inhibitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481360B1 (en) * 2009-10-05 2010-06-16 太平洋セメント株式会社 Insolubilizing material
JP2011079919A (en) * 2009-10-05 2011-04-21 Taiheiyo Cement Corp Insolubilizing material

Also Published As

Publication number Publication date
JP2010131535A (en) 2010-06-17
WO2010052986A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
JP4343259B1 (en) Insolubilizing material
JP5068245B2 (en) Insolubilized material
JP4481360B1 (en) Insolubilizing material
JP5748015B1 (en) Insolubilizer and insolubilization method
JP5019188B2 (en) Method for producing heavy metal elution reducing material
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP5682809B2 (en) Method for producing heavy metal or fluorine elution reducing material
JP6009118B1 (en) Treatment method of mud generated by bubble shield method
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP5599256B2 (en) Heavy metal elution control material and elution control method
JP2012055815A (en) Method of suppressing elution of heavy metals
WO2019244856A1 (en) Heavy metal-insolubilized solidification material and technique for improving contaminated soil
JP2006167524A (en) Treatment method for arsenic-containing soil
JP7120847B2 (en) Soil solidification treatment method
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP6675779B2 (en) Method for producing soil modifying material and method for modifying soil
JP5013005B1 (en) Insolubilizer and method for producing the same
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JP4999786B2 (en) Method for evaluating heavy metal insolubilization performance of magnesium oxide
WO2017110999A1 (en) Insolubilization material, insolubilization mixture and insolubilization method
JP6538356B2 (en) Insolubilizing material and insolubilizing slurry
JP6465604B2 (en) Insolubilized slurry
JP4400732B2 (en) Soil toxic substance elution reducing material and soil treatment method using the same
JP6204099B2 (en) Ground improvement method
JP7156630B2 (en) Method for suppressing elution of heavy metals contained in at least one of fly ash and clinker ash

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4343259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250