JP4481360B1 - Insolubilizing material - Google Patents

Insolubilizing material Download PDF

Info

Publication number
JP4481360B1
JP4481360B1 JP2009232042A JP2009232042A JP4481360B1 JP 4481360 B1 JP4481360 B1 JP 4481360B1 JP 2009232042 A JP2009232042 A JP 2009232042A JP 2009232042 A JP2009232042 A JP 2009232042A JP 4481360 B1 JP4481360 B1 JP 4481360B1
Authority
JP
Japan
Prior art keywords
mass
light
burned magnesia
insolubilizing
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009232042A
Other languages
Japanese (ja)
Other versions
JP2011079919A (en
Inventor
祐介 松山
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009232042A priority Critical patent/JP4481360B1/en
Application granted granted Critical
Publication of JP4481360B1 publication Critical patent/JP4481360B1/en
Publication of JP2011079919A publication Critical patent/JP2011079919A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Processing Of Solid Wastes (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【課題】汚染濃度の高い土壌や、排水に対して、少ない添加量で、重金属類等の溶出を十分に抑制することができる不溶化材を提供する。
【解決手段】炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を550〜1,400℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が50〜96.5質量%、水酸化マグネシウムの含有率が3.5〜50質量%であり、カルシウムの含有率が酸化物換算で5.0質量%以下である軽焼マグネシア部分水和物を含む不溶化材。
【選択図】なし
The present invention provides an insolubilizing material capable of sufficiently suppressing elution of heavy metals and the like with a small amount of addition to soil or wastewater with high contamination concentration.
A light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C. In the light-burned magnesia partial hydrate, the magnesium oxide content is 50 to 96.5% by mass, the magnesium hydroxide content is 3.5 to 50% by mass, and the calcium content is An insolubilized material containing light-burned magnesia partial hydrate which is 5.0% by mass or less in terms of oxide.
[Selection figure] None

Description

本発明は、重金属類等を含む汚染土壌等から当該重金属等が溶出するのを抑制したり、あるいは、重金属類等を含む排水中の当該重金属等を不溶化することのできる不溶化材に関する。   The present invention relates to an insolubilizing material capable of suppressing the elution of the heavy metal or the like from contaminated soil containing the heavy metal or the like, or insolubilizing the heavy metal or the like in waste water containing the heavy metal or the like.

近年、工場、事業所、産業廃棄物処理場の跡地などにおいて、土壌が鉛、6価クロム、ヒ素等の重金属類やフッ素等(以下、重金属類等ともいう。)で汚染されていることが、しばしば報告されている。このように土壌が重金属類等で汚染されると、その汚染が地下水にまで広がり、人体や穀物にまで影響を及ぼすという安全衛生上の問題がある。また、当該土壌の汚染濃度が環境基準値を超える場合には、跡地をそのまま利用できなくなり、土地を有効利用することができないという問題もある。そのため、重金属類等を不溶化して、汚染の拡大を防止することが望まれている。
また、重金属類等を含む排水を処理する場合、重金属類等を不溶化することができれば、固液分離によって、重金属類等の含有率が減少した液分を容易に得ることができ、排水処理を効率的に行なうことができる。
In recent years, soil has been contaminated with heavy metals such as lead, hexavalent chromium, and arsenic, fluorine, etc. (hereinafter also referred to as heavy metals) at sites of factories, offices, and industrial waste disposal sites. Often reported. Thus, when soil is contaminated with heavy metals or the like, there is a safety and health problem that the contamination spreads to the ground water and affects the human body and grains. Further, when the soil contamination concentration exceeds the environmental standard value, there is a problem that the site cannot be used as it is and the land cannot be used effectively. Therefore, it is desired to insolubilize heavy metals and the like to prevent the spread of contamination.
In addition, when treating wastewater containing heavy metals, etc., if the heavy metals can be insolubilized, liquid components with a reduced content of heavy metals can be easily obtained by solid-liquid separation, and wastewater treatment can be performed. It can be done efficiently.

このような事情下において、重金属類等を不溶化するための技術が種々提案されている。
例えば、酸化マグネシウムを含む重金属溶出抑制固化材が提案されている(特許文献1)。
また、MgOおよび/またはMgO含有材からなることを特徴とする有害物質汚染土壌用固化不溶化剤が提案されている(特許文献2)。
また、700〜1,000℃で焼成され、粉末度4,000cm/g以上に調整した酸化マグネシウムを、汚染土壌等に添加・混合することにより、該汚染土壌等を固化して、汚染物質の不溶化を行う汚染土壌等の固化・不溶化方法が提案されている(特許文献3)。
また、固化可能なバインダー中に物質を取り込む方法であって、当該方法が、スラリーとして、又は次のスラリーの形成のために、物質をバインダーと混合する工程を含み、該バインダーが苛性酸化マグネシウム源を含んでおり、及びスラリーに、バインダーの固化を促進する固化剤を加える工程を含む方法が提案されている(特許文献4)。
さらに、波長1.5405Åにおける粉末X線回折スペクトルが、2θ=42.8°±0.3°にピークの頂点を有し、該ピークのベースラインを基準とした半値幅が0.32〜1.5°であることを特徴とする潜晶質マグネシアが提案されている(特許文献5)。
Under such circumstances, various techniques for insolubilizing heavy metals and the like have been proposed.
For example, a heavy metal elution suppression solidifying material containing magnesium oxide has been proposed (Patent Document 1).
Further, a solidifying and insolubilizing agent for toxic substance-contaminated soil characterized by comprising MgO and / or a MgO-containing material has been proposed (Patent Document 2).
In addition, by adding and mixing magnesium oxide baked at 700 to 1,000 ° C. and adjusted to a fineness of 4,000 cm 2 / g or more to the contaminated soil, the contaminated soil is solidified and contaminated. There has been proposed a method for solidifying and insolubilizing contaminated soil and the like (Patent Document 3).
A method of incorporating a material into a solidifiable binder, the method comprising mixing the material with a binder as a slurry or for the formation of a subsequent slurry, wherein the binder is a source of caustic magnesium oxide. And a method including a step of adding a solidifying agent that promotes solidification of the binder to the slurry has been proposed (Patent Document 4).
Further, the powder X-ray diffraction spectrum at a wavelength of 1.5405 mm has a peak apex at 2θ = 42.8 ° ± 0.3 °, and the half-value width based on the baseline of the peak is 0.32-1. Latent crystalline magnesia characterized by an angle of 0.5 ° has been proposed (Patent Document 5).

特開2003−117532号公報JP 2003-117532 A 特開2003−225640号公報JP 2003-225640 A 特開2003−334526号公報JP 2003-334526 A 特表2005−523990号公報JP 2005-523990 A 特開2007−22902号公報JP 2007-22902 A

酸化マグネシウム(軽焼マグネシア等)を不溶化材として用いる特許文献1〜5の技術によると、汚染濃度の低い土壌に対しては、重金属類等の溶出を抑制することができる。しかし、汚染濃度の高い土壌に対しては、未だその効果(重金属類等の溶出抑制効果)は不十分であり、重金属類等の溶出量を所定の値(例えば、環境基準値)以下にするためには、不溶化材の使用量が増加し、高コストになるという問題がある。さらにこの場合、不溶化材の添加後のボリュームが大きくなり、副次的な対策が必要になるなどの問題がある。
一方、重金属類等を含む排水の処理技術の分野においても、少ない添加量で重金属類等を十分に不溶化することのできる不溶化材が望まれている。
そこで、本発明は、汚染濃度の高い土壌や、排水に対して、少ない添加量で、重金属類等の溶出を十分に抑制することができる不溶化材を提供することを目的とする。
According to the techniques of Patent Documents 1 to 5 using magnesium oxide (lightly burned magnesia or the like) as an insolubilizing material, elution of heavy metals and the like can be suppressed for soil having a low contamination concentration. However, the effect (elution suppression effect of heavy metals, etc.) is still insufficient for highly contaminated soil, and the elution amount of heavy metals, etc. is set to a predetermined value (for example, environmental standard value) or less. Therefore, there is a problem that the amount of the insolubilizing material used is increased and the cost is increased. Further, in this case, there is a problem that the volume after the addition of the insolubilizing material is increased, and secondary measures are required.
On the other hand, in the field of wastewater treatment technology including heavy metals and the like, an insolubilizing material that can sufficiently insolubilize heavy metals and the like with a small addition amount is desired.
Then, an object of this invention is to provide the insolubilization material which can fully suppress elution of heavy metals etc. with little addition amount with respect to soil with high pollution density | concentration, or waste_water | drain.

本発明者は、上記課題を解決するために鋭意検討した結果、軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物を含む不溶化材によれば、本発明の上記目的を達成しうることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[5]を提供するものである。
[1] 炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を550〜1,400℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が50〜96.5質量%、水酸化マグネシウムの含有率が3.5〜50質量%であり、カルシウムの含有率が酸化物換算で5.0質量%以下である軽焼マグネシア部分水和物を含むことただし、炭酸カルシウムを85質量%以上の含有率で含む粉末を、前記軽焼マグネシア部分水和物100質量部に対して20〜70質量部加えた場合を除く。)を特徴とする不溶化材。
[2] ブレーン比表面積が2,500〜20,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(−bDp n)(式中、Rは積算残分値(%)であり、ふるい残分を表し、Dpは粒径(μm)であり、ふるいの目の寸法を表し、b、nは定数である。)におけるn値が0.80〜1.45である上記[1]に記載の不溶化材。
[3] 上記不溶化材は、粒状または粉状の固体物に添加するためのものである上記[1]又は[2]に記載の不溶化材。
[4] 上記軽焼マグネシア部分水和物100質量部に対して、石膏を50質量部以下の配合量で含む上記[3]に記載の不溶化材。
[5] 上記不溶化材は、排水に添加するためのものである上記[1]又は[2]に記載の不溶化材。
As a result of intensive studies to solve the above-mentioned problems, the inventor has obtained the above object of the present invention according to an insolubilized material containing a light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia. The present invention has been completed by finding out what can be achieved.
That is, the present invention provides the following [1] to [5].
[1] A light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C. In the light-burned magnesia partial hydrate, the magnesium oxide content is 50 to 96.5% by mass, the magnesium hydroxide content is 3.5 to 50% by mass, and the calcium content is oxidized. Containing lightly burned magnesia partial hydrate which is 5.0% by mass or less in terms of product ( however, powder containing calcium carbonate at a content of 85% by mass or more, 100 parts by mass of the lightly burned magnesia partial hydrate) The insolubilizing material is characterized in that 20 to 70 parts by mass are added to the above.
[2] Blaine specific surface area of 2,500~20,000cm 2 / g, and wherein the Rosin-Rammler about the particle size distribution: R = 100exp (-bD p n ) ( wherein, R accumulated residue value (%), Representing the remainder of the sieve, D p is the particle size (μm), representing the size of the sieve eye, and b and n are constants). 45. The insolubilizing material according to the above [1], which is 45.
[3] The insolubilizing material according to [1] or [2], wherein the insolubilizing material is for addition to a granular or powdery solid.
[4] The insolubilized material according to [3], wherein gypsum is contained in an amount of 50 parts by mass or less with respect to 100 parts by mass of the lightly burned magnesia partial hydrate.
[5] The insolubilizing material according to [1] or [2], wherein the insolubilizing material is for addition to waste water.

本発明の不溶化材によると、汚染濃度の高い土壌や、焼却灰等の重金属含有ダスト等に対しても、少ない添加量で、重金属類等の溶出を十分に抑制することができる。
また、本発明の不溶化材によると、重金属類等を含む排水に対して、少ない添加量で、重金属類等を十分に不溶化することができる。この場合、排水を固液分離することによって、重金属類等の含有率が減少した液分を容易に得ることができ、排水処理を効率的に行なうことができる。
According to the insolubilizing material of the present invention, elution of heavy metals and the like can be sufficiently suppressed with a small amount of addition even to soil with high contamination concentration, heavy metal-containing dust such as incinerated ash, and the like.
Moreover, according to the insolubilizing material of the present invention, heavy metals can be sufficiently insolubilized with a small addition amount with respect to waste water containing heavy metals. In this case, by separating the drainage into solid and liquid, it is possible to easily obtain a liquid component having a reduced content of heavy metals and the like, and to efficiently perform the drainage treatment.

本発明の不溶化材は、(A)軽焼マグネシア部分水和物、を必須成分として含み、さらに必要に応じて他の任意成分を含む。
[(A)軽焼マグネシア部分水和物]
本発明の不溶化材に用いる(A)軽焼マグネシア部分水和物は、炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を550〜1,400℃で焼成して得た軽焼マグネシアの一部を水和してなるものである。
なお、本発明において、軽焼マグネシア部分水和物は、通常、粉末のものが用いられる。
炭酸マグネシウムを主成分とする鉱物の例としては、マグネサイト、ドロマイト等が挙げられる。この場合、鉱物中の炭酸マグネシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
水酸化マグネシウムを主成分とする鉱物の例としては、ブルーサイト等が挙げられる。この場合、鉱物中の水酸化マグネシウムの含有率は、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
軽焼マグネシアは、酸化マグネシウムを主成分として含む。本発明で用いる、軽焼マグネシアを部分的に水和してなる軽焼マグネシア部分水和物は、水和により得られた水酸化マグネシウムと、酸化マグネシウムとを後述の特定の割合で含む。このような軽焼マグネシア部分水和物を用いることにより、土壌等の固体物中もしくは排水中における重金属類等の溶出に対する高い抑制効果を得ることができる。
焼成する際の温度は、550〜1,400℃、好ましくは650〜1,400℃、より好ましくは750〜1,000℃、さらに好ましくは860〜950℃、特に好ましくは870〜920℃である。該温度が550℃未満であると、軽焼マグネシアが生成し難く、一方、1,400℃を超えると、重金属類等の不溶化の効果が低下する。
The insolubilizing material of the present invention includes (A) light-burned magnesia partial hydrate as an essential component, and further includes other optional components as necessary.
[(A) Lightly burned magnesia partial hydrate]
The light-burned magnesia partial hydrate used for the insolubilizing material of the present invention is a light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C. A part is hydrated.
In the present invention, powdered magnesia partial hydrate is usually used.
Examples of minerals mainly composed of magnesium carbonate include magnesite and dolomite. In this case, the content of magnesium carbonate in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
Examples of minerals mainly composed of magnesium hydroxide include brucite. In this case, the content of magnesium hydroxide in the mineral is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
Light-burned magnesia contains magnesium oxide as a main component. The light-burned magnesia partial hydrate obtained by partially hydrating light-burned magnesia used in the present invention contains magnesium hydroxide obtained by hydration and magnesium oxide in a specific ratio described later. By using such light-burned magnesia partial hydrate, it is possible to obtain a high inhibitory effect on elution of heavy metals or the like in solid matter such as soil or waste water.
The temperature at the time of baking is 550 to 1,400 ° C, preferably 650 to 1,400 ° C, more preferably 750 to 1,000 ° C, still more preferably 860 to 950 ° C, and particularly preferably 870 to 920 ° C. . When the temperature is less than 550 ° C., light-burned magnesia is difficult to be generated. On the other hand, when the temperature exceeds 1,400 ° C., the effect of insolubilizing heavy metals and the like is reduced.

(A)軽焼マグネシア部分水和物中、酸化マグネシウムの含有率は50〜96.5質量%、好ましくは60〜95質量%、より好ましくは70〜94質量%、特に好ましくは75〜93質量%である。
(A)軽焼マグネシア部分水和物中、水酸化マグネシウムの含有率は3.5〜50質量%、好ましくは4〜40質量%、より好ましくは5〜30質量%、特に好ましくは6〜20質量%である。
酸化マグネシウムの含有率が50質量%未満、あるいは水酸化マグネシウムの含有率が50質量%を超えると、重金属類等の不溶化の効果が低下する。一方、酸化マグネシウムの含有率が96.5質量%を超えるか、あるいは、水酸化マグネシウムの含有率が3.5質量%未満であると、特に重金属類等による汚染の高い土壌等において、重金属類等の溶出を抑制する効果が低下する。
(A) In the lightly burned magnesia partial hydrate, the content of magnesium oxide is 50 to 96.5% by mass, preferably 60 to 95% by mass, more preferably 70 to 94% by mass, and particularly preferably 75 to 93% by mass. %.
(A) In the light-burned magnesia partial hydrate, the content of magnesium hydroxide is 3.5 to 50% by mass, preferably 4 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 6 to 20%. % By mass.
When the content of magnesium oxide is less than 50% by mass or the content of magnesium hydroxide exceeds 50% by mass, the effect of insolubilization of heavy metals and the like decreases. On the other hand, when the content of magnesium oxide exceeds 96.5% by mass or the content of magnesium hydroxide is less than 3.5% by mass, particularly in soils highly contaminated with heavy metals, etc., heavy metals The effect which suppresses elution etc. falls.

本発明において、得られる軽焼マグネシア部分水和物に含まれる酸化カルシウム及び/又は水酸化カルシウムの合計の含有率は、軽焼マグネシア部分水和物(100質量%)中、酸化物換算で、5.0質量%以下、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、特に好ましくは2.0質量%以下である。該含有率が5.0質量%を超えると、特に重金属類等による汚染の高い土壌等において、重金属類等の溶出を抑制する効果が低下する。
なお、軽焼マグネシア部分水和物は、上記成分(MgO、Mg(OH)2、CaO、Ca(OH)2)以外の他の成分(具体的には、SiO2、Fe23等の不純物)を含むことができる。他の成分の含有率は、好ましくは4.0質量%以下、より好ましくは3.0質量%以下、特に好ましくは2.5質量%以下である。該含有率が4.0質量%を超えると、重金属類等の溶出を抑制する効果が低下することがある。
In the present invention, the total content of calcium oxide and / or calcium hydroxide contained in the obtained light calcined magnesia partial hydrate is in terms of oxide in the light calcined magnesia partial hydrate (100% by mass). It is 5.0 mass% or less, preferably 4.0 mass% or less, more preferably 3.0 mass% or less, and particularly preferably 2.0 mass% or less. When the content exceeds 5.0% by mass, the effect of suppressing elution of heavy metals and the like is reduced particularly in soils and the like highly contaminated with heavy metals and the like.
The light-burned magnesia partial hydrate is composed of other components (specifically, SiO 2 , Fe 2 O 3, etc.) other than the above components (MgO, Mg (OH) 2 , CaO, Ca (OH) 2 ). Impurities). The content of other components is preferably 4.0% by mass or less, more preferably 3.0% by mass or less, and particularly preferably 2.5% by mass or less. When this content rate exceeds 4.0 mass%, the effect which suppresses elution of heavy metals etc. may fall.

軽焼マグネシアを水和する方法としては、得られる軽焼マグネシア部分水和物中の各成分(酸化マグネシウム、水酸化マグネシウム、及びカルシウム)の含有率が上記特定の範囲内となればよく、特に限定されないが、例えば、下記(1)又は(2)の方法が挙げられる。
(1)軽焼マグネシアに水を添加して混合する方法
(2)軽焼マグネシアを相対湿度80%以上の環境下に、1週間以上保持する方法
なお、水和反応の前に、軽焼マグネシアを粉砕することが好ましい。
As a method for hydrating light-burned magnesia, it is sufficient that the content of each component (magnesium oxide, magnesium hydroxide, and calcium) in the obtained light-burned magnesia partial hydrate is within the above specific range. Although not limited, the following (1) or (2) method is mentioned, for example.
(1) Method of adding water to light-burned magnesia and mixing (2) Method of holding light-burned magnesia in an environment with a relative humidity of 80% or more for one week or more Note that, before the hydration reaction, light-burned magnesia Is preferably pulverized.

本発明の不溶化材を構成する軽焼マグネシアのブレーン比表面積は、好ましくは2,500〜20,000cm/g、より好ましくは4,500〜15,000cm/g、より好ましくは4,800〜10,000cm/g、さらに好ましくは5,200〜8,000cm/g、特に好ましくは5,500〜6,500cm/gである。該値を上記数値範囲内に調整することにより、重金属類等の溶出を抑制する効果を高めることができ、特に、重金属類等の溶出量の大きい土壌等に対しても少量で溶出を抑制することができる。また、ブレーン比表面積が8,000cm/g以下であると、ブレーン比表面積が8,000cm/gを超える場合に困難なスラリーでの添加も可能となる。 The Blaine specific surface area of the lightly burned magnesia constituting the insolubilized material of the present invention is preferably 2,500 to 20,000 cm 2 / g, more preferably 4,500 to 15,000 cm 2 / g, more preferably 4,800. It is -10,000 cm < 2 > / g, More preferably, it is 5,200-8,000 cm < 2 > / g, Most preferably, it is 5,500-6,500 cm < 2 > / g. By adjusting the value within the above numerical range, the effect of suppressing elution of heavy metals and the like can be enhanced, and in particular, elution can be suppressed in a small amount even for soils and the like where elution of heavy metals and the like is large. be able to. Moreover, when the Blaine specific surface area is 8,000 cm 2 / g or less, addition in a difficult slurry becomes possible when the Blaine specific surface area exceeds 8,000 cm 2 / g.

[(B)石膏]
本発明の不溶化材は、土壌、焼却灰等の粒状または粉状の固体物に添加するためのものである場合、石膏を含むことができる。
石膏を適量含むことによって、粒状または粉状の固体物の固化強度を増大させることができる。なお、固化強度は、一軸圧縮強度を測定することによって評価することができる。
石膏の例としては、無水石膏、二水石膏、半水石膏が挙げられる。
石膏の配合量は、軽焼マグネシア部分水和物100質量部に対して、無水物換算で、好ましくは50質量部以下、より好ましくは3〜35質量部、さらに好ましくは8〜30質量部、特に好ましくは12〜25質量部である。
石膏の配合量が50質量部を超えると、固化強度が低下するばかりか、重金属類等の溶出を抑制する効果が低下する。
本発明の不溶化材を構成する石膏のブレーン比表面積は、好ましくは3,000〜8,000cm/g、より好ましくは3,500〜6,500cm/g、さらに好ましくは4,000〜6,000cm/g、特に好ましくは4,500〜5,500cm/gである。該値を上記数値範囲内に調整することにより、重金属類等の溶出を抑制する効果を高めることができ、特に、重金属類等の溶出量の大きい土壌等に対しても少量で溶出を抑制することができる。
なお、石膏が上記ブレーン比表面積を既に有する場合は、粉砕を行わず、そのまま用いることができる。
[(B) Gypsum]
The insolubilizing material of the present invention can contain gypsum when it is added to a granular or powdery solid such as soil or incinerated ash.
By including an appropriate amount of gypsum, the solidification strength of a granular or powdery solid can be increased. The solidification strength can be evaluated by measuring uniaxial compressive strength.
Examples of gypsum include anhydrous gypsum, dihydrate gypsum, and hemihydrate gypsum.
The blending amount of gypsum is preferably 50 parts by mass or less, more preferably 3 to 35 parts by mass, still more preferably 8 to 30 parts by mass, in terms of anhydride, with respect to 100 parts by mass of light-burned magnesia partial hydrate. Especially preferably, it is 12-25 mass parts.
When the amount of gypsum exceeds 50 parts by mass, not only the solidification strength is lowered, but also the effect of suppressing elution of heavy metals and the like is lowered.
The brane specific surface area of the gypsum constituting the insolubilizing material of the present invention is preferably 3,000 to 8,000 cm 2 / g, more preferably 3,500 to 6,500 cm 2 / g, still more preferably 4,000 to 6 , 000cm 2 / g, particularly preferably 4,500~5,500cm 2 / g. By adjusting the value within the above numerical range, the effect of suppressing elution of heavy metals and the like can be enhanced, and in particular, elution can be suppressed in a small amount even for soils and the like where elution of heavy metals and the like is large. be able to.
In addition, when gypsum already has the said Blaine specific surface area, it can use as it is, without grind | pulverizing.

本発明の不溶化材は、ブレーン比表面積が2,500〜20,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(−bDp n)(式中、Rは積算残分値(%)であり、ふるい残分を表し、Dpは粒径(μm)であり、ふるいの目の寸法を表し、b、nは定数である。)におけるn値が0.80〜1.45となる粒度構成を有することが好ましい。不溶化材の粒度構成を上記のように調整することにより、重金属類等の溶出を抑制する効果を高めることができ、特に、重金属類等の溶出量の大きい土壌等に対しても少量で溶出を抑制することができる。
不溶化材のブレーン比表面積は、より好ましくは4,800〜10,000cm/g、さらに好ましくは5,200〜8,000cm/g、特に好ましくは5,500〜6,500cm/gである。
ロジン・ラムラーの式におけるn値は、より好ましくは0.90〜1.30、特に好ましくは0.95〜1.20である。
なお、ロジン・ラムラーの式におけるn値は、例えば、日機装社製9320−X10(粒度分布測定装置)を用いて測定することができる。測定に際しては、100mlビーカー内に収容した分散媒エタノール20mlに対して試料0.05gを加えるものとし、アズワン社製の超音波洗浄機(VS−100・周波数50kHz)を用いて1分間超音波分散後に測定を行う。測定は、試料の屈折率が1.72の条件で行うものとする。
Insolubilized material of the present invention is the Blaine specific surface area of 2,500~20,000cm 2 / g, and wherein the Rosin-Rammler about the particle size distribution: R = 100exp (-bD p n ) ( wherein, R The integrated residual value (%) represents the sieve residue, D p is the particle size (μm), the size of the sieve eye, and b and n are constants). It is preferable to have a particle size configuration of 80 to 1.45. By adjusting the particle size composition of the insolubilizing material as described above, it is possible to enhance the effect of suppressing the elution of heavy metals and the like. Can be suppressed.
The brane specific surface area of the insolubilized material is more preferably 4,800 to 10,000 cm 2 / g, still more preferably 5,200 to 8,000 cm 2 / g, and particularly preferably 5,500 to 6,500 cm 2 / g. is there.
The n value in the Rosin-Rammler formula is more preferably 0.90 to 1.30, particularly preferably 0.95 to 1.20.
The n value in the Rosin-Rammler equation can be measured using, for example, 9320-X10 (particle size distribution measuring device) manufactured by Nikkiso Co., Ltd. In the measurement, 0.05 g of a sample is added to 20 ml of a dispersion medium ethanol contained in a 100 ml beaker, and ultrasonic dispersion is performed for 1 minute using an ultrasonic cleaning machine (VS-100, frequency 50 kHz) manufactured by ASONE. Measurement will be performed later. The measurement is performed under the condition that the refractive index of the sample is 1.72.

本発明の不溶化材は、軽焼マグネシア部分水和物のみからなる場合、例えば、下記(a)の方法により得られる。
(a)軽焼マグネシアを粉砕して所定の粒度を有する粉砕物を得る工程と、該粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末を得る工程と、を含む方法
本発明の不溶化材は、軽焼マグネシア部分水和物及び石膏からなる場合、例えば、下記(b)〜(d)のいずれかの方法により得られる。
(b)軽焼マグネシアと石膏とを混合して混合物を得る工程と、前記混合物を粉砕して所定の粒度を有する混合物の粉砕物を得る工程と、前記混合物の粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末と石膏の粉末とからなる混合物を得る工程と、を含む方法
(c)軽焼マグネシアを粉砕して、所定の粒度を有する軽焼マグネシア粉砕物を得る工程と、石膏を粉砕して、所定の粒度を有する石膏の粉砕物を得る工程と、前記軽焼マグネシア粉砕物と前記石膏の粉砕物とを混合して混合物を得る工程と、前記混合物を水和させて、軽焼マグネシア部分水和物からなる粉末と石膏の粉末とからなる混合物を得る工程と、を含む方法
(d)軽焼マグネシアを粉砕して、所定の粒度を有する軽焼マグネシア粉砕物を得る工程と、前記軽焼マグネシア粉砕物を水和させて、軽焼マグネシア部分水和物からなる粉末を得る工程と、石膏を粉砕して、所定の粒度を有する石膏の粉末を得る工程と、前記軽焼マグネシア部分水和物からなる粉末と前記石膏の粉末とを混合して、これらの混合物を得る工程と、を含む方法
これら(b)〜(d)の方法の中で、重金属類等の溶出を抑制する効果、及び作業性の観点から、(b)又は(c)の方法が好ましく、(b)の方法が、より好ましい。
The insolubilizing material of the present invention can be obtained, for example, by the following method (a) when it consists only of light-burned magnesia partial hydrate.
(A) A method comprising a step of pulverizing light-burned magnesia to obtain a pulverized product having a predetermined particle size, and a step of hydrating the pulverized product to obtain a powder comprising light-burned magnesia partial hydrate. When the insolubilizing material of the invention is composed of light-burned magnesia partial hydrate and gypsum, it is obtained, for example, by any of the following methods (b) to (d).
(B) mixing lightly-burned magnesia and gypsum to obtain a mixture, pulverizing the mixture to obtain a pulverized mixture having a predetermined particle size, and hydrating the pulverized mixture. A process comprising: obtaining a mixture comprising a powder comprising light-burned magnesia partial hydrate and gypsum powder; and (c) pulverizing the light-burned magnesia to obtain a light-burned magnesia pulverized product having a predetermined particle size. Pulverizing gypsum to obtain a gypsum pulverized product having a predetermined particle size, mixing the light-burned magnesia pulverized product and the gypsum pulverized product to obtain a mixture, and hydrating the mixture And (d) pulverizing the light-burned magnesia to obtain a mixture of the powder comprising the light-burned magnesia partial hydrate and the gypsum powder. And the light baking A step of obtaining a powder comprising light-burned magnesia partial hydrate by hydrating a pulverized gnesia, a step of obtaining gypsum powder having a predetermined particle size by pulverizing gypsum, and the light-burning magnesia partial hydration A method comprising: mixing a powder comprising a product and the gypsum powder to obtain a mixture thereof. In these methods (b) to (d), an effect of suppressing elution of heavy metals and the like, And from the viewpoint of workability, the method (b) or (c) is preferable, and the method (b) is more preferable.

上記の各方法において、粉砕前の軽焼マグネシアは、粒径が1μm〜50mmであることが好ましい。また、粉砕前の石膏は、粒径が1μm〜100mmであることが好ましく、2μm〜50mmであることがより好ましい。このような粒径を有する粉砕前の軽焼マグネシア及び石膏を用いることにより、本発明の不溶化材の粒度を容易に調整することができる。   In each of the above methods, the light-burned magnesia before pulverization preferably has a particle size of 1 μm to 50 mm. The gypsum before pulverization preferably has a particle size of 1 μm to 100 mm, and more preferably 2 μm to 50 mm. By using light-burned magnesia and gypsum before pulverization having such a particle size, the particle size of the insolubilized material of the present invention can be easily adjusted.

本発明の不溶化材の添加量は、粒状または粉状の固体物(例えば、土壌、焼却灰等)に対する添加材として用いる場合、添加対象物の性状や施工条件、重金属類等の溶出量や添加対象物の要求性能等にもよるが、一般的には、粒状または粉状の固体物1mあたり50〜400kgが好ましく、100〜350kgがより好ましい。該量が50kg未満では、排水中の重金属類等の溶出の抑制効果が不十分となる。該量が400kgを超えると、排水中の重金属類等の溶出の抑制効果の向上が頭打ちとなり、また、処理後の体積が増大するとともに、処理コストも増大する。
この場合、不溶化材の添加方法としては、不溶化材を粉体のまま添加・混合するドライ添加、あるいは、水を加えてスラリーとして添加・混合するスラリー添加を採用することができる。スラリー添加の場合の水/不溶化材の質量比は、0.5〜1.5が好ましく、0.8〜1.2がより好ましい。
本発明の不溶化材は、土壌に対して特に好適に用いられるが、土壌以外のもの、例えば、下水汚泥焼却灰、鶏糞焼却灰、製紙スラッジ焼却灰、石炭焼却灰等の焼却灰、焼却炉の排ガス中からバグフィルター、電気集塵機等のダスト捕集手段によって捕集した焼却飛灰等のダスト類や、重金属類等に汚染されたトンネルズリ、コンクリートガラ、スラグ類等の粒状の固体物にも用いることができる。
The addition amount of the insolubilizing material of the present invention, when used as an additive to a granular or powdered solid material (for example, soil, incineration ash, etc.), the properties of the addition object, construction conditions, the elution amount and addition of heavy metals, etc. Although it depends on the required performance of the object, generally 50 to 400 kg is preferable, more preferably 100 to 350 kg, per 1 m 3 of a granular or powdery solid. When the amount is less than 50 kg, the effect of suppressing the elution of heavy metals in the wastewater is insufficient. When the amount exceeds 400 kg, the improvement in the elution suppression effect of heavy metals in the wastewater reaches its peak, and the volume after treatment increases and the processing cost also increases.
In this case, as the method for adding the insolubilizing material, dry addition in which the insolubilizing material is added and mixed in powder form, or slurry addition in which water is added and mixed as a slurry can be employed. 0.5-1.5 are preferable and, as for the mass ratio of the water / insolubilized material in the case of slurry addition, 0.8-1.2 are more preferable.
The insolubilizing material of the present invention is particularly preferably used for soil, but other than soil, for example, sewage sludge incineration ash, chicken manure incineration ash, papermaking sludge incineration ash, incineration ash such as coal incineration ash, incinerator For dust such as incinerated fly ash collected by dust collecting means such as bag filters and electric dust collectors from exhaust gas, and for particulate solids such as tunnel sludge, concrete glass and slag contaminated by heavy metals Can be used.

本発明の不溶化材の添加量は、排水に対する添加材として用いる場合、添加対象物の性状や施工条件、重金属類等の溶出量や添加対象物の要求性能等にもよるが、一般的には、排水100質量部に対して、好ましくは0.1〜10質量部、より好ましくは0.3〜4質量部、特に好ましくは0.5〜2質量部である。
該量が0.1質量部未満では、排水中の重金属類等の溶出の抑制効果が不十分となる。該量が10質量部を超えると、排水中の重金属類等の溶出の抑制効果の向上が頭打ちとなり、また、処理コストが増大する。
The amount of the insolubilizing material of the present invention, when used as an additive to waste water, depends on the properties of the object to be added and the construction conditions, the amount of elution of heavy metals, the required performance of the object to be added, etc. The amount is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 4 parts by mass, and particularly preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the waste water.
If the amount is less than 0.1 parts by mass, the effect of suppressing elution of heavy metals in the waste water is insufficient. When the amount exceeds 10 parts by mass, the improvement effect of the elution of heavy metals in the wastewater reaches its peak, and the processing cost increases.

以下、実施例に基いて本発明を説明する。
[不溶化材の調製]
以下の不溶化材A〜Nを調製した。
(1)不溶化材A:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて10日間保管したもの
(2)不溶化材B:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて20日間保管したもの
(3)不溶化材C:「不溶化材A」100質量部に対してブレーン比表面積5,500cm2/gの天然無水石膏を18質量部添加し、混合したもの
(4)不溶化材D:「不溶化材B」100質量部に対してブレーン比表面積5,500cm2/gの天然無水石膏を18質量部添加し、混合したもの
(5)不溶化材E:「不溶化材A」100質量部に対してブレーン比表面積5,500cm2/gの天然無水石膏を3質量部添加し、混合したもの
(6)不溶化材F:「不溶化材A」100質量部に対してブレーン比表面積5,500cm2/gの天然無水石膏を50質量部添加し、混合したもの
(7)不溶化材G:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、エア・ジェット式ふるい装置で粒度調整した後、相対湿度100%の保管室にて10日間保管したもの
(8)不溶化材H:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、エア・ジェット式ふるい装置で粒度調整した後、相対湿度100%の保管室にて10日間保管したもの
(9)不溶化材I:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度60%の保管室にて20日間保管したもの
(10)不溶化材J:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて50日間保管したもの
(11)不溶化材K:カルシウムの含有率の高いマグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて10日間保管したもの
(12)不溶化材L:マグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物100質量部に対し、試薬(関東化学社製;特級)である水酸化マグネシウム11.5質量部を添加し混合したもの
(13)不溶化材M:カルシウムの含有率の高いマグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて20日間保管したもの
(14)不溶化材N:カルシウムの含有率の高いマグネサイトを890℃で焼成してなる軽焼マグネシアを粉砕して得られた粉砕物を、相対湿度100%の保管室にて10日間保管したもの
Hereinafter, the present invention will be described based on examples.
[Preparation of insolubilized material]
The following insolubilized materials A to N were prepared.
(1) Insolubilized material A: a pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. and stored for 10 days in a storage room with a relative humidity of 100%. (2) Insolubilized material B: A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. for 20 days in a storage room with a relative humidity of 100%. (3) Insolubilizing material C: “Insolubilizing material A ”18 parts by mass of natural anhydrous gypsum having a specific surface area of 5,500 cm 2 / g to 100 parts by mass of Brene and mixed (4) Insolubilized material D: Blaine to 100 parts by mass of“ insolubilized material B ” 18 parts by mass of natural anhydrite with a specific surface area of 5,500 cm 2 / g was added and mixed. (5) Insolubilized material E: Blaine specific surface area of 5,500 cm 2 / g with respect to 100 parts by mass of “insolubilized material A” 3 masses of natural anhydrous gypsum Added, mixed ones (6) insoluble material F: that "insoluble material A" natural anhydrite of Blaine specific surface area of 5,500cm 2 / g were added 50 parts by weight per 100 parts by weight, were mixed (7) Insolubilizing material G: After pulverized light magnesia obtained by firing magnesite at 890 ° C., the particle size was adjusted with an air jet type sieve device, and then 10 in a storage room with a relative humidity of 100%. (8) Insolubilized material H: pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C., and adjusting the particle size with an air jet sieving apparatus, and then relative humidity 100 (9) Insolubilized material I: A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. in a storage room having a relative humidity of 60%. For 20 days (10) Insolubilized material J: A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. and stored in a storage room with a relative humidity of 100% for 50 days (11) Insolubilized material K: a pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C., and storing it in a storage room with a relative humidity of 100% for 10 days (12 ) Insolubilizing material L: Magnesium hydroxide 11.5 which is a reagent (manufactured by Kanto Chemical Co., Ltd .; special grade) with respect to 100 parts by mass of a pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite at 890 ° C. (13) Insolubilized material M: pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C., having a relative humidity of 100% Storage room (14) Insolubilized material N: A pulverized product obtained by pulverizing light-burned magnesia obtained by firing magnesite with a high calcium content at 890 ° C., stored at a relative humidity of 100% Stored in the room for 10 days

[汚染土壌等の準備]
以下の汚染土壌、焼却灰、及び排水を準備した。
(1)ヒ素汚染土壌
湿潤密度1.67g/cm3、含水比51.5%のシルト土2000gに対し、ヒ酸水素ナトリウム・7水和物0.04gを添加して混合し、ヒ素汚染土壌を得た。
(2)フッ素汚染土壌
湿潤密度1.53g/cm3、含水比76.3%の粘性土2000gに対し、フッ化カリウム0.06gを添加して混合し、フッ素汚染土壌を得た。
(3)鉛汚染土壌
湿潤密度1.71g/cm3、含水比10.5%の砂質土2000gに対し、硝酸鉛(II)0.50gを添加して混合し、鉛汚染土壌を得た。
(4)焼却灰
一般家庭ごみの焼却炉から焼却灰(都市ごみ焼却灰)を回収した。
(5)ヒ素汚染排水
水100質量部に対して、0.0043質量部のヒ酸水素ナトリウム(関東化学社製;特級)を添加して、ヒ素汚染排水を得た。
(6)フッ素汚染排水
水100質量部に対して、0.0058質量部のフッ化カリウム(関東化学社製;特級)を添加して、フッ素汚染排水を得た。
(7)鉛汚染排水
水100質量部に対して、0.0032質量部の硝酸鉛(II)(関東化学社製;特級)を添加して、鉛汚染排水を得た。
[Preparation of contaminated soil, etc.]
The following contaminated soil, incineration ash, and drainage were prepared.
(1) Arsenic-contaminated soil To arsenic-contaminated soil, 0.04 g of sodium hydrogen arsenate 7-hydrate is added to and mixed with 2000 g of silt soil with a wet density of 1.67 g / cm 3 and a water content of 51.5%. Got.
(2) Fluorine-contaminated soil 0.06 g of potassium fluoride was added to and mixed with 2000 g of viscous soil having a wet density of 1.53 g / cm 3 and a water content ratio of 76.3% to obtain fluorine-contaminated soil.
(3) Lead-contaminated soil 0.50 g of lead (II) nitrate was added to and mixed with 2000 g of sandy soil with a wet density of 1.71 g / cm 3 and a water content ratio of 10.5% to obtain lead-contaminated soil. .
(4) Incineration ash Incineration ash (city waste incineration ash) was recovered from incinerators for general household waste.
(5) Arsenic-contaminated wastewater 0.0043 parts by mass of sodium hydrogen arsenate (manufactured by Kanto Chemical Co., Inc .; special grade) was added to 100 parts by mass of water to obtain arsenic-contaminated wastewater.
(6) Fluorine-contaminated wastewater 0.0058 parts by mass of potassium fluoride (manufactured by Kanto Chemical Co., Inc .; special grade) was added to 100 parts by mass of water to obtain fluorine-contaminated wastewater.
(7) Lead-contaminated wastewater 0.0032 parts by mass of lead nitrate (II) (manufactured by Kanto Chemical Co., Ltd .; special grade) was added to 100 parts by mass of water to obtain lead-contaminated wastewater.

[試験方法]
(1)不溶化材の成分組成
X線回折、熱重量分析および化学分析値から算出した。
(2)ブレーン比表面積
「JIS R 5201」に準じて測定した。
(3)ロジン・ラムラー式のn値
100ミリリットル容量のビーカー中に、エタノール(分散媒)20ミリリットル、不溶化材0.05gを添加し、アズワン社製の超音波洗浄機(VS−100・周波数50kHz)を用いて1分間超音波分散した。その後、日機装社製9320−X10(粒度分布測定装置)を用いて、ロジン・ラムラー式のn値を求めた。なお、試料の屈折率は1.72の条件で行うものとする。
(4)一軸圧縮強度
汚染土壌に対し、不溶化材を添加し、材齢7日の改良土壌を得た。この改良土壌の一軸圧縮強度を、JIS A 1216に準じて測定した。
[Test method]
(1) Component composition of insolubilized material Calculated from X-ray diffraction, thermogravimetric analysis, and chemical analysis values.
(2) Blaine specific surface area Measured according to "JIS R 5201".
(3) Rosin-Rammler n value In a 100 ml capacity beaker, 20 ml of ethanol (dispersion medium) and 0.05 g of insolubilizing material were added, and an ultrasonic cleaning machine (VS-100, frequency 50 kHz manufactured by AS ONE Co., Ltd. ) For 1 minute. Then, n value of the rosin-ramler type | formula was calculated | required using Nikkiso Co., Ltd. 9320-X10 (particle size distribution measuring apparatus). Note that the refractive index of the sample is assumed to be 1.72.
(4) Uniaxial compressive strength An insolubilizing material was added to the contaminated soil to obtain improved soil on the age of 7 days. The uniaxial compressive strength of the improved soil was measured according to JIS A 1216.

(5)溶出試験1(ヒ素)
(a)土壌
ヒ素汚染土壌(含水比:70%)に対し、不溶化材を添加し、材齢7日の改良土壌からのヒ素の溶出量を環境省告示46号法に準拠して測定した。なお、ヒ素の環境基準値は0.01mg/リットルである。
(b)焼却灰
焼却灰に対し、不溶化材を添加し、材齢7日の改良焼却灰からのヒ素の溶出量を環境省告示46号法に準拠して測定した。
(c)排水
ヒ素汚染排水に対し、不溶化材を添加し、200回/分で4時間振とうした後の排水からのヒ素の溶出量を測定した。この際、不溶化材の添加後のpHも測定した。
(5) Dissolution test 1 (arsenic)
(A) Soil An insolubilizing material was added to arsenic-contaminated soil (water content ratio: 70%), and the amount of arsenic eluted from the improved soil at 7 days of age was measured according to the Ministry of the Environment Notification No. 46. The environmental standard value for arsenic is 0.01 mg / liter.
(B) Incineration ash An insolubilizing material was added to the incineration ash, and the amount of arsenic eluted from the improved incineration ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46.
(C) Wastewater An insolubilizing material was added to the arsenic-contaminated wastewater, and the amount of arsenic eluted from the wastewater after shaking at 200 times / minute for 4 hours was measured. At this time, the pH after addition of the insolubilizing material was also measured.

(6)溶出試験2(フッ素)
(a)土壌
フッ素汚染土壌(含水比:75%)に対し、不溶化材を添加し、材齢7日の改良土壌からのフッ素の溶出量を環境省告示46号法に準拠して測定した。なお、フッ素の環境基準値は0.8mg/リットルである。
(b)焼却灰
焼却灰に対し、不溶化材を添加し、材齢7日の改良焼却灰からのフッ素の溶出量を環境省告示46号法に準拠して測定した。
(c)排水
フッ素汚染排水に対し、不溶化材を添加し、200回/分で4時間振とうした後の排水からのヒ素の溶出量を測定した。この際、不溶化材の添加後のpHも測定した。
(6) Dissolution test 2 (fluorine)
(A) Soil Fluorine-contaminated soil (water content: 75%) was added with an insolubilizing material, and the amount of fluorine eluted from the improved soil at the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value of fluorine is 0.8 mg / liter.
(B) Incineration ash An insolubilizing material was added to the incineration ash, and the amount of fluorine eluted from the improved incineration ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46.
(C) Wastewater An insolubilizing material was added to the fluorine-contaminated wastewater, and the amount of arsenic eluted from the wastewater after shaking for 4 hours at 200 times / minute was measured. At this time, the pH after addition of the insolubilizing material was also measured.

(7)溶出試験3(鉛)
(a)土壌
鉛汚染土壌(含水比:70%)に対し、不溶化材を添加し、材齢7日の改良土壌からの鉛の溶出量を環境省告示46号法に準拠して測定した。なお、鉛の環境基準値は0.01mg/リットルである。
(b)排水
鉛汚染排水に対し、不溶化材を添加し、200回/分で4時間振とうした後の排水からのヒ素の溶出量を測定した。この際、不溶化材の添加後のpHも測定した。
(7) Dissolution test 3 (lead)
(A) Soil An insolubilizing material was added to lead-contaminated soil (water content ratio: 70%), and the amount of lead eluted from the improved soil on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value for lead is 0.01 mg / liter.
(B) Wastewater The insolubilizing material was added to the lead-contaminated wastewater, and the amount of arsenic eluted from the wastewater after shaking for 4 hours at 200 times / minute was measured. At this time, the pH after addition of the insolubilizing material was also measured.

(8)溶出試験4(6価クロム)
焼却灰に対し、不溶化材を添加し、材齢7日の改良焼却灰からの6価クロムの溶出量を環境省告示46号法に準拠して測定した。なお、6価クロムの環境基準値は0.05mg/リットルである。
(8) Dissolution test 4 (hexavalent chromium)
An insolubilizing material was added to the incinerated ash, and the elution amount of hexavalent chromium from the improved incinerated ash on the age of 7 days was measured according to the Ministry of the Environment Notification No. 46 method. The environmental standard value for hexavalent chromium is 0.05 mg / liter.

[実施例1〜8、比較例1〜5]
表1に示すように、汚染土壌に各種の不溶化材を添加した場合(実施例1〜8、比較例1〜4)及び不溶化材を添加しない場合(比較例5)のヒ素等の溶出量及び一軸圧縮強度(表1中、「一軸強度」と略す。)を測定した。結果を表1に示す。
なお、表1中、「添加量(kg/m3)」は、不溶化材の添加前の汚染土壌1m3に対する不溶化材の添加量(kg)を表す。
[Examples 1-8, Comparative Examples 1-5]
As shown in Table 1, when various insolubilizing materials were added to the contaminated soil (Examples 1 to 8, Comparative Examples 1 to 4) and when no insolubilizing materials were added (Comparative Example 5), Uniaxial compressive strength (abbreviated as “uniaxial strength” in Table 1) was measured. The results are shown in Table 1.
In Table 1, “addition amount (kg / m 3 )” represents the addition amount (kg) of the insolubilizing material to 1 m 3 of the contaminated soil before the addition of the insolubilizing material.

Figure 0004481360
Figure 0004481360

表1から、本発明に該当する不溶化材を用いた場合(実施例1〜8)、少ない添加量で汚染土壌からのヒ素等の溶出量を低く抑えうること、及び、一軸圧縮強度も良好な値であることがわかる。一方、比較例1、2では、水酸化マグネシウムの含有率が本発明で規定する数値範囲から外れているため、実施例1〜8に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例3では、カルシウムの含有率(酸化物換算)が本発明で規定する数値範囲を超えているため、実施例1〜8に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例4では、軽焼マグネシア部分水和物ではなく、軽焼マグネシアと試薬である水酸化マグネシウムの混合物を用いているため、実施例1〜8に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例5では、不溶化材を用いていないため、ヒ素、フッ素、鉛の溶出量が非常に大きい。   From Table 1, when the insolubilizing material corresponding to the present invention is used (Examples 1 to 8), it is possible to suppress the elution amount of arsenic and the like from the contaminated soil with a small addition amount, and the uniaxial compressive strength is also good. It turns out that it is a value. On the other hand, in Comparative Examples 1 and 2, since the content of magnesium hydroxide is out of the numerical range defined in the present invention, the elution of arsenic, fluorine and lead in the same addition amount as compared with Examples 1 to 8 The amount is large. In Comparative Example 3, since the calcium content (in oxide equivalent) exceeds the numerical range defined in the present invention, the amount of arsenic, fluorine, and lead eluted with the same addition amount compared to Examples 1-8 Is big. In Comparative Example 4, since a mixture of light-burned magnesia and magnesium hydroxide, which is a reagent, is used instead of light-burned magnesia partial hydrate, arsenic and fluorine at the same addition amount as compared with Examples 1-8 The amount of lead elution is large. In Comparative Example 5, since no insolubilizing material is used, the amount of elution of arsenic, fluorine, and lead is very large.

[実施例9〜10、比較例6〜9]
表2に示すように、焼却灰に各種の不溶化材を添加した場合(実施例9〜10、比較例6〜8)及び不溶化材を添加しない場合(比較例9)のヒ素等の溶出量を測定した。結果を表2に示す。
なお、表2中、「添加量(kg/m3)」は、不溶化材の添加前の焼却灰1m3に対する不溶化材の添加量(kg)を表す。
[Examples 9 to 10, Comparative Examples 6 to 9]
As shown in Table 2, when various insolubilizing materials were added to incinerated ash (Examples 9 to 10, Comparative Examples 6 to 8) and when no insolubilizing materials were added (Comparative Example 9) It was measured. The results are shown in Table 2.
In Table 2, “addition amount (kg / m 3 )” represents the addition amount (kg) of the insolubilizing material relative to 1 m 3 of incinerated ash before the addition of the insolubilizing material.

Figure 0004481360
Figure 0004481360

表2から、本発明に該当する不溶化材を用いた場合(実施例9〜10)、少ない添加量で焼却灰からのヒ素等の溶出量を低く抑えうることがわかる。一方、比較例6、7では、水酸化マグネシウムの含有率が本発明で規定する数値範囲から外れているため、実施例9〜10と同程度にヒ素、フッ素、6価クロムの各溶出量を低く抑えるためには、不溶化材の添加量を実施例9〜10よりも大きくしなければならないことがわかる。比較例8では、カルシウムの含有率(酸化物換算)が本発明で規定する数値範囲を超えているため、実施例9〜10と同程度にヒ素、フッ素、6価クロムの各溶出量を低く抑えるためには、不溶化材の添加量を実施例9〜10よりも大きくしなければならないことがわかる。比較例9では、不溶化材を用いていないため、ヒ素、フッ素、6価クロムの溶出量が非常に大きい。   Table 2 shows that when the insolubilizing material corresponding to the present invention is used (Examples 9 to 10), the amount of arsenic and the like eluted from the incinerated ash can be kept low with a small addition amount. On the other hand, in Comparative Examples 6 and 7, since the magnesium hydroxide content is out of the numerical range defined in the present invention, each elution amount of arsenic, fluorine, and hexavalent chromium is the same as in Examples 9 to 10. In order to keep it low, it turns out that the addition amount of the insolubilizing material must be made larger than Examples 9-10. In Comparative Example 8, since the calcium content (in oxide conversion) exceeds the numerical range defined in the present invention, the elution amounts of arsenic, fluorine, and hexavalent chromium are as low as in Examples 9-10. In order to suppress, it turns out that the addition amount of an insolubilizing material must be larger than Examples 9-10. In Comparative Example 9, since no insolubilizing material was used, the amount of elution of arsenic, fluorine, and hexavalent chromium was very large.

[実施例11〜14、比較例10〜15]
表3に示すように、汚染排水に各種の不溶化材を添加した場合(実施例11〜14、比較例10〜14)及び不溶化材を添加しない場合(比較例15)のヒ素等の溶出量を測定した。結果を表3に示す。
なお、表3中、「排水に対する添加量(質量%)」は、不溶化材の添加前の排水100質量%に対する不溶化材の添加量(質量%)を表す。
[Examples 11-14, Comparative Examples 10-15]
As shown in Table 3, when various insolubilizing materials were added to the contaminated waste water (Examples 11 to 14, Comparative Examples 10 to 14) and when no insolubilizing materials were added (Comparative Example 15) It was measured. The results are shown in Table 3.
In Table 3, “addition amount to waste water (mass%)” represents the addition amount (mass%) of the insolubilizing material relative to 100 mass% of the waste water before the addition of the insolubilizing material.

Figure 0004481360
Figure 0004481360

表3から、本発明に該当する不溶化材を用いた場合(実施例11〜14)、少ない添加量で汚染排水からのヒ素等の溶出量を排水基準以下に低く抑えうることがわかる。一方、比較例10、11では、水酸化マグネシウムの含有率が本発明で規定する数値範囲から外れているため、実施例11〜14に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量のバランスが悪い。比較例12、13では、カルシウムの含有率(酸化物換算)が本発明で規定する数値範囲を超えているため、実施例11〜14に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例14では、軽焼マグネシア部分水和物ではなく、軽焼マグネシアと試薬である水酸化マグネシウムの混合物を用いているため、実施例11〜14に比べて、同一添加量でのヒ素、フッ素、鉛の溶出量が大きい。比較例15では、不溶化材を用いていないため、ヒ素、フッ素、鉛の溶出量が非常に大きい。   It can be seen from Table 3 that when the insolubilizing material corresponding to the present invention is used (Examples 11 to 14), the amount of arsenic and the like eluted from the contaminated wastewater can be kept low below the wastewater standard with a small addition amount. On the other hand, in Comparative Examples 10 and 11, the magnesium hydroxide content is out of the numerical range defined in the present invention, so that arsenic, fluorine, and lead are eluted at the same added amount as compared with Examples 11-14. The balance of quantity is bad. In Comparative Examples 12 and 13, since the calcium content (in oxide conversion) exceeds the numerical range defined in the present invention, arsenic, fluorine, and lead in the same addition amount compared to Examples 11-14. Large amount of elution. In Comparative Example 14, not a light-burned magnesia partial hydrate but a mixture of light-burned magnesia and magnesium hydroxide, which is a reagent, is used. The amount of lead elution is large. In Comparative Example 15, since an insolubilizing material is not used, the amount of arsenic, fluorine, and lead eluted is very large.

Claims (5)

炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を550〜1,400℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が50〜96.5質量%、水酸化マグネシウムの含有率が3.5〜50質量%であり、カルシウムの含有率が酸化物換算で5.0質量%以下である軽焼マグネシア部分水和物を含むこと(ただし、炭酸カルシウムを85質量%以上の含有率で含む粉末を、前記軽焼マグネシア部分水和物100質量部に対して20〜70質量部加えた場合を除く。)を特徴とする不溶化材。 A light-burned magnesia partial hydrate obtained by hydrating a part of light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C., In the light-burned magnesia partial hydrate, the content of magnesium oxide is 50 to 96.5% by mass, the content of magnesium hydroxide is 3.5 to 50% by mass, and the content of calcium is in terms of oxide. Containing a light-burned magnesia partial hydrate of 5.0% by mass or less (however, a powder containing calcium carbonate at a content of 85% by mass or more with respect to 100 parts by mass of the light-burned magnesia partial hydrate) The insolubilizing material is characterized in that 20 to 70 parts by mass is added ). ブレーン比表面積が2,500〜20,000cm/gであり、かつ、粒度分布に関するロジン・ラムラーの式:R=100exp(−bDp n)(式中、Rは積算残分値(%)であり、ふるい残分を表し、Dpは粒径(μm)であり、ふるいの目の寸法を表し、b、nは定数である。)におけるn値が0.80〜1.45である請求項1に記載の不溶化材。 Blaine specific surface area of 2,500~20,000cm 2 / g, and wherein the Rosin-Rammler about the particle size distribution: R = 100exp (-bD p n ) ( wherein, R accumulated residue value (%) N represents a sieve residue, D p is the particle size (μm), represents the size of the sieve eye, and b and n are constants). The n value is 0.80 to 1.45. The insolubilized material according to claim 1. 上記不溶化材は、粒状または粉状の固体物に添加するためのものである請求項1又は2に記載の不溶化材。   The insolubilizing material according to claim 1 or 2, wherein the insolubilizing material is for addition to a granular or powdery solid material. 上記軽焼マグネシア部分水和物100質量部に対して、石膏を50質量部以下の配合量で含む請求項3に記載の不溶化材。   The insolubilized material according to claim 3, comprising gypsum in an amount of 50 parts by mass or less with respect to 100 parts by mass of the light-burned magnesia partial hydrate. 上記不溶化材は、排水に添加するためのものである請求項1又は2に記載の不溶化材。   The insolubilizing material according to claim 1 or 2, wherein the insolubilizing material is for addition to waste water.
JP2009232042A 2009-10-05 2009-10-05 Insolubilizing material Active JP4481360B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232042A JP4481360B1 (en) 2009-10-05 2009-10-05 Insolubilizing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232042A JP4481360B1 (en) 2009-10-05 2009-10-05 Insolubilizing material

Publications (2)

Publication Number Publication Date
JP4481360B1 true JP4481360B1 (en) 2010-06-16
JP2011079919A JP2011079919A (en) 2011-04-21

Family

ID=42351739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232042A Active JP4481360B1 (en) 2009-10-05 2009-10-05 Insolubilizing material

Country Status (1)

Country Link
JP (1) JP4481360B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036243A (en) * 2010-08-04 2012-02-23 Taiheiyo Cement Corp Material and method for preventing elution of heavy metal
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5654429B2 (en) * 2011-10-03 2015-01-14 帝人エンジニアリング株式会社 Method for producing magnesium oxide composition, magnesium oxide composition, neutralizing agent for desulfurization, flue gas desulfurization method, and flue gas desulfurization apparatus
JP5915202B2 (en) * 2012-01-25 2016-05-11 宇部興産株式会社 Insolubilization method
JP2013230447A (en) * 2012-05-01 2013-11-14 Sumitomo Osaka Cement Co Ltd Heavy metal elution reducing material
JP6126460B2 (en) * 2013-05-23 2017-05-10 太平洋セメント株式会社 Heavy metal adsorption layer materials, and adsorption layer construction methods using them
JP6815718B2 (en) * 2015-04-15 2021-01-20 日鉄セメント株式会社 Hazardous substance treatment material and fluorine insolubilization method
JP6009632B1 (en) * 2015-08-04 2016-10-19 住商セメント株式会社 Construction filler
JP6808373B2 (en) * 2016-06-22 2021-01-06 太平洋セメント株式会社 How to handle excavation scraps
JP2021011574A (en) * 2020-09-18 2021-02-04 日鉄セメント株式会社 Harmful substance treatment material and fluorine insolubilization method
JP7382463B1 (en) 2022-07-27 2023-11-16 宇部マテリアルズ株式会社 alkaline agent

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064361A (en) * 2001-08-29 2003-03-05 Matsuda Giken Kogyo Kk Soil hardener
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2003193462A (en) * 2001-12-27 2003-07-09 Taiheiyo Cement Corp Soil solidification treatment method
JP2003334526A (en) * 2002-05-21 2003-11-25 Konoike Constr Ltd Method for solidifying and insolubilizing polluted soil, or the like
JP2003342569A (en) * 2002-05-29 2003-12-03 Daimaru Kogyo Kk Soil solidifying material
JP2004292568A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Soil solidifying material
JP2005105266A (en) * 2003-09-10 2005-04-21 Raito Kogyo Co Ltd Material for soil-sand structure and method for surface protection of slope, lining face and, covered face of tunnel, and method for protecting slope face using the same
JP2005238207A (en) * 2004-02-27 2005-09-08 Astec:Kk Engineering method for cleaning contaminated soil
JP2005350636A (en) * 2004-06-14 2005-12-22 Ube Material Industries Ltd Solidification material of soil
JP2006187773A (en) * 2001-11-30 2006-07-20 Matsuda Giken Kogyo Kk Agent for solidifying and insolubilizing soil contaminated by contaminants which are cyanide, phosphorous and/or nitrogen and/or arsenic
JP2006219547A (en) * 2005-02-09 2006-08-24 Matsuda Giken Kogyo Kk Soil-solidifying material
JP2006273921A (en) * 2005-03-28 2006-10-12 Fujita Corp Soil improving material, soil improving method, sludge ash for preventing dissolution of heavy metal in soil, and sludge ash for shortening curing period for developing strength
JP2007161839A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2007161838A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2007302885A (en) * 2006-04-14 2007-11-22 Univ Waseda Insolubilizing agent for harmful substance
JP2008155101A (en) * 2006-12-22 2008-07-10 Taiheiyo Cement Corp Elution restraining material of hexavalent chromium
JP2008255193A (en) * 2007-04-03 2008-10-23 Matsuda Giken Kogyo Kk Soil hardener
JP4187223B1 (en) * 2008-02-08 2008-11-26 株式会社ソフィア Purification material and purification equipment
JP4343259B1 (en) * 2008-11-07 2009-10-14 太平洋セメント株式会社 Insolubilizing material

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064361A (en) * 2001-08-29 2003-03-05 Matsuda Giken Kogyo Kk Soil hardener
JP2003117532A (en) * 2001-10-09 2003-04-22 Taiheiyo Cement Corp Solidifying material and solidifying method for suppressing elution of heavy metal
JP2006187773A (en) * 2001-11-30 2006-07-20 Matsuda Giken Kogyo Kk Agent for solidifying and insolubilizing soil contaminated by contaminants which are cyanide, phosphorous and/or nitrogen and/or arsenic
JP2003193462A (en) * 2001-12-27 2003-07-09 Taiheiyo Cement Corp Soil solidification treatment method
JP2003334526A (en) * 2002-05-21 2003-11-25 Konoike Constr Ltd Method for solidifying and insolubilizing polluted soil, or the like
JP2003342569A (en) * 2002-05-29 2003-12-03 Daimaru Kogyo Kk Soil solidifying material
JP2004292568A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Soil solidifying material
JP2005105266A (en) * 2003-09-10 2005-04-21 Raito Kogyo Co Ltd Material for soil-sand structure and method for surface protection of slope, lining face and, covered face of tunnel, and method for protecting slope face using the same
JP2005238207A (en) * 2004-02-27 2005-09-08 Astec:Kk Engineering method for cleaning contaminated soil
JP2005350636A (en) * 2004-06-14 2005-12-22 Ube Material Industries Ltd Solidification material of soil
JP2006219547A (en) * 2005-02-09 2006-08-24 Matsuda Giken Kogyo Kk Soil-solidifying material
JP2006273921A (en) * 2005-03-28 2006-10-12 Fujita Corp Soil improving material, soil improving method, sludge ash for preventing dissolution of heavy metal in soil, and sludge ash for shortening curing period for developing strength
JP2007161839A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2007161838A (en) * 2005-12-13 2007-06-28 Ube Material Industries Ltd Soil solidifier
JP2007302885A (en) * 2006-04-14 2007-11-22 Univ Waseda Insolubilizing agent for harmful substance
JP2008155101A (en) * 2006-12-22 2008-07-10 Taiheiyo Cement Corp Elution restraining material of hexavalent chromium
JP2008255193A (en) * 2007-04-03 2008-10-23 Matsuda Giken Kogyo Kk Soil hardener
JP4187223B1 (en) * 2008-02-08 2008-11-26 株式会社ソフィア Purification material and purification equipment
JP4343259B1 (en) * 2008-11-07 2009-10-14 太平洋セメント株式会社 Insolubilizing material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036243A (en) * 2010-08-04 2012-02-23 Taiheiyo Cement Corp Material and method for preventing elution of heavy metal
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals

Also Published As

Publication number Publication date
JP2011079919A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP4481360B1 (en) Insolubilizing material
WO2010052986A1 (en) Insolubilizing agent
JP5068245B2 (en) Insolubilized material
CN106467745A (en) It is suitable for the steel slag and desulfurized gypsum base soil-solidified-agent of As polluted soil
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP2012076009A (en) Method of producing granulated and solidified body from biomass incineration ash
JP3706618B2 (en) Solidification / insolubilizer and solidification / insolubilization method for soil, incineration ash, coal ash, and gypsum board waste
JP6338885B2 (en) Oil-contaminated soil solidification treatment material and solidification treatment method
JP5915202B2 (en) Insolubilization method
JPH10137716A (en) Waste treating material and treatment of waste
JP5013005B1 (en) Insolubilizer and method for producing the same
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JP4209223B2 (en) Hexavalent chromium elution suppression method
JP6046476B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP5836096B2 (en) Earthwork materials
JP4283701B2 (en) Calcium sulfide manufacturing method, ground improvement material manufacturing method, and processing object processing method
JP4745955B2 (en) Hexavalent chromium elution inhibitor
JP6465604B2 (en) Insolubilized slurry
JP5833425B2 (en) Earthwork materials
JP2002058963A (en) Exhaust gas treating agent and its method
JP6002495B2 (en) Earthwork materials
JP4516780B2 (en) Heavy metal fixing material, cement-based solidifying material, manufacturing method of heavy metal fixing material, manufacturing method of ground improvement material, and processing method of soil to be processed
JP2011140597A (en) Compound-treating agent for treatment of exhaust gas and fly ash and treating method
JP5887122B2 (en) Wastewater treatment agent
JP2013127030A (en) Civil engineering material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4481360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250