JP2012036243A - Material and method for preventing elution of heavy metal - Google Patents

Material and method for preventing elution of heavy metal Download PDF

Info

Publication number
JP2012036243A
JP2012036243A JP2010175154A JP2010175154A JP2012036243A JP 2012036243 A JP2012036243 A JP 2012036243A JP 2010175154 A JP2010175154 A JP 2010175154A JP 2010175154 A JP2010175154 A JP 2010175154A JP 2012036243 A JP2012036243 A JP 2012036243A
Authority
JP
Japan
Prior art keywords
mass
elution
light
clay
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010175154A
Other languages
Japanese (ja)
Other versions
JP5599256B2 (en
Inventor
Yusuke Matsuyama
祐介 松山
Naoko Tanaka
尚子 田中
Hiroshi Hayashi
浩志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010175154A priority Critical patent/JP5599256B2/en
Publication of JP2012036243A publication Critical patent/JP2012036243A/en
Application granted granted Critical
Publication of JP5599256B2 publication Critical patent/JP5599256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material for preventing the elution of heavy metals, which can sufficiently prevents even an object to be processed such as soil heavily contaminated by the heavy metals from causing the elution of the heavy metals at a small additive amount.SOLUTION: The material for preventing the elution of the heavy metals contains a light-burned magnesia-part hydrate (A) configured by partially hydrating a light-burned magnesia, and a clay (B) in which a total extraction rate of silica (SiO) and alumina (AlO) from the clay, measured by an allophane quantitative test, is 20 mass% or more, wherein the mass ratio of (A) to (B) falls within the range of 0.2-20.

Description

本発明は、重金属類を含む汚染土壌等の処理対象物を固化して、重金属類の溶出を抑制することができる溶出抑制材に関する。   The present invention relates to an elution inhibitor that can solidify a processing object such as contaminated soil containing heavy metals to suppress elution of heavy metals.

工場、事業所又は産業廃棄物処理場の跡地等の土壌が、鉛、6価クロム又はヒ素等の重金属やフッ素等により汚染されているという事例が、近年、多数報告されている。
重金属等により土壌が汚染されると、重金属等の汚染域が地下水にまで拡散し、汚染された地下水を経由して最終的には人体や穀物に重金属等が蓄積され、健康に悪影響を及ぼす事態が懸念される。
また、土壌中の重金属等の濃度が環境基準値を超えると、跡地をそのまま利用できなくなり、土地の有効利用の観点からも問題である。
In recent years, many cases have been reported in which soil such as sites of factories, business establishments, or industrial waste disposal sites is contaminated with heavy metals such as lead, hexavalent chromium or arsenic, fluorine, and the like.
When soil is contaminated with heavy metals, etc., the contaminated area of heavy metals diffuses into the groundwater and eventually accumulates in the human body and grain via the contaminated groundwater, which adversely affects health Is concerned.
In addition, if the concentration of heavy metals in the soil exceeds the environmental standard value, the site cannot be used as it is, which is also a problem from the viewpoint of effective use of the land.

かかる問題に対処するために、汚染土壌中の重金属を不溶化して、重金属が土壌から溶出するのを抑制もしくは防止する技術が種々提案されている。
例えば、特許文献1には、酸化マグネシウムを含む重金属溶出抑制固化材が提案されている。
特許文献2には、MgO及び/又はMgO含有材からなる有害物質汚染土壌用の固化不溶化剤が提案されている。
特許文献3には、700〜1,000℃で焼成され、粉末度4,000cm/g以上に調整した酸化マグネシウムを、汚染土壌等に添加・混合することにより、該汚染土壌等を固化して、汚染物質の不溶化を行う汚染土壌等の固化・不溶化方法が提案されている。
特許文献4には、固化可能なバインダー中に物質を取り込む方法であって、当該方法が、スラリーとして、又は次のスラリーの形成のために、物質をバインダーと混合する工程を含み、該バインダーが苛性酸化マグネシウム源を含んでおり、及び、スラリーに、バインダーの固化を促進する固化剤を加える工程を含む方法が提案されている。
特許文献5には、酸化マグネシウム(好ましくは、軽焼マグネシウム)と、石膏等の硫酸塩とを主成分とする土壌固化材が提案されている。
特許文献6には、特定の酸化マグネシウムと、マグネシウム等の硫酸塩と、炭酸カルシウムとを特定の質量割合で含む土壌固化材が提案されている。
In order to cope with such problems, various techniques for insolubilizing heavy metals in contaminated soil to suppress or prevent heavy metals from eluting from the soil have been proposed.
For example, Patent Document 1 proposes a heavy metal elution suppressing solidified material containing magnesium oxide.
Patent Document 2 proposes a solidifying and insolubilizing agent for harmful substance-contaminated soil made of MgO and / or MgO-containing material.
Patent Document 3 solidifies the contaminated soil and the like by adding and mixing magnesium oxide baked at 700 to 1,000 ° C. and adjusted to a fineness of 4,000 cm 2 / g or more into the contaminated soil. Thus, methods for solidifying and insolubilizing contaminated soil and the like for insolubilizing pollutants have been proposed.
Patent Document 4 discloses a method of incorporating a substance into a solidifiable binder, the method including a step of mixing the substance with a binder as a slurry or for the formation of the next slurry, A method has been proposed that includes a caustic magnesium oxide source and a step of adding to the slurry a solidifying agent that promotes solidification of the binder.
Patent Document 5 proposes a soil solidifying material mainly composed of magnesium oxide (preferably light calcined magnesium) and sulfate such as gypsum.
Patent Document 6 proposes a soil solidifying material containing specific magnesium oxide, sulfate such as magnesium, and calcium carbonate at a specific mass ratio.

特開2003−117532号公報JP 2003-117532 A 特開2003−225640号公報JP 2003-225640 A 特開2003−334526号公報JP 2003-334526 A 特表2005−523990号公報JP 2005-523990 A 特開2003−193050号公報JP 2003-193050 A 特開2007−161839号公報JP 2007-161839 A

不溶化材として酸化マグネシウムを用いる特許文献1〜6に記載の技術は、汚染の程度の低い土壌に適用した場合に重金属の溶出を抑制することができる。しかし、酸化マグネシウムや硫酸塩を通常の使用量で添加しても、汚染の程度の高い土壌に対し未だ重金属の溶出抑制効果は不十分である。一方、重金属の溶出量を所定の値(例えば、環境基準値)以下にしようとすると、不溶化材の使用量が過度に増大する。この場合、(a)高コストになる、(b)不溶化材を添加した後の処理土のpHが高くなる、(c)不溶化材を添加した後の処理土の容積が過度に増大し、その後処理に手間とコストがかかる、などの問題がある。
そこで、本発明は、重金属類による汚染の程度の高い土壌等の処理対象物に対しても、少ない添加量で、重金属類の溶出を十分に抑制することができる重金属類の溶出抑制材及び溶出抑制方法を提供することを目的とする。
The techniques described in Patent Documents 1 to 6 using magnesium oxide as an insolubilizing material can suppress elution of heavy metals when applied to soil with a low degree of contamination. However, even if magnesium oxide or sulfate is added in a normal usage amount, the effect of suppressing elution of heavy metals is still insufficient for highly contaminated soil. On the other hand, if the elution amount of heavy metal is set to a predetermined value (for example, environmental standard value) or less, the amount of insolubilizing material used is excessively increased. In this case, (a) the cost becomes high, (b) the pH of the treated soil after the insolubilizing material is added, (c) the volume of the treated soil after the insolubilizing material is added increases excessively, and then There are problems such as processing time and cost.
Therefore, the present invention provides an elution inhibitor and elution material for heavy metals that can sufficiently suppress elution of heavy metals with a small addition amount even for a processing object such as soil having a high degree of contamination with heavy metals. It aims at providing the suppression method.

本発明者は、上記課題を解決するために鋭意検討した結果、軽焼マグネシア部分水和物と特定の粘土を特定の質量比で含有する組成物によれば、前記本発明の目的を達成することができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor achieves the object of the present invention according to a composition containing light calcined magnesia partial hydrate and specific clay in a specific mass ratio. The present invention has been completed.

すなわち、本発明は、以下の[1]〜[5]を提供する。
[1]軽焼マグネシアを部分的に水和してなる軽焼マグネシア部分水和物(A)と、アロフェン定量試験における粘土からのSiO(シリカ)及びAl(アルミナ)の合計の抽出率が20質量%以上である粘土(B)を、(A)/(B)=0.2〜20(質量比)の範囲で含有することを特徴とする重金属類の溶出抑制材。
[2]前記軽焼マグネシア部分水和物が、酸化マグネシウム65〜96.5質量%、及び、水酸化マグネシウム3.5〜30質量%を含有する前記[1]に記載の重金属類の溶出抑制材。
[3]前記軽焼マグネシア部分水和物100質量部に対し、炭酸カルシウム含有物20〜70質量部、及び/又は、石膏含有物1〜23質量部を含有する前記[1]又は[2]に記載の重金属類の溶出抑制材。
[4]前記軽焼マグネシア部分水和物100質量部に対し、酸性剤0.2〜300質量部を含有する前記[1]〜[3]のいずれかに記載の重金属類の溶出抑制材。
[5]処理対象物100質量部に対し、前記[1]〜[4]のいずれかに記載の重金属類の溶出抑制材を、2〜40質量部添加し混合する重金属類の溶出抑制方法。
That is, the present invention provides the following [1] to [5].
[1] Total of light calcined magnesia partial hydrate (A) obtained by partially hydrating light calcined magnesia and SiO 2 (silica) and Al 2 O 3 (alumina) from clay in the allophane quantitative test An elution inhibitor for heavy metals, comprising clay (B) having an extraction rate of 20% by mass or more in a range of (A) / (B) = 0.2 to 20 (mass ratio).
[2] Suppression of elution of heavy metals according to [1], wherein the light-burned magnesia partial hydrate contains 65 to 96.5% by mass of magnesium oxide and 3.5 to 30% by mass of magnesium hydroxide. Wood.
[3] The above [1] or [2] containing 20 to 70 parts by mass of a calcium carbonate-containing material and / or 1 to 23 parts by mass of a gypsum-containing material with respect to 100 parts by mass of the light-burned magnesia partial hydrate. The elution inhibitor of heavy metals described in 1.
[4] The heavy metal elution inhibitor according to any one of [1] to [3], which contains 0.2 to 300 parts by mass of an acidic agent with respect to 100 parts by mass of the lightly burned magnesia partial hydrate.
[5] A method for suppressing elution of heavy metals, wherein 2 to 40 parts by mass of the elution inhibitor for heavy metals according to any one of [1] to [4] is added to and mixed with 100 parts by mass of the object to be treated.

本発明の重金属類の溶出抑制材は、軽焼マグネシア部分水和物(A)と特定の粘土(B)を特定の質量比で含有するため、汚染の程度の高い土壌等の処理対象物に対しても、少ない添加量で重金属類の溶出を十分に抑制することができる。また、このように添加量が少なくて済むため、低コストであり、処理対象物のpHの上昇幅が小さく、処理対象物の容積の過度の増大を避けることができる。   Since the elution inhibitor of heavy metals of the present invention contains light-burned magnesia partial hydrate (A) and specific clay (B) at a specific mass ratio, it is suitable for processing objects such as soil with a high degree of contamination. In contrast, elution of heavy metals can be sufficiently suppressed with a small addition amount. In addition, since the addition amount is small as described above, the cost is low, the increase range of the pH of the processing object is small, and an excessive increase in the volume of the processing object can be avoided.

本発明の重金属類の溶出抑制材は、軽焼マグネシアを部分的に水和してなる軽焼マグネシア部分水和物(A)と、アロフェン定量試験による、粘土からのSiO(シリカ)及びAl(アルミナ)の合計の抽出率が20質量%以上である粘土(B)を、(A)/(B)=0.2〜20(質量比)の範囲で含有するものである。
本発明で溶出抑制の対象となる重金属類とは、カドミウム、鉛、六価クロム、ヒ素、総水銀、アルキル水銀、セレン、フッ素、ホウ素及びシアンの第二種特定有害物質、並びに、要監視項目として注意が必要な、ニッケル、モリブデン、アンチモン、硝酸性窒素及び亜硝酸性窒素等をいう。
軽焼マグネシア部分水和物(A)と粘土(B)の質量比((A)/(B))は、0.2〜20、好ましくは0.3〜10、より好ましくは1〜5、特に好ましくは1〜3である。該質量比が0.2〜20の範囲から外れると、重金属類の溶出抑制効果が十分でない場合がある。
The heavy metal elution suppression material of the present invention includes a light-burned magnesia partial hydrate (A) obtained by partially hydrating light-burned magnesia, and SiO 2 (silica) and Al from clay by an allophane quantitative test. The clay (B) having a total extraction rate of 2 O 3 (alumina) of 20% by mass or more is contained in a range of (A) / (B) = 0.2 to 20 (mass ratio).
Heavy metals subject to elution suppression in the present invention are cadmium, lead, hexavalent chromium, arsenic, total mercury, alkylmercury, selenium, fluorine, boron and cyan, the second type specified hazardous substances, and items to be monitored This means nickel, molybdenum, antimony, nitrate nitrogen, nitrite nitrogen, etc. that need attention.
The mass ratio ((A) / (B)) of the light calcined magnesia partial hydrate (A) and the clay (B) is 0.2 to 20, preferably 0.3 to 10, more preferably 1 to 5, Especially preferably, it is 1-3. If the mass ratio is outside the range of 0.2 to 20, the elution suppression effect of heavy metals may not be sufficient.

次に、本発明の第1の必須構成物質である軽焼マグネシア部分水和物について説明する。
軽焼マグネシア部分水和物(A)は、例えば、炭酸マグネシウム及び/又は水酸化マグネシウムを含む固形物を、650〜1,300℃で焼成することによって得ることができる。
前記固形物中の炭酸マグネシウム及び/又は水酸化マグネシウムの含有率は80質量%以上であり、85質量%以上が好ましく、90質量%以上がより好ましい。該含有率が80質量%未満では、軽焼マグネシアに含まれる酸化マグネシウム成分が少なく、重金属類の溶出抑制効果が低下する傾向がある。
前記固形物としては、マグネサイト、ドロマイト、ブルーサイト、又は、海水中のマグネシウム成分を消石灰等のアルカリで沈殿させて得た水酸化マグネシウム等の、塊状物又は粉粒状物が挙げられる。
Next, the light burned magnesia partial hydrate which is the first essential constituent of the present invention will be described.
The light-burned magnesia partial hydrate (A) can be obtained, for example, by baking a solid containing magnesium carbonate and / or magnesium hydroxide at 650 to 1,300 ° C.
The content of magnesium carbonate and / or magnesium hydroxide in the solid is 80% by mass or more, preferably 85% by mass or more, and more preferably 90% by mass or more. When the content is less than 80% by mass, the magnesium oxide component contained in the light-burned magnesia is small, and the elution suppression effect of heavy metals tends to decrease.
Examples of the solid material include magnesite, dolomite, brucite, or a lump or powdery material such as magnesium hydroxide obtained by precipitating a magnesium component in seawater with an alkali such as slaked lime.

前記固形物の焼成温度は、通常、650〜1,300℃であり、750〜950℃が好ましく、800〜900℃がより好ましい。該焼成温度が650℃未満では、軽焼マグネシアが生成し難く、該焼成温度が1,300℃を超えると、重金属類の溶出抑制効果が低下する虞がある。前記固形物の焼成時間は、固形物の仕込み量や粒度等にもよるが、通常、30分間〜5時間である。   The firing temperature of the solid is usually 650 to 1,300 ° C, preferably 750 to 950 ° C, and more preferably 800 to 900 ° C. When the firing temperature is less than 650 ° C., light-burned magnesia is difficult to generate, and when the firing temperature exceeds 1,300 ° C., the elution suppression effect of heavy metals may be reduced. The firing time of the solid matter is usually 30 minutes to 5 hours, although it depends on the amount of charged solid matter and the particle size.

本発明に使用する軽焼マグネシア部分水和物は、酸化マグネシウムを65〜96.5質量%及び水酸化マグネシウムを3.5〜30質量%含有するものが好ましく、酸化マグネシウムを70〜95質量%及び水酸化マグネシウムを5〜20質量%含有するものがより好ましく、酸化マグネシウムを75〜90質量%及び水酸化マグネシウムを7〜17質量%含有するものが特に好ましい。該値を好ましい範囲とすれば、重金属類の溶出抑制効果をより高めることができる。   The light-burned magnesia partial hydrate used in the present invention preferably contains 65 to 96.5% by mass of magnesium oxide and 3.5 to 30% by mass of magnesium hydroxide, and 70 to 95% by mass of magnesium oxide. And what contains 5-20 mass% of magnesium hydroxide is more preferable, and what contains 75-90 mass% of magnesium oxide and 7-17 mass% of magnesium hydroxide is especially preferable. If the value is within a preferable range, the elution suppressing effect of heavy metals can be further enhanced.

軽焼マグネシア部分水和物は、前記の成分の他、酸化カルシウム及び/又は水酸化カルシウムを含有してもよい。軽焼マグネシア部分水和物中の酸化カルシウム及び/又は水酸化カルシウムの合計の含有率は、酸化物換算で、3.0質量%以下が好ましく、2.5質量%以下がより好ましく、2.0質量%以下がさらに好ましい。該含有率が3.0質量%を超えると、重金属類による汚染の程度の高い土壌に使用した場合、重金属類の溶出抑制効果が低下することがある。
なお、軽焼マグネシア部分水和物は、前記成分(酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム)以外の成分(例えば、シリカ、酸化鉄等の夾雑物)を好ましくは4.0質量%以下で含むことができる。該含有率が4.0質量%を超えると、重金属類による汚染の程度の高い土壌に使用した場合、重金属類の溶出抑制効果が低下することがある。
軽焼マグネシア部分水和物のブレーン比表面積は3,000〜7,000cm/gが好ましく、4,000〜6,800cm/gがより好ましい。該値が3,000〜7,000cm/gの範囲であると、重金属類の溶出抑制効果は増大する。
The light-burned magnesia partial hydrate may contain calcium oxide and / or calcium hydroxide in addition to the above components. The total content of calcium oxide and / or calcium hydroxide in the light-burned magnesia partial hydrate is preferably 3.0% by mass or less, more preferably 2.5% by mass or less, in terms of oxide. 0 mass% or less is more preferable. When the content exceeds 3.0% by mass, the effect of inhibiting elution of heavy metals may be reduced when used in soil with a high degree of contamination by heavy metals.
The light-burned magnesia partial hydrate preferably contains 4.0 mass of components other than the above components (magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide) (for example, impurities such as silica and iron oxide). % Or less. If the content exceeds 4.0% by mass, the effect of inhibiting the elution of heavy metals may be reduced when used in soil with a high degree of contamination by heavy metals.
Blaine specific surface area of the light burned magnesia partially hydrate is preferably 3,000~7,000cm 2 / g, 4,000~6,800cm 2 / g is more preferable. When the value is in the range of 3,000 to 7,000 cm 2 / g, the elution suppressing effect of heavy metals increases.

次に、本発明の第2の必須構成物質である粘土について説明する。
本発明に使用する粘土は、アロフェン定量試験における粘土からのSiO及びAlの合計の抽出率が20質量%以上のものである。該抽出率が20質量%未満では、重金属類の溶出抑制効果が低下する傾向にある。
アロフェン定量試験における粘土からの抽出率は、SiOにおいて5質量%以上、Alにおいて15質量%以上、及びFeにおいて9〜30質量%であることがより好ましい。Feの抽出率が9〜30質量%であると、重金属類の溶出抑制効果が高まる傾向にある。
本発明でいうアロフェン定量試験とは、地盤工学会のアロフェン定量試験(発行:社団法人地盤工学会、地盤材料試験の方法と解説−二分冊の2− pp970に記載)をいう。
Next, the clay which is the second essential constituent material of the present invention will be described.
The clay used in the present invention has a total extraction rate of 20% by mass or more of SiO 2 and Al 2 O 3 from clay in the allophane quantitative test. When the extraction rate is less than 20% by mass, the elution suppressing effect of heavy metals tends to be reduced.
Extraction rate of the clay in allophane quantitative test, in SiO 2 5 wt% or more, Al 2 O 3 at 15 wt% or more, and more preferably from 9 to 30 wt% in Fe 2 O 3. When the extraction rate of Fe 2 O 3 is 9 to 30% by mass, the elution suppressing effect of heavy metals tends to increase.
The allophane quantitative test referred to in the present invention refers to the allophane quantitative test of the Geotechnical Society of Japan (issued by the Geotechnical Society of Japan, Method and Explanation of Geomaterial Test-described in 2-part 2-pp970).

アロフェン定量試験によるSiO等の抽出率は、以下の(1)〜(6)の手順により求める。
(1)粘土の乾燥と粉砕
粘土を40℃の乾燥機内に入れ24時間乾燥させた後に粉砕する。次に、この粉砕した粘土を0.42mmの篩にかけて、篩を通過した粘土を回収する。
(2)有機物の分解
前記篩を通過した粘土2gに、10質量%の過酸化水素水50mlを加え撹拌し、次いで、30質量%の過酸化水素水50mlを加え撹拌し、更に、30質量%の過酸化水素水50mlを再度加え撹拌して、粘土に含まれる有機物を酸化分解する。
なお、前記30質量%の過酸化水素水を加える時点、及び、有機物分解処理の終了時点は、いずれも発泡の終了時(酸化分解反応の終了時)を目安とする。
(3)有機物含有量の測定
前記有機物分解後の粘土を濾別し、これに蒸留水50mlを加えて分解有機物等を洗浄する。洗浄後の粘土は105℃の乾燥機内に入れ24時間乾燥させた後、乾燥粘土の質量を測定して粘土中の有機物の含有量を求める。
(4)酸抽出液等の回収
前記有機物分解後の乾燥粘土1gに8mol/LのHCl水溶液50mlを加え、振動数200回/分で30分間振とうして酸抽出した後、濾別して抽出液(a)を回収するとともに、濾別した酸抽出後の粘土に蒸留水50mlを加えて粘土に含まれる酸を洗浄して洗浄液(b)を回収する。
(5)アルカリ抽出液等の回収
前記(4)の洗浄後の粘土に、0.5mol/LのNaOH水溶液50mlを加え、前記振動数で5分間振とうしてアルカリ抽出処理をした後、濾別して抽出液(c)を回収するとともに、濾別したアルカリ抽出処理後の粘土に蒸留水50mlを加えて粘土に含まれるアルカリを洗浄して洗浄液(d)を回収する。
(6)SiO等の抽出率の算定
前記(5)の洗浄後の粘土を前記(4)の処理に戻し、(4)及び(5)の処理を更に続けて4回(合計で5サイクル)繰り返した後、各サイクルにおいて回収した抽出液(a)、(c)及び洗浄液(b)、(d)に含まれる、SiO(シリカ)、Al(アルミナ)及びFe(酸化鉄)の全濃度を測定して、それぞれの化合物の抽出量を算定する。
そして、粘土からのSiO、Al及びFeの抽出率は、有機物分解処理前の粘土(乾燥状態)1g当たりの、SiO、Al及びFeの抽出量に換算して表示する。
The extraction rate of SiO 2 and the like by the allophane quantitative test is determined by the following procedures (1) to (6).
(1) Drying and pulverizing clay Clay is put in a dryer at 40 ° C. and dried for 24 hours, and then pulverized. Next, the crushed clay is passed through a 0.42 mm sieve, and the clay passing through the sieve is recovered.
(2) Decomposition of organic matter To 2 g of the clay passed through the sieve, 50 ml of 10% by weight of hydrogen peroxide water was added and stirred, then 50 ml of 30% by weight of hydrogen peroxide solution was added and stirred, and further 30% by weight. 50 ml of hydrogen peroxide solution was added again and stirred to oxidatively decompose the organic matter contained in the clay.
Note that the time point at which the 30% by mass of hydrogen peroxide solution is added and the end point of the organic substance decomposition treatment are both determined at the end of foaming (at the end of the oxidative decomposition reaction).
(3) Measurement of organic matter content The clay after the organic matter decomposition is separated by filtration, and 50 ml of distilled water is added thereto to wash the decomposed organic matter and the like. The clay after washing is placed in a dryer at 105 ° C. and dried for 24 hours, and then the mass of the dried clay is measured to determine the content of organic matter in the clay.
(4) Recovery of acid extract, etc. 50 ml of 8 mol / L HCl aqueous solution is added to 1 g of the dried clay after decomposition of organic matter, and the mixture is shaken at a frequency of 200 times / min for 30 minutes, extracted with acid, filtered and extracted. While collecting (a), 50 ml of distilled water is added to the filtered acid-extracted clay to wash the acid contained in the clay, and the washing liquid (b) is collected.
(5) Recovery of alkali extract, etc. 50 ml of 0.5 mol / L NaOH aqueous solution is added to the washed clay of (4) above, and the mixture is shaken at the above frequency for 5 minutes for alkali extraction treatment. Separately, the extract (c) is recovered, and 50 ml of distilled water is added to the filtered clay after the alkali extraction treatment to wash the alkali contained in the clay, thereby recovering the cleaning solution (d).
(6) Calculation of extraction rate of SiO 2 etc. The clay after washing in (5) is returned to the treatment in (4), and the treatments in (4) and (5) are further continued 4 times (5 cycles in total) ) After repeating, SiO 2 (silica), Al 2 O 3 (alumina) and Fe 2 O 3 contained in the extract (a), (c) and cleaning liquid (b), (d) recovered in each cycle The total concentration of (iron oxide) is measured, and the extraction amount of each compound is calculated.
The extraction rate of SiO 2, Al 2 O 3 and Fe 2 O 3 from clay, before the organic matter decomposition treatment clay (dry) per 1g, extraction of SiO 2, Al 2 O 3 and Fe 2 O 3 Convert to amount and display.

なお、本発明に用いる粘土に含まれる粘土鉱物の好適な例としては、イモゴライト、オパールシリカ、アロフェン、活性アルミ、鉄とアルミの非晶質和水酸化物、ギプサイト、ハロイサイト、バーミキュライト、カオリナイト、加水ハロイサイト、スメクタイト及びクロライトから選ばれる1種又は2種以上の鉱物が挙げられる。
また、粘土中のこれらの粘土鉱物の含有率は、20質量%以上が好ましく、35質量%以上がより好ましく、50質量%以上がさらに好ましい。該含有率が20質量%未満では、処理物のpHの低減能力が低くなったり、あるいは、重金属類の溶出抑制効果が低下することがある。
In addition, as a suitable example of the clay mineral contained in the clay used in the present invention, imogolite, opal silica, allophane, activated aluminum, amorphous iron hydroxide of iron and aluminum, gypsite, halloysite, vermiculite, kaolinite, One type or two or more types of minerals selected from hydrous halloysite, smectite and chlorite can be mentioned.
Further, the content of these clay minerals in the clay is preferably 20% by mass or more, more preferably 35% by mass or more, and further preferably 50% by mass or more. If the content is less than 20% by mass, the ability to reduce the pH of the treated product may be lowered, or the elution suppressing effect of heavy metals may be reduced.

また、本発明に用いる粘土は、重金属類の溶出抑制効果の観点から、750℃における強熱減量が10%以上であって、SiOの含有率が30質量%以上、Feの含有率が8質量%以上、及びAlの含有率が20質量%以上であるものが好ましい。
なお、前記強熱減量の試験は、日本工業規格「土の強熱減量試験方法」(JIS
A 1226:2009)に従って行う。
In addition, the clay used in the present invention has an ignition loss at 750 ° C. of 10% or more, a SiO 2 content of 30% by mass or more, and a Fe 2 O 3 content from the viewpoint of the elution suppressing effect of heavy metals. The ratio is preferably 8% by mass or more and the content of Al 2 O 3 is 20% by mass or more.
In addition, the ignition loss test is conducted according to the Japanese Industrial Standard “Soil ignition loss test method” (JIS
A 1226: 2009).

更に、本発明に用いる粘土の最大粒径は、好ましくは3mm以下、より好ましくは2mm以下である。最大粒径が3mm以下であると、重金属類の溶出抑制効果が増大する傾向にある。   Furthermore, the maximum particle size of the clay used in the present invention is preferably 3 mm or less, more preferably 2 mm or less. When the maximum particle size is 3 mm or less, the elution suppressing effect of heavy metals tends to increase.

本発明において、軽焼マグネシア部分水和物100質量部に対し、炭酸カルシウム含有物20〜70質量部、及び/又は、石膏含有物1〜23質量部を含有することができる。
炭酸カルシウム含有物の含有量が20〜70質量部であると、重金属類の溶出抑制効果を高めることができる。また、石膏含有物の含有量が1〜23質量部であると、重金属類の溶出抑制効果を高めることができる。
In this invention, 20-70 mass parts of calcium carbonate containing materials and / or 1-23 mass parts of gypsum containing materials can be contained with respect to 100 mass parts of light-burned magnesia partial hydrates.
When the content of the calcium carbonate-containing material is 20 to 70 parts by mass, the elution suppressing effect of heavy metals can be enhanced. Moreover, the elution inhibitory effect of heavy metals can be heightened that content of a gypsum containing material is 1-23 mass parts.

ここで、前記炭酸カルシウム含有物は、炭酸カルシウムを80質量%以上含むものが好ましく、85質量%以上含むものがより好ましく、90質量%以上含むものが更に好ましい。炭酸カルシウム含有物としては、例えば、工業用炭酸カルシウム粉末、試薬の炭酸カルシウム粉末、石灰石粉末、炭酸カルシウムを主成分とする貝殻の粉砕物又はサンゴの粉砕物等が挙げられる。その中でも、石灰石粉末は低コストであるため好適である。   Here, the calcium carbonate-containing material preferably contains 80% by mass or more of calcium carbonate, more preferably 85% by mass or more, and still more preferably 90% by mass or more. Examples of the calcium carbonate-containing material include industrial calcium carbonate powder, reagent calcium carbonate powder, limestone powder, ground shells of calcium carbonate, coral grounds, and the like. Among them, limestone powder is preferable because of its low cost.

また、前記石膏含有物は、硫酸カルシウム又は硫酸カルシウム水和物を80質量%以上含むものが好ましく、85質量%以上含むものがより好ましく、90質量%以上含むものが更に好ましい。石膏含有物としては、例えば、無水石膏、半水石膏、リン酸石膏又は二水石膏等が挙げられる。具体的には、無水石膏としては、天然無水石膏、フッ酸の製造時に副生するフッ酸無水石膏が使用でき、二水石膏としては、天然二水石膏、排脱二水石膏等が使用できる。前記石膏のうち、無水石膏は、固化処理土等の固化処理物のpHを低減する効果に優れる。無水石膏の中でも、有害物質の含有量が少ない天然無水石膏が好適である。   The gypsum-containing material preferably contains 80% by mass or more of calcium sulfate or calcium sulfate hydrate, more preferably 85% by mass or more, and still more preferably 90% by mass or more. Examples of the gypsum-containing material include anhydrous gypsum, hemihydrate gypsum, phosphate gypsum, and dihydrate gypsum. Specifically, as anhydrous gypsum, natural anhydrous gypsum and hydrofluoric acid anhydrous gypsum by-produced during the production of hydrofluoric acid can be used. As dihydrate gypsum, natural dihydrate gypsum, discharged dihydrate gypsum, etc. can be used. . Among the gypsum, anhydrous gypsum is excellent in the effect of reducing the pH of a solidified material such as solidified soil. Among anhydrous gypsum, natural anhydrous gypsum with a low content of harmful substances is preferable.

炭酸カルシウム含有物又は石膏含有物のブレーン比表面積は、3,000〜7,000cm/gが好ましく、4,000〜6,000cm/gがより好ましい。該値が3,000cm/g未満では、重金属類の溶出抑制効果が低くなることがある。該値が7,000cm/gを超えると、粉砕の手間及び粉砕コストが高くなる。 Blaine specific surface area of the calcium carbonate-containing material or gypsum-containing product is preferably 3,000~7,000cm 2 / g, 4,000~6,000cm 2 / g is more preferable. When the value is less than 3,000 cm 2 / g, the elution suppressing effect of heavy metals may be lowered. When the value exceeds 7,000 cm 2 / g, the labor and cost for grinding increase.

本発明の溶出抑制剤は、固化処理物のpHの上昇を抑えるために、酸性剤を含有することができる。
酸性剤の配合量は、軽焼マグネシア部分水和物100質量部に対し、通常、0.2〜300質量部であり、好ましくは0.4〜200質量部であり、更に好ましくは2〜150質量部である。該配合量が0.2質量部未満では、固化処理物のpHの低減効果を高めることが困難となる。該配合量が300質量部を超えると、重金属類の溶出抑制効果の更なる向上が得られないばかりか、コスト高になる。
The elution inhibitor of the present invention can contain an acid agent in order to suppress an increase in the pH of the solidified product.
The compounding quantity of an acidic agent is 0.2-300 mass parts normally with respect to 100 mass parts of light-burning magnesia partial hydrate, Preferably it is 0.4-200 mass parts, More preferably, it is 2-150. Part by mass. If the blending amount is less than 0.2 parts by mass, it is difficult to enhance the pH reduction effect of the solidified product. When the blending amount exceeds 300 parts by mass, not only a further improvement in the elution suppression effect of heavy metals can be obtained, but also the cost increases.

前記酸性剤としては、塩酸、硫酸、硼酸等の無機酸、及び、蓚酸、クエン酸、リンゴ酸、ベンゼンスルホン酸等の有機酸、並びに、硫酸アルミニウム、ポリ塩化アルミニウム、硫酸アンモニウム、ミョウバン、塩化アンモニウム、硫酸第1鉄、塩化第2鉄、ベンゼンスルホン酸アンモニウム等の、強酸と弱塩基からなる酸性塩等から選ばれる1種又は2種以上を使用することができる。特に、安価な工業製品である(無水)硫酸アルミニウム、硫酸アンモニウム、ミョウバン、硫酸第一鉄又は塩化第二鉄等が、本発明に用いる酸性剤として好ましい。
本発明における酸性剤の使用形態は粉末が好ましい。当該粉末の粒径は、当該粉末が水溶性であることから特に限定されないが、作業性等の観点からは、1mm以下が好ましく、0.5mm以下がより好ましい。
Examples of the acid agent include inorganic acids such as hydrochloric acid, sulfuric acid, and boric acid, and organic acids such as oxalic acid, citric acid, malic acid, and benzenesulfonic acid, and aluminum sulfate, polyaluminum chloride, ammonium sulfate, alum, ammonium chloride, One type or two or more types selected from acidic salts composed of strong acid and weak base, such as ferrous sulfate, ferric chloride, and ammonium benzenesulfonate can be used. In particular, (anhydrous) aluminum sulfate, ammonium sulfate, alum, ferrous sulfate or ferric chloride, which are inexpensive industrial products, are preferable as the acid agent used in the present invention.
The use form of the acid agent in the present invention is preferably a powder. The particle size of the powder is not particularly limited because the powder is water-soluble, but is preferably 1 mm or less and more preferably 0.5 mm or less from the viewpoint of workability and the like.

本発明の重金属類の溶出抑制材の製造方法は、主として、混合工程、粉砕工程及び部分水和工程からなるものである。以下に、溶出抑制材の実施形態毎に製造方法を説明する。
(i)軽焼マグネシア部分水和物及び粘土を含有し、かつ、炭酸カルシウム含有物、石膏含有物及び酸性剤を含まない溶出抑制材(以下、第一の溶出抑制材ともいう。)の製造方法
製造方法としては、例えば、以下の(a)〜(c)が挙げられる。
(a)軽焼マグネシアと粘土を混合して混合物を得る混合工程と、前記混合物を粉砕して所定の粒度を有する粉砕物を得る粉砕工程と、前記粉砕物中の軽焼マグネシアを一部水和させて軽焼マグネシア部分水和物を得る部分水和工程を含む製造方法。
(b)軽焼マグネシアを粉砕して所定の粒度を有する軽焼マグネシア粉砕物を得る第1の粉砕工程と、粘土を粉砕して所定の粒度を有する粘土粉砕物を得る第2の粉砕工程と(但し、第1の粉砕工程と第2の粉砕工程の順序は問わない。)、前記軽焼マグネシア粉砕物と前記粘土粉砕物を混合して混合物を得る混合工程と、前記混合物中の軽焼マグネシアを一部水和させて軽焼マグネシア部分水和物を得る部分水和工程を含む製造方法。
(c)軽焼マグネシアを粉砕して所定の粒度を有する軽焼マグネシア粉砕物を得る第1の粉砕工程と、前記軽焼マグネシア粉砕物を一部水和させて軽焼マグネシア部分水和物を得る部分水和工程と、粘土を粉砕して所定の粒度を有する粘土の粉砕物を得る第2の粉砕工程と(但し、第1の粉砕工程と第2の粉砕工程の順序は問わない。)、前記軽焼マグネシア部分水和物の粉砕物と前記粘土粉砕物とを混合する混合工程を含む製造方法。
前記(a)〜(c)における部分水和工程は、前記粉砕物又は混合物に水を添加して撹拌・混合するか、又は、前記粉砕物又は混合物を相対湿度80%以上の雰囲気下に1週間以上保持することにより行なわれる。
The method for producing a heavy metal elution suppressing material of the present invention mainly comprises a mixing step, a pulverizing step and a partial hydration step. Below, a manufacturing method is demonstrated for every embodiment of an elution suppression material.
(I) Manufacture of an elution inhibitor (hereinafter also referred to as a first elution inhibitor) containing light-burned magnesia partial hydrate and clay and not containing calcium carbonate, gypsum, and acid agent. Method Examples of the production method include the following (a) to (c).
(A) A mixing step of mixing light-burned magnesia and clay to obtain a mixture, a pulverizing step of pulverizing the mixture to obtain a pulverized product having a predetermined particle size, and a part of the light-burned magnesia in the pulverized product as water A production method comprising a partial hydration step of obtaining a light-burned magnesia partial hydrate by summing.
(B) a first pulverizing step of pulverizing light-burned magnesia to obtain a pulverized light-burning magnesia having a predetermined particle size; and a second pulverizing step of pulverizing clay to obtain a pulverized clay having a predetermined particle size. (However, the order of the first pulverization step and the second pulverization step is not limited.), A mixing step of mixing the light baked magnesia pulverized product and the clay pulverized product to obtain a mixture, and the light calcination in the mixture. A production method comprising a partial hydration step of partially hydrating magnesia to obtain a light-burned magnesia partial hydrate.
(C) a first pulverization step of pulverizing light-burned magnesia to obtain a light-burned magnesia pulverized product having a predetermined particle size; A partial hydration step to be obtained, and a second pulverization step for pulverizing clay to obtain a pulverized product of clay having a predetermined particle size (however, the order of the first pulverization step and the second pulverization step is not limited). The manufacturing method including the mixing process which mixes the ground material of the said light-fired magnesia partial hydrate, and the said clay ground material.
In the partial hydration step in (a) to (c), water is added to the pulverized product or mixture and the mixture is stirred and mixed, or the pulverized product or mixture is mixed in an atmosphere having a relative humidity of 80% or more. This is done by holding for more than a week.

前記(a)〜(c)のうち、重金属等の溶出抑制効果及び作業性の観点から、(a)又は(b)の製造方法が好ましく、(a)の製造方法がより好ましい。
(a)の製造方法は、軽焼マグネシア及び粘土を同時に粉砕するため、これらを個別に粉砕する(b)又は(c)の製造方法に比べて、粉砕工程が簡易になるという利点を有する。
Among the (a) to (c), from the viewpoint of the elution suppressing effect of heavy metals and the workability, the production method (a) or (b) is preferable, and the production method (a) is more preferable.
The production method (a) has the advantage that the pulverization process is simplified compared to the production method (b) or (c) in which light-burned magnesia and clay are simultaneously pulverized, so that they are individually pulverized.

(ii)さらに炭酸カルシウム含有物及び/又は石膏含有物を含有する溶出抑制材(以下、第二の溶出抑制材ともいう。)の製造方法
(d)軽焼マグネシアと、粘土と、炭酸カルシウム及び/又は石膏含有物とを混合して混合物を得る混合工程と、前記混合物を粉砕して所定の粒度を有する粉砕物を得る粉砕工程と、前記粉砕物中の軽焼マグネシアを一部水和させて軽焼マグネシア部分水和物を得る部分水和工程を含む製造方法。
(e)軽焼マグネシアを粉砕して所定の粒度を有する軽焼マグネシア粉砕物を得る第1の粉砕工程と、粘土を粉砕して所定の粒度を有する粘土粉砕物を得る第2の粉砕工程と、炭酸カルシウム含有物及び/又は石膏含有物を粉砕して所定の粒度を有する炭酸カルシウム含有物及び/又は石膏含有物の粉砕物を得る第3の粉砕工程と(但し、第1〜3の粉砕工程の順序は問わない。)、前記軽焼マグネシア粉砕物と、前記粘土粉砕物と、前記炭酸カルシウム含有物及び/又は石膏含有物の粉砕物とを混合して混合物を得る混合工程と、前記混合物中の軽焼マグネシアを一部水和させて軽焼マグネシア部分水和物を得る部分水和工程を含む製造方法。
(f)軽焼マグネシアを粉砕して所定の粒度を有する軽焼マグネシア粉砕物を得る第1の粉砕工程と、前記軽焼マグネシア粉砕物を一部水和させて軽焼マグネシア部分水和物を得る部分水和工程と、粘土を粉砕して所定の粒度を有する粘土粉砕物を得る第2の粉砕工程と、炭酸カルシウム含有物及び/又は石膏含有物を粉砕して、所定の粒度を有する炭酸カルシウム含有物及び/又は石膏含有物の粉砕物を得る第3の粉砕工程と(但し、第1〜3の粉砕工程の順序は問わない。)、前記軽焼マグネシア部分水和物の粉砕物と、前記粘土粉砕物と、前記炭酸カルシウム含有物及び/又は石膏含有物の粉砕物を混合する混合工程を含む製造方法。
なお、(d)〜(f)における部分水和工程は、前記(i)で説明した第一の溶出抑制材の部分水和工程と同様に行なうことができる。
(d)〜(f)のうち、重金属類の溶出抑制効果及び作業性の観点から、(d)又は(e)の製造方法が好ましく、(d)の製造方法がより好ましい。
(Ii) A method for producing an elution inhibitor (hereinafter also referred to as a second elution inhibitor) containing a calcium carbonate-containing material and / or a gypsum-containing material (d) light-burned magnesia, clay, calcium carbonate, A mixing step of mixing a gypsum-containing material to obtain a mixture, a pulverizing step of pulverizing the mixture to obtain a pulverized product having a predetermined particle size, and partially hydrating light-burned magnesia in the pulverized product The manufacturing method including the partial hydration process which obtains light-burning magnesia partial hydrate.
(E) a first pulverizing step for pulverizing light-burned magnesia to obtain a pulverized light-burning magnesia having a predetermined particle size; and a second pulverizing step for pulverizing clay to obtain a pulverized clay having a predetermined particle size. A third pulverizing step of pulverizing the calcium carbonate-containing material and / or gypsum-containing material to obtain a pulverized product of calcium carbonate-containing material and / or gypsum-containing material having a predetermined particle size (provided that the first to the third pulverizing materials) The order of the steps is not limited.), A mixing step of obtaining a mixture by mixing the light-burned magnesia pulverized product, the clay pulverized product, and the pulverized product of the calcium carbonate-containing material and / or the gypsum-containing material, A production method comprising a partial hydration step of partially hydrating light-burned magnesia in a mixture to obtain a light-burned magnesia partial hydrate.
(F) A first pulverization step of pulverizing light-burned magnesia to obtain a light-burned magnesia pulverized product having a predetermined particle size; A partial hydration step to obtain, a second pulverization step of pulverizing clay to obtain a clay pulverized product having a predetermined particle size, and pulverizing a calcium carbonate-containing material and / or gypsum-containing material to obtain a carbonic acid having a predetermined particle size. A third pulverization step for obtaining a pulverized product of calcium-containing material and / or gypsum-containing material (however, the order of the first to third pulverizing steps is not limited), and a pulverized product of the light-burned magnesia partial hydrate; The manufacturing method including the mixing process of mixing the pulverized material of the clay and the pulverized material of the calcium carbonate-containing material and / or the gypsum-containing material.
In addition, the partial hydration process in (d)-(f) can be performed similarly to the partial hydration process of the 1st elution suppression material demonstrated by said (i).
Among (d) to (f), the production method (d) or (e) is preferred, and the production method (d) is more preferred, from the viewpoint of the elution suppression effect of heavy metals and workability.

(iii)さらに酸性剤を含む溶出抑制材(以下、第三の溶出抑制材ともいう。)の製造方法
製造方法としては、例えば、前記の(i)、(ii)で説明した第一もしくは第二の溶出抑制材に、更に、酸性剤を添加し混合する方法が挙げられる。
(Iii) Production method of an elution inhibitor (hereinafter also referred to as a third elution inhibitor) further containing an acid agent Examples of the production method include the first or second described in (i) and (ii) above. A method of adding and mixing an acidic agent to the second elution suppressing material can be mentioned.

本発明の溶出抑制材のロジン・ラムラー式におけるn値は、0.70〜1.40が好ましく、0.95〜1.15がより好ましい。重金属類の溶出抑制材のn値が0.70〜1.40の範囲であれば、重金属類の溶出抑制効果を高めることができ、重金属類の含有量の多い土壌に対しても有効である。なお、ロジン・ラムラー式は、R=100exp(−bDp n)(式中、Rは積算残分値(%)であり篩残分を表し、Dpは粒径(μm)であり篩の目の寸法を表し、b、nは定数である。)で表される。
ロジン・ラムラー式におけるn値の測定は、例えば、100mlビーカーに、エタノール20mlと試料0.05gを入れ、超音波洗浄機(アズワン社製VS−100、周波数50kHz)を用いて1分間超音波分散を行ない、試料の屈折率を1.72に調整した後に、粒度分布測定装置(日機装社製9320−X10)を用いて行なうことができる。
The n value in the rosin-Rammler type of the elution inhibitor of the present invention is preferably 0.70 to 1.40, more preferably 0.95 to 1.15. If the n value of the elution suppressing material for heavy metals is in the range of 0.70 to 1.40, the elution suppressing effect of heavy metals can be enhanced, and it is also effective for soil with a high content of heavy metals. . Incidentally, Rosin-Rammler formula, R = 100exp (-bD p n ) ( wherein, R is accumulated residue value (%) represents the sieve residue, D p is the particle size ([mu] m) sieve It represents the size of the eye, and b and n are constants.
The measurement of the n value in the Rosin-Rammler method is performed, for example, by placing 20 ml of ethanol and 0.05 g of a sample in a 100 ml beaker, and ultrasonically dispersing for 1 minute using an ultrasonic cleaner (VS-100 manufactured by ASONE, frequency 50 kHz). , And after adjusting the refractive index of the sample to 1.72, it can be performed using a particle size distribution measuring apparatus (9320-X10 manufactured by Nikkiso Co., Ltd.).

本発明の溶出抑制材の添加量は、処理対象物の性状や施工条件、重金属類の溶出量や固化処理物の要求性能等にもよるが、処理対象物100質量部に対し、好ましくは2〜40質量部、より好ましくは6〜30質量部である。該添加量が2質量部未満では、溶出抑制材を処理対象物中に均一に混合するのが困難となる。該添加量が40質量部を超えると、コストが増大したり、固化処理物のpHが大きく上昇したり、固化処理物の容積が増大して、その後処理に手間とコストがかかるなどの問題が生じ得る。   The addition amount of the elution inhibitor of the present invention is preferably 2 with respect to 100 parts by mass of the object to be treated, although it depends on the properties of the object to be treated and the construction conditions, the amount of elution of heavy metals and the required performance of the solidified material. -40 mass parts, More preferably, it is 6-30 mass parts. When the addition amount is less than 2 parts by mass, it becomes difficult to uniformly mix the elution inhibitor into the object to be treated. When the added amount exceeds 40 parts by mass, the cost increases, the pH of the solidified product significantly increases, the volume of the solidified product increases, and the subsequent processing takes time and cost. Can occur.

重金属類の溶出抑制材の添加方法としては、溶出抑制材を処理対象物に粉体のまま添加し混合するドライ添加方法、又は、溶出抑制材に水を加えてスラリーとした後に、該スラリーを処理対象物に添加し混合するスラリー添加方法を採用することができる。溶出抑制材のスラリーの水/溶出抑制材の質量比は、処理対象物の性状や重金属類の含有量にもよるが、0.5〜1.5が好ましく、0.8〜1.2がより好ましい。   As a method for adding an elution inhibitor for heavy metals, a dry addition method in which the elution inhibitor is added as a powder to the object to be processed and mixed, or water is added to the elution inhibitor to form a slurry, and then the slurry is added. A slurry addition method of adding to and mixing with the object to be treated can be employed. The mass ratio of the water / elution inhibitor of the elution inhibitor slurry is preferably 0.5 to 1.5, preferably 0.8 to 1.2, although it depends on the properties of the object to be treated and the content of heavy metals. More preferred.

本発明の溶出抑制材の処理対象物としては、重金属類を含有する土壌、焼却灰類、ダスト類等を挙げることができる。また、該処理対象物としては、本発明の効果の一つである固化処理物のpH上昇の抑制効果を十分に得る観点から、処理対象物1mに対し市販の酸化マグネシウム(例えば、関東化学社製特級試薬)を100kg/m添加し混合して得た混合物のpHが、10.3以上となるものが好ましく、10.6以上となるものがより好ましい。なお、当該pHの測定方法は、JGS0211−2009に準拠して行なう。 Examples of the treatment target of the elution control material of the present invention include soil containing heavy metals, incineration ash, and dusts. In addition, as the treatment object, from the viewpoint of sufficiently obtaining the effect of suppressing the increase in pH of the solidified treatment which is one of the effects of the present invention, commercially available magnesium oxide (for example, Kanto Chemical Co., Ltd.) is used for the treatment object 1 m 3. It is preferable that the pH of the mixture obtained by adding and mixing 100 kg / m 3 ( special grade reagent manufactured by a company) is preferably 10.3 or more, and more preferably 10.6 or more. In addition, the measuring method of the said pH is performed based on JGS0211-2009.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
1.溶出抑制材の各構成物質の調製
(1)軽焼マグネシア粉砕物(M1)及び軽焼マグネシア部分水和物(W1)
炭酸マグネシウムを97質量%含むマグネサイトを、850℃で30分間、電気炉(中外エンジニアリング社製、型式;KSL−2)で焼成して軽焼マグネシアを得た。次に、当該軽焼マグネシアを粉砕してブレーン比表面積6,500cm/gの軽焼マグネシア粉砕物(M1)を得た。更に、当該粉砕物を温度20℃、相対湿度100%の恒温恒湿槽に10日間放置し、軽焼マグネシアの一部を水和させて、ブレーン比表面積6,500cm/gの軽焼マグネシア部分水和物(W1)を得た。
軽焼マグネシア部分水和物(W1)は、酸化マグネシウムを88.0質量%及び水酸化マグネシウムを8.5質量%含有するものであった。
(2)軽焼マグネシア粉砕物(M2)及び軽焼マグネシア部分水和物(W2)
炭酸マグネシウムを95質量%含むマグネサイトを、870℃で30分間、前記電気炉で焼成して軽焼マグネシアを得た。次に、当該軽焼マグネシアを粉砕してブレーン比表面積5,900cm/gの軽焼マグネシア粉砕物(M2)を得た。更に、当該粉砕物を温度20℃、相対湿度80%の恒温恒湿槽に20日間放置し、軽焼マグネシアの一部を水和させて、ブレーン比表面積5,900cm/gの軽焼マグネシア部分水和物(W2)を得た。
軽焼マグネシア部分水和物(W2)は、酸化マグネシウムを79.5質量%及び水酸化マグネシウムを17.0質量%含有するものであった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
1. Preparation of each constituent material of elution inhibitor (1) Light-burned magnesia pulverized product (M1) and light-burned magnesia partial hydrate (W1)
Magnesite containing 97% by mass of magnesium carbonate was fired at 850 ° C. for 30 minutes in an electric furnace (manufactured by Chugai Engineering Co., Ltd., model: KSL-2) to obtain light-burned magnesia. Next, the light calcined magnesia was pulverized to obtain a light calcined magnesia pulverized product (M1) having a Blaine specific surface area of 6,500 cm 2 / g. Further, the pulverized product is left in a constant temperature and humidity chamber at a temperature of 20 ° C. and a relative humidity of 100% for 10 days to hydrate a part of the light burned magnesia, thereby lightly burned magnesia having a specific surface area of 6,500 cm 2 / g. Partial hydrate (W1) was obtained.
The light-burned magnesia partial hydrate (W1) contained 88.0% by mass of magnesium oxide and 8.5% by mass of magnesium hydroxide.
(2) Lightly burned magnesia ground product (M2) and lightly burned magnesia partial hydrate (W2)
Magnesite containing 95% by mass of magnesium carbonate was baked in the electric furnace at 870 ° C. for 30 minutes to obtain light-burned magnesia. Next, the light-burned magnesia was pulverized to obtain a pulverized light-burned magnesia (M2) having a specific surface area of 5,900 cm 2 / g. Further, the pulverized product is left in a constant temperature and humidity chamber at a temperature of 20 ° C. and a relative humidity of 80% for 20 days to hydrate a part of the light-burned magnesia, thereby light-burning magnesia having a specific surface area of 5,900 cm 2 / g. Partial hydrate (W2) was obtained.
The light-burned magnesia partial hydrate (W2) contained 79.5% by mass of magnesium oxide and 17.0% by mass of magnesium hydroxide.

(3)粘土粉砕物
表1に示す成分組成及び抽出率を有する10種類の粘土a〜jの粘土を粉砕し、2mm篩を全通する粘土粉砕物を得た。なお、表1中の強熱減量は、750℃における値である。
なお、使用した粘土は、いずれも、粘土鉱物を70質量%以上含有するものである。
(3) Clay pulverized product Ten types of clays a to j having the component composition and extraction rate shown in Table 1 were pulverized to obtain a clay pulverized product passing through a 2 mm sieve. In addition, the ignition loss in Table 1 is a value at 750 ° C.
In addition, all used clay contains 70 mass% or more of clay minerals.

Figure 2012036243
Figure 2012036243

(4)炭酸カルシウム含有物
炭酸カルシウムを92質量%含む粒状の石灰石を粉砕し、ブレーン比表面積が5,500cm/gの炭酸カルシウム含有物を得た。
(4) Calcium carbonate-containing material Granular limestone containing 92% by mass of calcium carbonate was pulverized to obtain a calcium carbonate-containing material having a Blaine specific surface area of 5,500 cm 2 / g.

(5)石膏含有物
硫酸カルシウムを91質量%含む塊状の天然無水石膏を粉砕し、ブレーン比表面積が5,000cm/gの石膏含有物を得た。
(5) Gypsum-containing material Lump-shaped natural anhydrous gypsum containing 91% by mass of calcium sulfate was pulverized to obtain a gypsum-containing material having a brain specific surface area of 5,000 cm 2 / g.

2.溶出抑制材の調製
表2、表3及び表4に示す配合に従い、前記の溶出抑制材の各構成物質を、三井三池製作所社製のヘンシェルミキサ(型番:FM20B)を用いて混合し、溶出抑制材A1〜A20、B1〜B22を調製した。
2. Preparation of Elution Suppressing Material According to the formulation shown in Table 2, Table 3 and Table 4, each constituent material of the elution inhibiting material is mixed using a Henschel mixer (model number: FM20B) manufactured by Mitsui Miike Manufacturing Co., Ltd. Materials A1 to A20 and B1 to B22 were prepared.

Figure 2012036243
Figure 2012036243

Figure 2012036243
Figure 2012036243

Figure 2012036243
Figure 2012036243

3.ヒ素の溶出試験及びpHの測定
表2に示す溶出抑制材A1〜A10及びB1〜B11に水を加えて、水/溶出抑制材=1(質量比)の溶出抑制材スラリーを調製した。次に、これらの溶出抑制材スラリーをヒ素の汚染土壌(含水比70%)100質量部に対し、表5に示す量(スラリー中の溶出抑制材の量)を添加し混合して、JGS0821−2009「安定処理土の締固めをしない供試体作製方法」に準拠して供試体を作製した。また、溶出抑制材スラリーを添加しない汚染土壌を対照例(比較例12)とした。
これらの供試体を20℃の恒温室にて湿空養生した後、材齢7日の供試体のpHを地盤工学会基準JGS0211−2009に準拠して測定した。また、当該供試体からのヒ素の溶出量は、環境省告示46号法及びK
0120−2008 61.4「ICP質量分析法」に準拠して測定した。なお、ヒ素の環境基準値は0.01mg/リットルである。
ヒ素の溶出試験及びpH測定の結果を表5に示す。
3. Arsenic dissolution test and pH measurement Water was added to the dissolution inhibitors A1 to A10 and B1 to B11 shown in Table 2 to prepare an dissolution inhibitor slurry of water / elution inhibitor = 1 (mass ratio). Next, with respect to 100 parts by mass of the arsenic-contaminated soil (water content ratio: 70%), the amounts shown in Table 5 (amount of the elution inhibitor in the slurry) were added to and mixed with these elution inhibitor slurries, and JGS0821- Specimens were produced in accordance with 2009 “Method for Producing Specimens Without Compaction of Stabilized Soil”. Moreover, the contaminated soil which does not add an elution suppression material slurry was made into the control example (comparative example 12).
These specimens were subjected to wet air curing in a constant temperature room at 20 ° C., and then the pH of the specimens at the age of 7 days was measured in accordance with the Geotechnical Society Standard JGS0211-2009. In addition, the amount of arsenic eluted from the specimen was determined by the Ministry of the Environment Notification No. 46 and K
It was measured according to 0120-2008 61.4 “ICP mass spectrometry”. The environmental standard value for arsenic is 0.01 mg / liter.
The results of the arsenic dissolution test and pH measurement are shown in Table 5.

Figure 2012036243
Figure 2012036243

表5に示すように、実施例1〜10では、ヒ素の溶出量は環境基準値(0.01mg/リットル)未満であるのに対し、比較例1〜12では、いずれも環境基準値を超えている。また、実施例9〜10では、酸性剤を用いているため、pHが低くなっている。これらの結果から、前記(i)で説明した第一の溶出抑制材(A1〜A6)、前記(ii)で説明した第二の溶出抑制材(A7〜A8)、及び、前記(iii)で説明した第三の溶出抑制材(A9〜A10)は、いずれも、ヒ素の溶出抑制効果が極めて高いこと、及び、前記(iii)で説明した第三の溶出抑制材(A9〜A10)は、pHの低減効果が高いことが分かる。   As shown in Table 5, in Examples 1 to 10, the arsenic elution amount was less than the environmental standard value (0.01 mg / liter), whereas in Comparative Examples 1 to 12, both exceeded the environmental standard value. ing. Moreover, in Examples 9-10, since the acidic agent is used, pH is low. From these results, the first elution inhibitor (A1 to A6) described in (i), the second elution inhibitor (A7 to A8) described in (ii), and (iii) The third elution inhibitor (A9 to A10) described has an extremely high elution suppression effect for arsenic, and the third elution inhibitor (A9 to A10) described in (iii) It can be seen that the pH reduction effect is high.

4.フッ素の溶出試験及びpHの測定
表3に示す溶出抑制材A11〜A18及びB12〜B21に水を加えて、水/溶出抑制材=1(質量比)の溶出抑制材スラリーを調製した。
次に、これらの溶出抑制材スラリーをフッ素の汚染土壌(含水比65%)100質量部に対し、表6に示す量(スラリー中の溶出抑制材の量)を添加し混合して、JGS0821−2009「安定処理土の締固めをしない供試体作製方法」に準拠して供試体を作製した。また、溶出抑制材スラリーを添加しない汚染土壌を対照例(比較例23)とした。
これらの供試体を20℃の恒温室にて湿空養生した後、材齢7日の供試体のpHを地盤工学会基準JGS0211−2009に準拠し測定した。また、当該供試体からのフッ素の溶出量は、環境省告示46号及び昭和46年12月環境庁告示第59号付表6「イオンクロマトグラフ法」に準拠し測定した。なお、フッ素の環境基準値は0.8mg/リットルである。
フッ素の溶出試験及びpH測定の結果を表6に示す。
4). Elution test of fluorine and measurement of pH Water was added to the elution inhibitor A11 to A18 and B12 to B21 shown in Table 3 to prepare an elution inhibitor slurry of water / elution inhibitor = 1 (mass ratio).
Next, the amount shown in Table 6 (the amount of the elution inhibitor in the slurry) was added to and mixed with 100 parts by mass of these elution inhibitor slurries (water content ratio 65%), and JGS0821- Specimens were produced in accordance with 2009 “Method for Producing Specimens Without Compaction of Stabilized Soil”. Moreover, the contaminated soil which does not add the elution suppression material slurry was made into the control example (comparative example 23).
After these specimens were wet-cured in a constant temperature room at 20 ° C., the pH of the specimens at the age of 7 days was measured in accordance with the Geotechnical Society Standard JGS0211-2009. The amount of fluorine eluted from the specimen was measured according to Ministry of the Environment Notification No. 46 and Appendix 6 of the Environmental Agency Notification No. 59 of December 1986, “Ion Chromatograph Method”. The environmental standard value of fluorine is 0.8 mg / liter.
Table 6 shows the results of the fluorine elution test and pH measurement.

Figure 2012036243
Figure 2012036243

表6に示すように、実施例11〜18では、フッ素の溶出量は環境基準値(0.8mg/リットル)未満であるのに対し、比較例13〜23では、いずれも環境基準値を超えている。また、実施例17〜18では、酸性剤を用いているため、pHが低くなっている。これらの結果から、前記(i)で説明した第一の溶出抑制材(A11〜A14)、前記(ii)で説明した第二の溶出抑制材(A15〜A16)、及び、前記(iii)で説明した第三の溶出抑制材(A17〜A18)は、フッ素の溶出抑制効果が極めて高いこと、及び、前記(iii)で説明した第三の溶出抑制材(A17〜A18)は、pHの低減効果が高いことが分かる。   As shown in Table 6, in Examples 11 to 18, the elution amount of fluorine was less than the environmental standard value (0.8 mg / liter), whereas in Comparative Examples 13 to 23, all exceeded the environmental standard value. ing. Moreover, in Examples 17-18, since the acidic agent is used, pH is low. From these results, the first elution inhibitor (A11 to A14) described in (i), the second elution inhibitor (A15 to A16) described in (ii), and (iii) The third elution inhibitor (A17 to A18) described has a very high fluorine elution inhibitory effect, and the third elution inhibitor (A17 to A18) described in (iii) above has a reduced pH. It turns out that an effect is high.

5.鉛の溶出試験及びpHの測定
溶出抑制材A19、A20及びB22に水を加えて、水/溶出抑制材=1(質量比)の溶出抑制材スラリーを調製した。
次に、これらの溶出抑制材スラリーを焼却飛灰(含水比50%)100質量部に対し、表8に示す量(スラリー中の溶出抑制材の量)を添加し混合して、JGS0821−2009「安定処理土の締固めをしない供試体作製方法」に準拠して供試体を作製した。また、溶出抑制材スラリーを添加しない焼却飛灰を対照例(比較例25)とした。
これらの供試体を20℃の恒温室にて湿空養生した後、材齢7日の供試体のpHを地盤工学会基準JGS0211−2009に準拠し測定した。また、当該供試体からの鉛の溶出量は、環境省告示46号及びJIS K 0120−2008 5.4「ICP質量分析法」に準拠し測定した。なお、鉛の環境基準値は0.01mg/リットルである。
鉛の溶出試験及びpH測定の結果を表7に示す。
5. Lead dissolution test and pH measurement Water was added to the dissolution inhibitor A19, A20 and B22 to prepare a dissolution dissolution material slurry of water / elution inhibitor = 1 (mass ratio).
Next, the amount shown in Table 8 (amount of the elution inhibitor in the slurry) was added to and mixed with 100 parts by mass of these elution inhibitor slurries (water content ratio 50%), and JGS0821-2009. Specimens were produced in accordance with “Method for producing specimens without compaction of stabilized soil”. Moreover, the incineration fly ash which does not add an elution suppression material slurry was made into the control example (comparative example 25).
After these specimens were wet-cured in a constant temperature room at 20 ° C., the pH of the specimens at the age of 7 days was measured in accordance with the Geotechnical Society Standard JGS0211-2009. The amount of lead elution from the specimen was measured in accordance with Ministry of the Environment Notification No. 46 and JIS K 0120-2008 5.4 “ICP Mass Spectrometry”. The environmental standard value for lead is 0.01 mg / liter.
Table 7 shows the results of the lead dissolution test and pH measurement.

Figure 2012036243
Figure 2012036243

表7に示すように、実施例19〜20では、鉛の溶出量は環境基準値(0.01mg/リットル)未満であるのに対し、比較例24〜25では、いずれも環境基準値を超えている。これらの結果から、前記(i)で説明した第一の溶出抑制材(A19)、及び、前記(ii)で説明した第二の溶出抑制材(A20)は、鉛の溶出抑制効果が極めて高いことが分かる。   As shown in Table 7, in Examples 19 to 20, the elution amount of lead is less than the environmental standard value (0.01 mg / liter), whereas in Comparative Examples 24 to 25, all exceed the environmental standard value. ing. From these results, the first elution inhibitor (A19) described in (i) and the second elution inhibitor (A20) described in (ii) have an extremely high lead elution inhibitory effect. I understand that.

Claims (5)

軽焼マグネシアを部分的に水和してなる軽焼マグネシア部分水和物(A)と、アロフェン定量試験による、粘土からのSiO及びAlの合計の抽出率が20質量%以上である粘土(B)を、(A)/(B)=0.2〜20(質量比)の範囲で含有することを特徴とする重金属類の溶出抑制材。 The total extraction rate of SiO 2 and Al 2 O 3 from clay by a light-burning magnesia partial hydrate (A) obtained by partially hydrating light-burning magnesia and allophane quantitative test is 20% by mass or more. A heavy metal elution inhibitor comprising a certain clay (B) in a range of (A) / (B) = 0.2 to 20 (mass ratio). 軽焼マグネシア部分水和物が、酸化マグネシウム65〜96.5質量%、及び、水酸化マグネシウム3.5〜30質量%を含有する請求項1に記載の重金属類の溶出抑制材。   The heavy metal elution inhibitor according to claim 1, wherein the lightly burned magnesia partial hydrate contains 65 to 96.5% by mass of magnesium oxide and 3.5 to 30% by mass of magnesium hydroxide. 軽焼マグネシア部分水和物100質量部に対し、炭酸カルシウム含有物20〜70質量部、及び/又は、石膏含有物1〜23質量部を含有する請求項1又は2に記載の重金属類の溶出抑制材。   Elution of heavy metals according to claim 1 or 2, comprising 20 to 70 parts by mass of calcium carbonate-containing material and / or 1 to 23 parts by mass of gypsum-containing material with respect to 100 parts by mass of light-burned magnesia partial hydrate. Inhibitor material. 軽焼マグネシア部分水和物100質量部に対し、酸性剤を0.2〜300質量部含有する請求項1〜3のいずれか1項に記載の重金属類の溶出抑制材。   The elution inhibitor of heavy metals of any one of Claims 1-3 which contains 0.2-300 mass parts of acidic agents with respect to 100 mass parts of light-burning magnesia partial hydrates. 処理対象物100質量部に対し、請求項1〜4のいずれか1項に記載の重金属類の溶出抑制材を2〜40質量部添加し混合することを特徴とする重金属類の溶出抑制方法。   The heavy metal elution suppression method characterized by adding 2-40 mass parts of heavy metal elution suppression materials of any one of Claims 1-4 with respect to 100 mass parts of process target objects, and mixing.
JP2010175154A 2010-08-04 2010-08-04 Heavy metal elution control material and elution control method Active JP5599256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175154A JP5599256B2 (en) 2010-08-04 2010-08-04 Heavy metal elution control material and elution control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175154A JP5599256B2 (en) 2010-08-04 2010-08-04 Heavy metal elution control material and elution control method

Publications (2)

Publication Number Publication Date
JP2012036243A true JP2012036243A (en) 2012-02-23
JP5599256B2 JP5599256B2 (en) 2014-10-01

Family

ID=45848587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175154A Active JP5599256B2 (en) 2010-08-04 2010-08-04 Heavy metal elution control material and elution control method

Country Status (1)

Country Link
JP (1) JP5599256B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals
JP2014001127A (en) * 2012-05-23 2014-01-09 Taiheiyo Cement Corp Construction material composition and method for reducing amount of fluorine elution in the same
JP2014226611A (en) * 2013-05-23 2014-12-08 太平洋セメント株式会社 Base material for heavy metal adsorption layer, material for heavy metal adsorption layer, and adsorption layer construction method using the base material and the material
JP2015160169A (en) * 2014-02-27 2015-09-07 太平洋セメント株式会社 Material and method for solidifying oil-contaminated soil
JP2015196829A (en) * 2014-04-03 2015-11-09 宇部興産株式会社 Insolubilizer and insolubilization method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144341A (en) * 2003-11-17 2005-06-09 National Institute Of Advanced Industrial & Technology Insolubilizing processing method of arsenic and lead in soil
JP2005319396A (en) * 2004-05-10 2005-11-17 National Institute Of Advanced Industrial & Technology Insolubilization method for cadmium in soil
JP2006167524A (en) * 2004-12-14 2006-06-29 Taiheiyo Cement Corp Treatment method for arsenic-containing soil
JP2007275868A (en) * 2006-03-15 2007-10-25 Taiheiyo Cement Corp Calcined product manufacturing method
JP2007302885A (en) * 2006-04-14 2007-11-22 Univ Waseda Insolubilizing agent for harmful substance
WO2009128490A1 (en) * 2008-04-16 2009-10-22 株式会社Azmec Insolubilizing agent for toxic substances, method for insolubilization of toxic substances, and water treatment process
JP4481360B1 (en) * 2009-10-05 2010-06-16 太平洋セメント株式会社 Insolubilizing material
JP2010131535A (en) * 2008-11-07 2010-06-17 Taiheiyo Cement Corp Insolubilizing agent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144341A (en) * 2003-11-17 2005-06-09 National Institute Of Advanced Industrial & Technology Insolubilizing processing method of arsenic and lead in soil
JP2005319396A (en) * 2004-05-10 2005-11-17 National Institute Of Advanced Industrial & Technology Insolubilization method for cadmium in soil
JP2006167524A (en) * 2004-12-14 2006-06-29 Taiheiyo Cement Corp Treatment method for arsenic-containing soil
JP2007275868A (en) * 2006-03-15 2007-10-25 Taiheiyo Cement Corp Calcined product manufacturing method
JP2007302885A (en) * 2006-04-14 2007-11-22 Univ Waseda Insolubilizing agent for harmful substance
WO2009128490A1 (en) * 2008-04-16 2009-10-22 株式会社Azmec Insolubilizing agent for toxic substances, method for insolubilization of toxic substances, and water treatment process
JP2010131535A (en) * 2008-11-07 2010-06-17 Taiheiyo Cement Corp Insolubilizing agent
JP4481360B1 (en) * 2009-10-05 2010-06-16 太平洋セメント株式会社 Insolubilizing material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals
JP2014001127A (en) * 2012-05-23 2014-01-09 Taiheiyo Cement Corp Construction material composition and method for reducing amount of fluorine elution in the same
JP2014226611A (en) * 2013-05-23 2014-12-08 太平洋セメント株式会社 Base material for heavy metal adsorption layer, material for heavy metal adsorption layer, and adsorption layer construction method using the base material and the material
JP2015160169A (en) * 2014-02-27 2015-09-07 太平洋セメント株式会社 Material and method for solidifying oil-contaminated soil
JP2015196829A (en) * 2014-04-03 2015-11-09 宇部興産株式会社 Insolubilizer and insolubilization method

Also Published As

Publication number Publication date
JP5599256B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5068245B2 (en) Insolubilized material
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP4343259B1 (en) Insolubilizing material
JP5757613B2 (en) Processing materials such as heavy metals
JP5019188B2 (en) Method for producing heavy metal elution reducing material
JP5682809B2 (en) Method for producing heavy metal or fluorine elution reducing material
JP5599256B2 (en) Heavy metal elution control material and elution control method
KR102156734B1 (en) Methods To manufacture alkaline waste neutralizer of solids containing large amounts of active calcium oxide by mixing raw lime with bauxite residues and neutralizing sulfuric acid as industrial materials such as cement condensation retardant
JP5315096B2 (en) Heavy metal insolubilization method and heavy metal insolubilization solidification material
JP2012055815A (en) Method of suppressing elution of heavy metals
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP3706618B2 (en) Solidification / insolubilizer and solidification / insolubilization method for soil, incineration ash, coal ash, and gypsum board waste
Pachana et al. Alkali-activated material synthesized from palm oil fuel ash for Cu/Zn ion removal from aqueous solutions
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP5013005B1 (en) Insolubilizer and method for producing the same
WO2013147034A1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JPH10165920A (en) Nodulizing agent of slurry and solidifying agent using the same
JP6675779B2 (en) Method for producing soil modifying material and method for modifying soil
JP2020029502A (en) Solidification material and solidification method of soil
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
Min et al. Arsenic Pollution Control Technologies for Arsenic-Bearing Solid Wastes
JP4006584B2 (en) Fluorine adsorbent and method for treating fluorine in water
JP5836096B2 (en) Earthwork materials
JP6465604B2 (en) Insolubilized slurry
JP6227879B2 (en) Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140812

R150 Certificate of patent or registration of utility model

Ref document number: 5599256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250