WO2009128490A1 - Insolubilizing agent for toxic substances, method for insolubilization of toxic substances, and water treatment process - Google Patents

Insolubilizing agent for toxic substances, method for insolubilization of toxic substances, and water treatment process Download PDF

Info

Publication number
WO2009128490A1
WO2009128490A1 PCT/JP2009/057633 JP2009057633W WO2009128490A1 WO 2009128490 A1 WO2009128490 A1 WO 2009128490A1 JP 2009057633 W JP2009057633 W JP 2009057633W WO 2009128490 A1 WO2009128490 A1 WO 2009128490A1
Authority
WO
WIPO (PCT)
Prior art keywords
insolubilizing agent
aluminum
substance
fluorine
insolubilizing
Prior art date
Application number
PCT/JP2009/057633
Other languages
French (fr)
Japanese (ja)
Inventor
武則 正田
淳司 山崎
正彦 松方
Original Assignee
株式会社Azmec
学校法人 早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Azmec, 学校法人 早稲田大学 filed Critical 株式会社Azmec
Priority to JP2010508237A priority Critical patent/JPWO2009128490A1/en
Publication of WO2009128490A1 publication Critical patent/WO2009128490A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents

Definitions

  • fluorine compounds have excellent functions such as slipperiness, heat resistance, non-adhesiveness / releasability, water repellency, and chemical resistance.
  • various industrial fields are indispensable for industrial production. It is used in. For this reason, the type and amount of industrial waste containing high concentrations of fluorine, such as steel slag, foundry sand, and waste gypsum, are extremely large. Therefore, development of an economical and effective insolubilization technique for waste containing fluorine is industrially significant.
  • Patent Document 4 a technique for mixing a water-soluble calcium compound such as concrete waste material and steel slag to prevent the elution of fluorine, and as disclosed in Patent Document 5, bust necite, monazite, xenotime. And a method of insolubilizing fluorine using a rare earth ore such as
  • An object of the present invention is to provide a technology capable of efficiently performing insolubilization treatment and wastewater treatment of contaminated soil containing various concentrations of fluorine and boron, various slags, and incinerated ash.
  • the magnesium compound is any of light-burned magnesia, magnesium sulfate, and magnesium chloride.
  • the calcium compound is any one of quick lime, slaked lime, calcium chloride, dihydrate gypsum, and hemihydrate gypsum.
  • the acidic substance is sulfuric acid, hydrochloric acid, acetic acid, aluminum chloride, aluminum sulfate, polyaluminum chloride, aluminum hydroxide, ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, polyferric sulfate. It is one of iron, iron hydroxide (II), and iron hydroxide (III).
  • the toxic substance insolubilization method of the present invention is characterized in that the toxic substance insolubilizer of the present invention is used to insolubilize contaminated soil, incinerated ash, or ash discharged from a gasifier.
  • the water treatment method of the present invention is characterized in that the hazardous substance insolubilizing agent of the present invention is added to waste water.
  • the hazardous substance insolubilizing agent and the hazardous substance insolubilization method of the present invention it is possible to reliably and economically suppress elution of fluorine, boron, etc. contained in soil, ash, slag, and further, treatment Soil, ash and slag can be safely recycled.
  • ⁇ Red soil literally means red soil, but many of these contain a high amount of aluminum, such as Kunigami merger, Shimajiri merger, and laterite in tropical regions.
  • bauxite or red clay fine powder is preferably used, and may be used after firing at a temperature of 600 to 900 ° C.
  • Kaolinite Al 2 Si 2 O 5 (OH) 4
  • halloysite ((Al 2 Si 2 O 5 (OH) 4 ) ⁇ nH 2 O)
  • dickite Al 2 Si 2 O 5 (OH) 4
  • a so-called kaolin clay mineral, metakaolin is an amorphous clay mineral obtained by firing kaolin clay mineral at a temperature of 560 to 950 ° C.
  • Meteorite is a natural mineral that is widely distributed both in Japan and in Asian countries. Currently, it is mostly used industrially in Japan, except for a part of it used for concrete admixture. It is an unresourced resource and has the advantage of being economical in terms of securing raw materials.
  • This mineral group also includes soda alite (Natroalunite: NaAl 3 (SO 4) 2 (OH) 6 ), ammonium alumite (ammonioalunite: (NH 4 ) Al 3 (SO 4 ) 2 (OH) 6 ), south Stone (minamiite: (Na, Ca, K, ⁇ ) Al 3 (SO 4 ) 2 (OH) 6 ), Huangite (Ca ⁇ Al 6 (SO 4 ) 4 (OH) 12 ), wartierite ( walthierite: BaAl 6 (SO 4 ) 4 (OH) 12 ) and the like, and those containing Al shown here are considered to be usable as the composition of the insolubilizer of the present invention. The amount is small.
  • magnesium compound examples include light calcined magnesia, light calcined dolomite, magnesium sulfate, magnesium chloride, and calcium compound.
  • examples of the calcium compound include quick lime, slaked lime, light calcined dolomite, calcium chloride, dihydrate gypsum, and hemihydrate gypsum. Two or more of these can be used in combination.
  • Light calcined magnesia which is a magnesium compound used in the present invention, is obtained by firing natural mineral magnesite (magnesium carbonate) at 700 to 800 ° C., and brucite (magnesium hydroxide) at 300 to 800 ° C. What was baked with is suitable. In addition, what baked magnesite and brucite at the high temperature over 1000 degreeC is called heavy burned magnesium, and its reactivity is low.
  • light-burned dolomite obtained by baking dolomite at 900 to 1300 ° C., preferably 900 to 1000 ° C. can be used as a raw material containing magnesium and calcium. In order to increase the reactivity, these raw materials are preferably used as powders pulverized to 0.5 mm or less, preferably 0.1 mm or less.
  • Other magnesium sulfate and magnesium chloride are chemically synthesized industrial raw materials.
  • insolubilizing agent of the present invention by adding the above-mentioned magnesium compound and calcium compound, soil, ash and slag can be solidified and reduced in volume, and can be suitably used as a recycled material and a ground material. . Furthermore, since the insolubilizing agent of the present invention is composed of an inorganic material, it is stable over a long period of time.
  • the harmful substance insolubilizing agent of the present invention may further contain an acidic substance.
  • an acidic substance By adding this acidic substance, the degree of freedom of pH control is increased, and the pH of the object to be treated can be easily controlled within a preferable range as described below using the hazardous substance insolubilizing agent of the present invention.
  • sodium silicate reacts with polyvalent metal ions such as Ca, Mg, Al, and Ba to simultaneously produce insoluble silicate metal salt hydrate and silicic acid to gel.
  • polyvalent metal ions such as Ca, Mg, Al, and Ba
  • SiO 2 is also generated at the same time.
  • the hazardous substance insolubilizing agent of the present invention may further contain a retarder.
  • This retarder is used for the purpose of delaying the solidification reaction in order to secure the time necessary for the kneading treatment and the time necessary for the transportation after the kneading, landfilling and the like.
  • the addition amount of the retarder is preferably 10 parts by mass or less of the total mass of the insolubilizer component.
  • the insolubilizing agent for harmful substances of the present invention is soil contaminated with fluorine and boron, paper sludge, sewage sludge, fly ash and coal such as coal, slag such as blast furnace and gasifier, incineration ash such as slag of gasifier
  • adding water, knead, and cure for several days in a wet state to solidify the object firmly and to disperse and disintegrate the treated soil and ash Prevents the elution and outflow of harmful substances by reducing water permeability.
  • the harmful substance insolubilizing agent of the present invention contains a composition having a function of suppressing the dissolution of harmful substances as described below, it is considered to have an excellent elution reduction effect.
  • the mechanism of insolubilization of fluorine and boron by the insolubilizing agent of the present invention is as follows: (1) Formation of a compound of magnesium ion, calcium ion and boric acid, fluorine ion, (2) Further, alunite, metakaolin, bauxite, etc. This is considered to be due to the fixation of boron and fluorine accompanying the formation of a sparingly soluble compound of an aluminum component, a silicic acid component, a sulfuric acid component and magnesium and calcium. This principle is very close to the coagulation separation method in the water treatment method, and therefore the insolubilizing agent of the present invention is also suitably used as a water treatment agent.
  • the hazardous substance insolubilizing agent of the present invention by using a combination of alunite, metakaolin, aluminum-containing raw materials such as bauxite, quick lime, slaked lime, light burned magnesia, light burned dolomite, acidic substances, the treatment effect of harmful substances In addition, it is possible to control the object to be processed to a target pH.
  • an insolubilizing agent in order to efficiently perform the insolubilization treatment of fluorine using the harmful substance insolubilizing agent of the present invention, it is preferable to add an insolubilizing agent and control the pH within the range of about 9 to 12, more preferably about pH 9 to 11. .
  • the hazardous substance insolubilizing agent of the present invention of the present invention has an excellent fixing ability of these harmful substances, the addition of 10% by mass or less with respect to the solid matter of soil, ash, slag, and the environmental standard or less It is possible to suppress elution.
  • a stabilizer, a bulldozer, a backhoe, a self-propelled soil conditioner, a kneading process using a high-pressure spray method can be performed, and further, a combination of a belt conveyor and a gravity-type mixing device, a stirring method by rotary impact, etc. Any kneading method may be used.
  • the hazardous substance insolubilizing agent of the present invention has the effect of preventing the elution and outflow of harmful substances by solidifying the contaminated soil and ash, preventing the treated soil and ash from scattering and crushing, and further reducing the water permeability. Demonstrate. Therefore, by using the hazardous substance insolubilizing agent of the present invention, it can be mixed with coal ash or incinerated ash containing heavy metals, and can be safely landfilled. It can be safely recycled as roadbed material and backfill material.
  • the harmful substance insolubilizing agent of the present invention has a solidification strength higher than that of the conventional technology, so that the ground strength can be easily secured and a long-term insolubilizing effect can be expected.
  • the method for insolubilizing harmful substances of the present invention utilizes a mechanism for fixing harmful substances to the insolubilizing agent composition in a hardly soluble form, which is a concept of the coagulation separation method in the water treatment method. Very close. For this reason, the insolubilizer of this invention can be used suitably also as a water treatment agent.
  • the water treatment method of the present invention uses the principle of forming a coagulation sediment, it can be implemented by a general method of separating waste water and sludge using a sedimentation tank such as a thickener. It can also be implemented in combination with a film processing method such as a film. Furthermore, the water treatment effect can be further improved by combining the harmful substance insolubilizing agent of the present invention with a polymer business agent represented by polyacrylic acid or the like.
  • Contaminated soil was prepared by adding sodium fluoride to the soil and adjusting the fluorine content to 100 mg / kg, and was cured for 3 days while keeping it moist.
  • the insolubilizer composition of the present invention that is, an alumite powder, a light calcined magnesia, and an insolubilizer composed of quicklime, were added, the elution of fluorine could be reduced to a value below the reference value. ing.
  • the elution amount of waste gypsum board to which no insolubilizing agent was added was 4.8 mg / L, and the elution amount increased almost twice as a result of kneading of lime, which is a general treatment agent for fluorine.
  • the insolubilizing agent of the present invention shows a better effect than this, and even if lime is used in Example 4, the amount of fluorine eluted is halved.
  • the environmental standard value elution amount 0.8 mg / L
  • the elution of fluorine could be suppressed to the following.
  • metakaolin used was a New Zealand kaolin clay (SiO 2 : 48.0%, Al 2 O 3 : 37.5%, Fe 2 O 3 : 0.3%) fired at 800 ° C for 1 hour.
  • Bauxite is made in China (composition: Al 2 O 3 : 85% or more, Fe 2 O 3 : 2% or less, particle size: -200 mesh)
  • slaked lime is made by Ueda Lime Manufacturing Co., Ltd.
  • special name slaked lime CaO: 72.5% or more, impurities 3% or less, particle size -0.3 mm
  • Others were the same as those described above.
  • the amount of boron dissolved in the soil without the addition of the insolubilizer is 16.8, showing a large amount of elution.
  • the insolubilizer composition of the present invention is added as in Examples 9 to 11, the amount of dissolution is reduced to below the reference value. Can do.
  • the comparative example which processed with light-burning magnesia and quicklime simple substance although the boron elution reduction effect is recognized, the effect is small compared with the composition of this invention.
  • the raw materials used in the test were the same as those described above. Moreover, the reagent made from Kanto Chemical was used for sodium borate.
  • the wastewater treatment was performed using the hazardous substance insolubilizer of the present invention as a water treatment agent.
  • the insoluble agent having the composition shown in Table 7 was added to factory wastewater having a fluorine concentration of 120 mg / L and pH 3.1, stirred for 50 minutes, allowed to stand for 10 minutes, and then the fluorine concentration of the supernatant was measured with an electrode ion concentration meter.
  • the insolubilizing agent composition of the present invention had a high fluorine treatment capacity.
  • the same raw materials for the insolubilizer were used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

Provided is a technique which enables efficient insolubilization of contaminated soil containing fluorine or boron in high concentration, various slags, or incineration ash, and efficient treatment of wastewater. Provided are an insolubilizing agent for toxic substances which contains alunite powder (which is one of aluminum-containing minerals), metakaolin, bauxite powder, baked volcanic ash, and so on, and another insolubilizing agent for toxic substances which is prepared by combining an aluminum-containing mineral powder suitably with a magnesium compound, calcium compound, an acid substance, and so on. The insolubilizing agents for toxic substances have excellent fluorine- and boron-immobilizing functions. The insolubilizing agents enable economical insolubilization of contaminated soil, various incineration ashes, or slags, and economical treatment of wastewater.

Description

有害物質の不溶化剤、有害物質の不溶化方法及び水処理方法Hazardous substance insolubilizer, hazardous substance insolubilization method and water treatment method
 本発明は、土壌、焼却灰、スラグ等に含まれるフッ素、ホウ素の溶出抑制を行うための有害物質の不溶化剤、有害物質の不溶化方法及び水処理方法に関する。 The present invention relates to a harmful substance insolubilizing agent, a harmful substance insolubilizing method, and a water treatment method for suppressing elution of fluorine and boron contained in soil, incinerated ash, slag and the like.
 我が国においては、平成8年度から土壌汚染が判明した土地の件数が飛躍的に増加し、現在、約32万箇所の土地で土壌汚染が発生していると推定されている。また、海外における土壌汚染の状況は、米国で50万箇所、ヨーロッパにおいてはフランスで70万箇所、ドイツで30万箇所と推定されている。さらに、アジア地域では近年の急速な工業化により、土壌汚染を含む環境面での様々な問題が複合的に発生しているといわれている。 In Japan, the number of land where soil contamination has been found has increased dramatically since 1996, and it is estimated that about 320,000 locations of soil contamination are currently occurring. In addition, the situation of soil contamination overseas is estimated at 500,000 locations in the United States, 700,000 locations in France in Europe, and 300,000 locations in Germany. Furthermore, in the Asian region, it is said that various environmental problems including soil contamination are occurring in combination with the rapid industrialization in recent years.
 我が国では平成15年に土壌汚染対策法が施行され、直接摂取、地下水等の摂取によるリスクの回避、地下水による汚染拡大の防止に重点をおいた対策が示されている。 In Japan, the Soil Contamination Countermeasures Law was enforced in 2003, and measures focusing on prevention of the risk of direct intake, ingestion of groundwater, etc., and prevention of the spread of contamination by groundwater are shown.
 環境省発表の「平成17年度土壌汚染対策法の実施状況及び土壌汚染調査・対策事例等にする調査結果」によると、平成17年度末日までに都道府県等が把握した土壌汚染調査結果では、超過事例が2,573件となった。 According to the Ministry of the Environment's "Survey Results of the 2005 Soil Contamination Countermeasures Act and Soil Contamination Surveys / Countermeasures, etc." There were 2,573 cases.
 調査により判明した土壌汚染原因の内訳では、第二種特定有害物質、いわゆる重金属等の有害物質が汚染原因となっている事例が全体の60%を占める。このうち汚染原因物質は、鉛、ヒ素、フッ素、六価クロム、水銀、シアン、セレン、カドミウム、ホウ素、アルキル水銀の順になっており、環境基準の改定された平成15年度以降は、フッ素の超過事例が顕著に増加する傾向が認められる。 In the breakdown of the causes of soil contamination revealed by the survey, 60% of the cases are caused by the second type of specified harmful substances, so-called heavy metals and other harmful substances. Among these substances, the cause of contamination is lead, arsenic, fluorine, hexavalent chromium, mercury, cyan, selenium, cadmium, boron, and alkylmercury, and since fiscal 2003 when the environmental standards were revised, the excess of fluorine There is a tendency for cases to increase significantly.
 一方、わが国の産業廃棄物の排出量は、平成17年度には約4億2,200万トンと推計されている。産業廃棄物排出量のうち、全体の52%が再生利用されており、また、42%が中間処理等において減量化が行われ、5.7%が最終処分されていると推計されている。最終処分場の残余容量は、平成17年4月現在では、約18,400万mとなり、残余年数は首都圏では3.4年、全国では7.2年といわれており、残余容量は依然として逼迫した状況にある。 On the other hand, the amount of industrial waste in Japan is estimated at about 422 million tons in FY2005. It is estimated that 52% of the total industrial waste is recycled and 42% is reduced during intermediate treatment and 5.7% is finally disposed of. The remaining capacity of final disposal sites, in April 2005, about 18,400 ten thousand m 3 next 3. 4 years in the remaining number of years the Tokyo metropolitan area, in the whole country 7. It is said that two years, the remaining capacity The situation is still tight.
 このように、産業廃棄物の処理量を削減していくことは社会的に必要とされており、このひとつとして、焼却灰、スラグ等に含まれる有害物質を確実に固定化し、有効なリサイクル利用技術を開発することで、廃棄処理量の減量を図っていくことが望まれる。 In this way, it is socially necessary to reduce the amount of industrial waste treated, and as one of these, the hazardous substances contained in incineration ash, slag, etc. are securely fixed and used effectively for recycling. It is desirable to reduce the amount of waste disposal by developing technology.
 ところで、フッ素化合物は、滑り性、耐熱性、非粘着性・離型性、撥水性、耐薬品性など優れた機能をもっており、現在では、工業生産にはなくてはならない素材として様々な産業分野で用いられている。このため鉄鋼系スラグ、鋳物砂、廃石膏など、フッ素を高濃度で含む産業廃棄物の種類、量は極めて多い。したがって、フッ素を含有する廃棄物の経済的かつ有効な不溶化技術の開発は産業上有意義なものとなる。 By the way, fluorine compounds have excellent functions such as slipperiness, heat resistance, non-adhesiveness / releasability, water repellency, and chemical resistance. At present, various industrial fields are indispensable for industrial production. It is used in. For this reason, the type and amount of industrial waste containing high concentrations of fluorine, such as steel slag, foundry sand, and waste gypsum, are extremely large. Therefore, development of an economical and effective insolubilization technique for waste containing fluorine is industrially significant.
 一方、火力発電等により発生する大量の石炭灰の経済的な不溶化処理技術の確立、これによるリサイクル利用の促進も重要な課題となっている。近年の原油価格の高騰により、発電燃料は石油から石炭へと急速にシフトが進んできている。中国、インドなどの石炭消費量の増加により、石炭も急速に需要の増大、価格の高騰が生じており、より安価な原料を求めてさらに広い地域から石炭を調達する傾向になっている。これらの中にはホウ素、フッ素、セレンなどを高濃度で含有する原料も含まれている。 On the other hand, establishment of economical insolubilization technology for large quantities of coal ash generated by thermal power generation, etc., and promotion of recycling utilization by this technology are also important issues. Due to soaring crude oil prices in recent years, the power generation fuel is rapidly shifting from oil to coal. Due to the increase in coal consumption in China, India, etc., the demand for coal has also increased rapidly and the price has risen, and there is a tendency to procure coal from a wider area in search of cheaper raw materials. Among these, raw materials containing high concentrations of boron, fluorine, selenium and the like are also included.
 我が国の石炭火力発電設備は、平成14年度では3,377万kWであったが、平成19年度には3,922万kW、平成24年度には4,315万kWとなる増加する計画となっており、これにより、国内の石炭灰発生量は、平成14年度末の約920万トンが、平成19年度末には約1,000万トンに達するものと予測されている。 Japan's coal-fired power generation facility was 33.77 million kW in 2002, but it is planned to increase to 39.22 million kW in 2007 and 43.15 million kW in 2012. As a result, the amount of coal ash generated in Japan is expected to reach approximately 10 million tons at the end of 2007, from approximately 9.2 million tons at the end of 2002.
 現在の石炭灰の処理の状況では、排出量の55%が有効利用され、45%が主に海域で埋め立て処分されているが、この埋め立て処分地の確保が非常に困難になってきている。また、石炭灰の有効利用の用途としては、セメント原料及び土木・建築分野での利用が90%を占めているが公共投資の減少により、これらの需要も減少傾向にある。 In the current state of coal ash treatment, 55% of the emissions are effectively used, and 45% is mainly landfilled in the sea, but it is very difficult to secure this landfill site. As for the effective use of coal ash, the use of cement raw materials and civil engineering / architecture accounts for 90%, but due to the decrease in public investment, these demands are also decreasing.
 我が国で排出されている石炭灰は基本的には重金属の溶出量は少ないが、一部には土壌環境基準を超過するホウ素、フッ素、セレン、砒素などの溶出を生ずるものが存在している。石炭灰は、路盤材、軽量裏込材など建設分野での利用範囲が広いため、経済的かつ確実な有害物質の不溶化技術が確立されれば、さらに、そのリサイクル利用を推進することができると考えられる。 石炭 Coal ash discharged in Japan basically has a small amount of elution of heavy metals, but there are some that produce elution of boron, fluorine, selenium, arsenic, etc. exceeding the soil environmental standards. Coal ash has a wide range of applications in the construction field, such as roadbed materials and lightweight backing materials, so if economical and reliable insolubilization technology for harmful substances is established, it can be further promoted its recycling. Conceivable.
 ところで、重金属等の有害物質で汚染された土壌の一般的な処理対策として、置き換え、土壌洗浄、遮蔽、不溶化処理などが挙げられる。このうち、置き換え法は汚染土を処理場に処分し、良質土と置き換える方法である。また、土壌洗浄は、汚染土を洗浄により汚染物質と分離し、細粒分以外の土壌は処理後に現地に戻す方法であり、土壌より有害成分を除去するため、確実な方法であるが、比較的処理コストは高く、また、分離した汚染土細粒分を処分するため廃棄物が発生することになる。 By the way, general treatment measures for soil contaminated with toxic substances such as heavy metals include replacement, soil washing, shielding, and insolubilization treatment. Among them, the replacement method is a method of disposing contaminated soil in a treatment plant and replacing it with good quality soil. In addition, soil cleaning is a method that separates contaminated soil from contaminants and returns the soil other than fine particles to the site after treatment, and is a reliable method to remove harmful components from the soil. Cost is high, and waste is generated to dispose of the separated contaminated soil fines.
 不溶化処理は有害物質の溶出抑制機能をもつ薬剤を汚染土、灰、スラグに混合処理するもので、土壌汚染対策法のなかで経済性に優れており、また、廃棄物が発生しない利点がある。また、土壌汚染対策法のなかで不溶化処理は経済性に優れている。これにより、大量に発生するスラグ、灰などの廃棄物の処理、リサイクル利用に適する。 Insolubilization treatment is a process that mixes chemicals with a function of inhibiting the release of harmful substances into contaminated soil, ash, and slag, and is superior in economic efficiency among the soil pollution countermeasures, and has the advantage of not generating waste. . Moreover, the insolubilization process is excellent in economic efficiency in the soil contamination countermeasure method. This makes it suitable for the treatment and recycling of waste such as slag and ash generated in large quantities.
 一方、ホウ素・フッ素等の排水規制については、人体への健康被害を防ぐことを目的に、平成11年に、WHO飲用水質ガイドラインや水道水水質基準等を参考に、環境基準が設定された。これを受けて、我が国では平成13年に新たなホウ素・フッ素等に関する排水基準として、ホウ素及びその化合物:10mg/L以下、フッ素及びその化合物:8mg/L以下いう一律排水基準が設定された。 On the other hand, with regard to the regulation of wastewater such as boron and fluorine, environmental standards were set in 1999 with reference to WHO drinking water quality guidelines and tap water quality standards for the purpose of preventing human health damage. In response to this, in Japan, new drainage standards for boron and fluorine, etc., were established in 2001, such as boron and its compounds: 10 mg / L or less and fluorine and its compounds: 8 mg / L or less.
 しかしながら、排水の実態や処理技術の水準に照らし、技術的課題を有する業種については暫定排水基準の延長はやむを得ないとの理由で、3年の期限で暫定排水基準を設定し、また、さちに、26業種については、平成16年7月に、さらに3年後の平成19年7月まで、暫定措置を延長がされることとなった。また、環境省では、その後の取り扱い方針を定めるため、該当事業場の排水の実態調査を行ったが、一部の業界においては平成19年7月以降も、暫定排水基準値の強化や現行の暫定排水基準値のまま延長という方針案を作成し運用が行われている。 However, in light of the actual situation of wastewater and the level of treatment technology, the provisional drainage standard was set for a three-year deadline because of the unavoidable extension of the provisional drainage standard for industries with technical issues. For the 26 industries, provisional measures were extended in July 2004 until July 2007, three years later. In addition, the Ministry of the Environment conducted a survey of wastewater at the relevant business sites in order to establish subsequent handling policies. However, in some industries after July 2007, the provisional drainage standards were strengthened and the current A draft policy to extend the provisional drainage standard value has been prepared and is being used.
 ホウ素・フッ素は、工業原料、下水、廃棄物等に含まれるとともに、自然界にも多く存在する。環境省の調査では、調査製造事業場8500中、フッ素化合物を使用する事業場は1900、ホウ素化合物を使用する事業場1650と、他の有害物質と比較して、対象の製造事業場は非常に多い。また、PRTR調査によると公共水域に排出される対象化学物質合計排出量100,500t/年のうち、ホウ素及びその化合物は29%、さらにフッ素化合物及びその水溶塩は26%と上位の2種を占めている。従ってこれらの新規で有効な排水処理技術を確立することは社会的に大いに意義がある。 Boron and fluorine are contained in industrial raw materials, sewage, waste, etc., and are also present in nature. According to a survey by the Ministry of the Environment, among the manufacturing sites 8500, the manufacturing sites that use fluorine compounds are 1900, the manufacturing sites 1650 that use boron compounds, and the target manufacturing sites are very different compared to other harmful substances. Many. According to the PRTR survey, boron and its compounds account for 29%, and fluorine compounds and their water salts account for 26% of the total amount of chemical substances released into public waters of 100,500t / year. Yes. Therefore, establishing these new and effective wastewater treatment technologies has great social significance.
 ホウ素、フッ素の溶出抑制を行う既存技術としては、例えば、特許文献1に開示されたようにセメント・石灰などのカルシウム原料と、硫酸バンドを組み合わせてアルミン酸カルシウムを形成し溶出抑制を行う方法、鉄粉・ウスタイト(FeO)、マグネタイト(Fe)などの鉄化合物を用いる方法、さらには、リン酸とカルシウムなどのアルカリ物質を加えて撹拌し難溶化を図る方法などが挙げられる。 As an existing technique for suppressing elution of boron and fluorine, for example, a method of suppressing elution by forming calcium aluminate by combining a calcium raw material such as cement and lime and a sulfate band as disclosed in Patent Document 1, Examples thereof include a method using an iron compound such as iron powder / wustite (FeO) and magnetite (Fe 3 O 4 ), and a method in which an alkaline substance such as phosphoric acid and calcium is added and stirred to make it hardly soluble.
 また、特許文献4のようにコンクリート廃材等の水溶性カルシウム化合物と鉄鋼スラグを混合し、フッ素の溶出防止処理を行う技術、さらに特許文献5に示されているようにバストネサイト、モナザイト、ゼノタイムなどの希土類鉱石を用いてフッ素を不溶化する方法などが挙げられる。 Further, as disclosed in Patent Document 4, a technique for mixing a water-soluble calcium compound such as concrete waste material and steel slag to prevent the elution of fluorine, and as disclosed in Patent Document 5, bust necite, monazite, xenotime. And a method of insolubilizing fluorine using a rare earth ore such as
 特許文献6には、軽焼マグネシウムを主な組成として用いたシアン、リン、窒素、ヒ素の不溶化剤組成に関するものが開示されている。 Patent Document 6 discloses a composition relating to an insolubilizer composition of cyan, phosphorus, nitrogen, and arsenic using light-burned magnesium as a main composition.
 一方、フッ素の既存の排水処理技術としては、特許文献7のようにフッ素含有排水にカルシウム系アルカリを加えてpHを6~10に調整する工程と、pHが調整されたフッ素含有排水に晶析促進剤としてフルオロアパタイト粒子を加え、吸着、析出させて不溶化分離させる方法がある。 On the other hand, as an existing wastewater treatment technology for fluorine, a process of adjusting the pH to 6 to 10 by adding calcium-based alkali to fluorine-containing wastewater as in Patent Document 7, and crystallization in fluorine-containing wastewater with adjusted pH There is a method in which fluoroapatite particles are added as an accelerator, adsorbed and precipitated, and insolubilized and separated.
 また、さらにホウ素の水処理技術としては特許文献8のように排水に、リン酸塩、カルシウム化合物とを添加し、pH8以上の条件で反応させた後、固液分離する方法などが挙げられる。
特開2004-267975号公報 特開2005-131570号公報 特開2004-305833号公報 特開2005-239509号公報 特開2004-305935号公報 特開2006-187773号公報 特開2008-73690号公報 特開2007-144405号公報
Further, as a water treatment technique for boron, there is a method of solid-liquid separation after adding phosphate and a calcium compound to waste water and reacting them under conditions of pH 8 or more as disclosed in Patent Document 8.
JP 2004-267975 A JP 2005-131570 A JP 2004-305833 A JP 2005-239509 A JP 2004-305935 A JP 2006-187773 A JP 2008-73690 A JP 2007-144405 A
 前述のようにフッ素、ホウ素含有汚染土、スラグ、廃棄物の不溶化処理技術、水処理技術には様々な方法があるが、高濃度の汚染を経済的に不溶化処理することは難しい。 As mentioned above, there are various methods for fluorine and boron-containing contaminated soil, slag, waste insolubilization technology, and water treatment technology, but it is difficult to economically insolubilize high concentrations of contamination.
 フッ素、ホウ素の溶出低減処理を行う技術として、キレート剤を用いる方法があるが、キレート剤が一般的に高価であることによるコスト上の問題があるほか、キレート剤が有機材料であることにより、環境中で劣化しやすいという問題があった。 As a technique for reducing the elution of fluorine and boron, there is a method using a chelating agent, but in addition to the cost problem due to the chelating agent being generally expensive, the chelating agent is an organic material, There was a problem that it easily deteriorates in the environment.
 本発明の目的は、高濃度のフッ素、ホウ素を含有する汚染土壌、種々のスラグ類、焼却灰の不溶化処理及び排水処理を効率よく行うことができる技術を提供することである。 An object of the present invention is to provide a technology capable of efficiently performing insolubilization treatment and wastewater treatment of contaminated soil containing various concentrations of fluorine and boron, various slags, and incinerated ash.
 また、本発明はこれらの溶出抑制技術を提供することにより、処理した土壌、灰やスラグのリサイクル利用の促進を図ることを目的とする。 Also, the present invention aims to promote recycling of treated soil, ash and slag by providing these elution control techniques.
 本発明の有害物質の不溶化剤は、アルミニウム含有鉱物粉末・鉱石粉末を含有することを特徴とする。 The harmful substance insolubilizing agent of the present invention is characterized by containing aluminum-containing mineral powder or ore powder.
 また、前記アルミニウム含有鉱物が明礬石であることを特徴とする。 Further, the aluminum-containing mineral is alumite.
 また、前記アルミニウム含有鉱物が、メタカオリン、ボーキサイト、赤土、焼成火山灰のいずれかであることを特徴とする。 Further, the aluminum-containing mineral is any one of metakaolin, bauxite, red soil, and calcined volcanic ash.
 また、さらに、マグネシウム化合物、カルシウム化合物を含むことを含有することを特徴とする。 Furthermore, it is characterized by containing a magnesium compound and a calcium compound.
 また、前記マグネシウム化合物が軽焼マグネシア、硫酸マグネシウム、塩化マグネシウムのいずれかであることを特徴とする。 Further, the magnesium compound is any of light-burned magnesia, magnesium sulfate, and magnesium chloride.
 また、前記カルシウム化合物が、生石灰、消石灰、塩化カルシウム、二水石膏、半水石膏のいずれかであることを特徴とする。 The calcium compound is any one of quick lime, slaked lime, calcium chloride, dihydrate gypsum, and hemihydrate gypsum.
 また、さらに、酸性物質を含有することを特徴とする。 Furthermore, it is characterized by containing an acidic substance.
 また、前記酸性物質が硫酸、塩酸、酢酸、塩化アルミニウム、硫酸アルミニウム、ポリ塩化アルミニウム、水酸化アルミニウム、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、ポリ硫酸第二鉄、水酸化鉄(II)、水酸化鉄(III)のいずれかであることを特徴とする。 In addition, the acidic substance is sulfuric acid, hydrochloric acid, acetic acid, aluminum chloride, aluminum sulfate, polyaluminum chloride, aluminum hydroxide, ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, polyferric sulfate. It is one of iron, iron hydroxide (II), and iron hydroxide (III).
 また、さらに、珪酸ナトリウムを含有することを特徴とする。 Furthermore, it is characterized by containing sodium silicate.
 本発明の有害物質の不溶化方法は、本発明の有害物質の不溶化剤を用い、汚染土壌、焼却灰、又はガス化炉から排出される灰を不溶化することを特徴とする。 The toxic substance insolubilization method of the present invention is characterized in that the toxic substance insolubilizer of the present invention is used to insolubilize contaminated soil, incinerated ash, or ash discharged from a gasifier.
 本発明の水処理方法は、本発明の有害物質の不溶化剤を排水に添加することを特徴とする。 The water treatment method of the present invention is characterized in that the hazardous substance insolubilizing agent of the present invention is added to waste water.
 本発明の有害物質の不溶化剤及び有害物質の不溶化方法によれば、土壌や灰、スラグに含まれるフッ素、ホウ素等の溶出抑制を確実に、経済的に行うことが可能であり、さらに、処理した土壌、灰やスラグを安全にリサイクル利用することが可能である。 According to the hazardous substance insolubilizing agent and the hazardous substance insolubilization method of the present invention, it is possible to reliably and economically suppress elution of fluorine, boron, etc. contained in soil, ash, slag, and further, treatment Soil, ash and slag can be safely recycled.
 また、本発明の水処理方法によれば排水中に含まれるフッ素、ホウ素等を確実に、経済的に、不溶化して除去することが可能である。 Further, according to the water treatment method of the present invention, fluorine, boron, etc. contained in the waste water can be reliably and economically insolubilized and removed.
 以下、本発明の有害物質の不溶化剤、有害物質の不溶化方法及び水処理方法について詳細に説明する。 Hereinafter, the hazardous substance insolubilizer, the hazardous substance insolubilization method and the water treatment method of the present invention will be described in detail.
 本発明の有害物質の不溶化剤は、アルミニウム含有鉱物粉末、鉱石粉末を含有するものである。本発明に用いられるアルミニウム含有鉱石、鉱物としては、明礬石、ボーキサイト、赤土、カオナイト、ハロイサイト、ディッカイト、メタカオリン、アロフェン、焼成火山灰等がある。 The harmful substance insolubilizing agent of the present invention contains aluminum-containing mineral powder and ore powder. Examples of the aluminum-containing ore and mineral used in the present invention include alumite, bauxite, red clay, kaolinite, halloysite, dickite, metakaolin, allophane, calcined volcanic ash and the like.
 ボーキサイト(bauxite)はアルミニウムの工業原料であり、ギブス石(gibbsite、Al(OH))、ベーム石(boehmite、AlO(OH))、ダイアスポア(diaspore、AlOOH)などの水酸化アルミニウム鉱物の混合物である。 Bauxite is an industrial raw material for aluminum and is a mixture of aluminum hydroxide minerals such as gibbsite, Al (OH) 3 , boehmite, AlO (OH), diaspore, AlOOH, etc. is there.
 赤土は文字どおり赤い土の意味であるが、この中には、我が国の沖縄地域の国頭マージ、島尻マージや熱帯地域のラテライトなどのアルミニウムを高含有するものが多くある。本発明においては、ボーキサイトや赤土の微粉末を用いるのが好ましく、また温度600~900℃で焼成して用いてもよい。 ¡Red soil literally means red soil, but many of these contain a high amount of aluminum, such as Kunigami merger, Shimajiri merger, and laterite in tropical regions. In the present invention, bauxite or red clay fine powder is preferably used, and may be used after firing at a temperature of 600 to 900 ° C.
 カオリナイト(AlSi(OH))、ハロイサイト((AlSi(OH))・nHO)、ディッカイト(AlSi(OH))は、いわゆるカオリン粘土鉱物であり、メタカオリンは、カオリン粘土鉱物を温度560~950℃で焼成して得られる非晶質な粘土鉱物である。 Kaolinite (Al 2 Si 2 O 5 (OH) 4 ), halloysite ((Al 2 Si 2 O 5 (OH) 4 ) · nH 2 O), dickite (Al 2 Si 2 O 5 (OH) 4 ) A so-called kaolin clay mineral, metakaolin is an amorphous clay mineral obtained by firing kaolin clay mineral at a temperature of 560 to 950 ° C.
 本発明では、カオリン粘土鉱物のなかでもアルミニウムを高含有するものを前記温度範囲で焼成したものを用いると良好な効果が得られる。このような粘土鉱物の代表的なものとして、我が国では古くから耐火粘土として用いられていた岩手粘土、大村粘土、筑豊粘土、また、現在の可塑性粘土の代表である木節粘土、蛙目粘土などが挙げられる。また、国外ではニュージーランドカオリン、ジョージアカオリン、インドネシアカオリン、マレーシアカオリン、中国カオリンなどが挙げられる。さらに本発明では、これらの粘土鉱物の水ひ廃棄物等についても同様に用いることが可能である。 In the present invention, a good effect can be obtained by using a kaolin clay mineral that has been baked at a high temperature within the above temperature range. Representative examples of such clay minerals include Iwate clay, Omura clay, Chikuho clay, which have been used as fireproof clay in Japan for a long time, and Kibushi clay and Sasame clay, which are representative of current plastic clays. Is mentioned. In addition, there are New Zealand kaolin, Georgia kaolin, Indonesia kaolin, Malaysia kaolin, China kaolin and so on. Further, in the present invention, these clay mineral hydrated wastes and the like can be used in the same manner.
 また、アロフェンは火山灰起源の非晶質なシリカ・アルミナ系粘土鉱物で、主成分の組成はAl・SiO・nHOとして表される。アロフェンは例えば関東ローム、埼玉県の飯能粘土、宮城県の有壁粘土などのようにハロイサイト粘土などと共存する形で火山灰中に含まれることが多い。このような火山灰の多くは、アルミニウム成分を多く含有する特徴をもっている。本発明においては、このアロフェンを多孔体として用いるのではなく、温度500~950℃で焼成して非晶質体に変化させ用いる。 Further, allophane amorphous silica-alumina clay mineral ash origin, the composition of the main component is represented as Al 2 O 3 · SiO 2 · nH 2 O. Allophane is often contained in volcanic ash in the form of coexisting with halloysite clay, such as Kanto Loam, Hanno clay in Saitama prefecture, and walled clay in Miyagi prefecture. Many of such volcanic ash has a feature of containing a lot of aluminum components. In the present invention, this allophane is not used as a porous material, but is used by changing it to an amorphous material by baking at a temperature of 500 to 950 ° C.
 これらのアルミ含有原料のなかでは、明礬石粉末や前記のカオリン粘土鉱物を焼成して得られるメタカオリン、ボーキサイト、赤土、焼成火山灰などを好適に用いることができる。また、ここでボーキサイトや赤土は前記のように焼成して用いてもよい。 Among these aluminum-containing raw materials, metakaolin, bauxite, red clay, calcined volcanic ash and the like obtained by calcining alumite powder or the above kaolin clay mineral can be suitably used. Here, bauxite and red clay may be used after being fired as described above.
 本発明は、このように地表に豊富に存在する天然鉱物のひとつである明礬石や粘土鉱物、火山灰等を有効活用し、ホウ素、フッ素その他の有害物質を含有する土壌、焼却灰、スラグ等の処理や排水の処理を行うものであり、極めて環境負荷の低い環境浄化方法である。本発明に用いる明礬石粉末やメタカオリン、ボーキサイト、赤土、焼成火山灰などは反応性を高めるため、0.5mm以下、好ましくは0.1mm以下の粒度のものを使用することが好ましい。 The present invention effectively utilizes alumite, clay minerals, volcanic ash, etc., which are one of the natural minerals abundant on the surface of the earth, such as soil containing boron, fluorine and other harmful substances, incineration ash, slag, etc. It is an environmental purification method that performs treatment and wastewater treatment and has a very low environmental impact. Alumite powder, metakaolin, bauxite, red clay, calcined volcanic ash and the like used in the present invention are preferably 0.5 mm or less, preferably 0.1 mm or less in order to increase the reactivity.
 明礬石(Alunite)はカリウム、硫黄、アルミニウムなどを含有する硫酸塩鉱物の1種であり化学式ではKAl(SO(OH)と表される。現在日本国内で採鉱されているこの鉱石は石英分を含み、その代表的組成はSiO:45~60質量%、KO:3~9質量%、SO:20~30質量%、Al:20~30質量%の特性をもっている。明礬石はこの組成が示すように、アルミニウム成分を多く含むが、水への溶解度は低く、一般的な水処理剤に用いる硫酸アルミニウムの特性とはかなり異なっている。 Alunite is a kind of sulfate mineral containing potassium, sulfur, aluminum and the like, and is expressed as KAl 3 (SO 4 ) 2 (OH) 6 in the chemical formula. This ore currently mined in Japan contains quartz, and its typical composition is SiO 2 : 45-60% by mass, K 2 O: 3-9% by mass, SO 3 : 20-30% by mass, Al 2 O 3 : 20-30% by mass. As shown by this composition, alunite contains a large amount of aluminum component, but its solubility in water is low, which is quite different from the characteristics of aluminum sulfate used in general water treatment agents.
 明礬石は日本国内にもアジア諸国にも多く分布する天然鉱物であるが、現在、日本国内では一部をコンクリート混和剤等の用途で利用している以外は、ほとんど工業的に利用が行われていない資源であり、原料の確保の面で経済性に優れる利点ももっている。 Meteorite is a natural mineral that is widely distributed both in Japan and in Asian countries. Currently, it is mostly used industrially in Japan, except for a part of it used for concrete admixture. It is an unresourced resource and has the advantage of being economical in terms of securing raw materials.
 この鉱物グループには、このほかソーダ明礬石(natroalunite:NaAl(SO4)(OH))、アンモニウム明礬石(ammonioalunite:(NH)Al(SO(OH))、南石(minamiite:(Na,Ca,K,□)Al(SO(OH))、フーアン石(huangite:Ca□Al(SO(OH)12)、ワールティアライト(walthierite:BaAl(SO(OH)12)などがあり、ここに示すAlを含有するものは、本発明の不溶化剤の組成物として利用することができると思われるが、これらの埋蔵量は少ない。 This mineral group also includes soda alite (Natroalunite: NaAl 3 (SO 4) 2 (OH) 6 ), ammonium alumite (ammonioalunite: (NH 4 ) Al 3 (SO 4 ) 2 (OH) 6 ), south Stone (minamiite: (Na, Ca, K, □) Al 3 (SO 4 ) 2 (OH) 6 ), Huangite (Ca □ Al 6 (SO 4 ) 4 (OH) 12 ), wartierite ( walthierite: BaAl 6 (SO 4 ) 4 (OH) 12 ) and the like, and those containing Al shown here are considered to be usable as the composition of the insolubilizer of the present invention. The amount is small.
 明礬石粉末のみを土壌や灰や排水に添加した場合においても、以下に示す実施例のようにフッ素の除去効果を得ることができる。さらにマグネシウム化合物、カルシウム化合物と組み合わせて使用することで、より優れたフッ素、ホウ素の除去効果を得ることが出来る。 Even when only alumite powder is added to soil, ash, or wastewater, the effect of removing fluorine can be obtained as in the following examples. Furthermore, by using in combination with a magnesium compound and a calcium compound, a more excellent fluorine and boron removal effect can be obtained.
 上記のマグネシウム化合物としては軽焼マグネシア、軽焼ドロマイト、硫酸マグネシウム、塩化マグネシウム、カルシウム化合物としては、生石灰、消石灰、軽焼ドロマイト、塩化カルシウム、二水石膏、半水石膏を挙げることができ、これらの2種以上を組み合わせて用いることができる。 Examples of the magnesium compound include light calcined magnesia, light calcined dolomite, magnesium sulfate, magnesium chloride, and calcium compound. Examples of the calcium compound include quick lime, slaked lime, light calcined dolomite, calcium chloride, dihydrate gypsum, and hemihydrate gypsum. Two or more of these can be used in combination.
 本発明に用いられるマグネシウム化合物である軽焼マグネシア(酸化マグネシウム)は、天然鉱物であるマグネサイト(炭酸マグネシウム)を700~800℃で焼成したもの、ブルーサイト(水酸化マグネシウム)を300~800℃で焼成したものが好適である。なお、マグネサイト、ブルーサイトを1000℃を超える高温で焼成したものは、重焼マグネシウムといわれ反応性が低い。また、本発明にはドロマイトを900~1300℃、好ましくは900~1000℃で焼成した軽焼ドロマイトをマグネシウム及びカルシウムを含む原料として用いることができる。これらの原料は反応性を高めるため、0.5mm以下、好ましくは0.1mm以下に粉砕した粉末として使用することが好ましい。その他の硫酸マグネシウム、塩化マグネシウムは化学的に合成された工業原料である。 Light calcined magnesia (magnesium oxide), which is a magnesium compound used in the present invention, is obtained by firing natural mineral magnesite (magnesium carbonate) at 700 to 800 ° C., and brucite (magnesium hydroxide) at 300 to 800 ° C. What was baked with is suitable. In addition, what baked magnesite and brucite at the high temperature over 1000 degreeC is called heavy burned magnesium, and its reactivity is low. In the present invention, light-burned dolomite obtained by baking dolomite at 900 to 1300 ° C., preferably 900 to 1000 ° C., can be used as a raw material containing magnesium and calcium. In order to increase the reactivity, these raw materials are preferably used as powders pulverized to 0.5 mm or less, preferably 0.1 mm or less. Other magnesium sulfate and magnesium chloride are chemically synthesized industrial raw materials.
 また、本発明において使用するカルシウム原料である生石灰又は消石灰は、石灰石(炭酸カルシウム)を900℃以上で焼成してつくられ、また、消石灰は生石灰を水と反応させてつくられる。生石灰、消石灰は最も安価なアルカリ剤であり、日本国内にも多く産出する資源である。また、前述のように本発明には軽焼ドロマイトをカルシウムを含む原料として用いることができる。これらの原料は反応性を高めるため、0.5mm以下、好ましくは0.1mm以下に粉砕した粉末として使用することが好ましい。その他に本発明に使用するカルシウム原料として塩化カルシウム、二水石膏、半水石膏を挙げることができ、これらは工業製品または工業的プロセスで発生した原料などである。 Further, quick lime or slaked lime, which is a calcium raw material used in the present invention, is made by baking limestone (calcium carbonate) at 900 ° C. or higher, and slaked lime is made by reacting quick lime with water. Quicklime and slaked lime are the cheapest alkaline agents, and are resources that are often produced in Japan. In addition, as described above, light-burned dolomite can be used as a raw material containing calcium in the present invention. In order to increase the reactivity, these raw materials are preferably used as powders pulverized to 0.5 mm or less, preferably 0.1 mm or less. In addition, calcium chloride, dihydrate gypsum, and hemihydrate gypsum can be cited as calcium raw materials used in the present invention, and these are raw materials generated by industrial products or industrial processes.
 これらの原料の使用方法としては、pHが中性に近い汚染土、焼却灰や排水の処理においては、軽焼マグネシア、生石灰、消石灰、軽焼ドロマイトなどを用い、また石灰分を多く含むpH12以上の高アルカリ性の汚染土壌、スラグ、焼却灰、排水の処理おいては、酸性原料であるマグネシウム、カルシウムの塩化物、硫酸化合物を好適に用いることができる。 As a method of using these raw materials, in the treatment of contaminated soil, incineration ash and waste water with a pH close to neutral, lightly burned magnesia, quick lime, slaked lime, lightly burned dolomite, etc., and a pH of 12 or more containing a lot of lime In the treatment of highly alkaline contaminated soil, slag, incinerated ash, and wastewater, magnesium, calcium chloride, and sulfuric acid compounds, which are acidic raw materials, can be suitably used.
 本発明の不溶化剤においては、上記のマグネシウム化合物、カルシウム化合物を添加することにより、土壌、灰、スラグを堅固に固化、減容することがで、リサイクル材料、地盤材料として好適に用いることができる。さらに、本発明の不溶化剤は無機剤材料で構成されているため、長期にわたって安定である。 In the insolubilizing agent of the present invention, by adding the above-mentioned magnesium compound and calcium compound, soil, ash and slag can be solidified and reduced in volume, and can be suitably used as a recycled material and a ground material. . Furthermore, since the insolubilizing agent of the present invention is composed of an inorganic material, it is stable over a long period of time.
 本発明の有害物質の不溶化剤は、さらに酸性物質を含有してもよい。この酸性物質の配合によって、pH制御の自由度が増し、本発明の有害物質の不溶化剤を用いて被処理物のpHを以下に述べるような好ましい範囲に容易に制御することができる。 The harmful substance insolubilizing agent of the present invention may further contain an acidic substance. By adding this acidic substance, the degree of freedom of pH control is increased, and the pH of the object to be treated can be easily controlled within a preferable range as described below using the hazardous substance insolubilizing agent of the present invention.
 ここで、酸性物質としては、硫酸、塩酸、酢酸、塩化アルミニウム、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)、水酸化アルミニウム、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、ポリ硫酸第二鉄、水酸化鉄(II、III)を用いることができる。これらのうち1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Here, as acidic substances, sulfuric acid, hydrochloric acid, acetic acid, aluminum chloride, aluminum sulfate, polyaluminum chloride (PAC), aluminum hydroxide, ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride Poly ferric sulfate and iron hydroxide (II, III) can be used. Among these, only 1 type may be used and 2 or more types may be used in combination.
 本発明のフッ素、ホウ素の不溶化剤は、珪酸ナトリウムを含有してもよい。珪酸ナトリウム原料としては、水ガラス、シリカゾル、粉末珪酸ソーダ等が挙げられ、珪酸ナトリウムを含有することで、本発明の不溶化剤によって固化された処理材の強度発現を高めることができ、これにより不溶化効果が向上し、また、好適にリサイクル利用を促進することができる。 The fluorine and boron insolubilizers of the present invention may contain sodium silicate. Examples of the sodium silicate raw material include water glass, silica sol, and powdered sodium silicate. By containing sodium silicate, the strength expression of the treatment material solidified by the insolubilizing agent of the present invention can be increased, thereby insolubilizing. The effect is improved and recycling can be preferably promoted.
 すなわち、珪酸ナトリウムは、Ca、Mg、Al、Baなどの多価金属イオンと反応して、不溶性の珪酸金属塩水和物や珪酸を同時に生成してゲル化する。例えば、多価金属イオンとしてCaを用いた場合、化1の反応によりゲル化する。なお、この反応においてSiOも同時に生成する。この機構により、不溶化処理剤の強度特性は向上し、また処理剤に撥水性を付与することができる。 That is, sodium silicate reacts with polyvalent metal ions such as Ca, Mg, Al, and Ba to simultaneously produce insoluble silicate metal salt hydrate and silicic acid to gel. For example, when Ca is used as the polyvalent metal ion, it is gelled by the reaction of Chemical Formula 1. In this reaction, SiO 2 is also generated at the same time. By this mechanism, the strength property of the insolubilizing agent is improved, and water repellency can be imparted to the treating agent.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明の有害物質の不溶化剤は、さらに遅延剤を含有してもよい。この遅延剤は、混練処理に必要な時間、混練後の運搬、埋め立てなどの処理に必要な時間を確保するために、固化反応を遅延させる目的で用いられる。遅延剤の添加量は、不溶化剤成分合計質量の10質量部以下が好ましい。 The hazardous substance insolubilizing agent of the present invention may further contain a retarder. This retarder is used for the purpose of delaying the solidification reaction in order to secure the time necessary for the kneading treatment and the time necessary for the transportation after the kneading, landfilling and the like. The addition amount of the retarder is preferably 10 parts by mass or less of the total mass of the insolubilizer component.
 本発明の有害物質の不溶化剤をフッ素、ホウ素で汚染された土壌、製紙スラッジ、下水汚泥、石炭等の飛灰及び燃え殻、高炉、ガス化炉等のスラグ、ガス化炉のスラグ等の焼却灰、鉄鉱系スラグ、鋳物砂などの被処理物に加え、加水して混練し、湿潤状態で数日間養生を行うことで、被処理物を堅固に固め、処理した土壌や灰の飛散や解砕を防ぎ、透水性を低下させることにより、有害物の溶出、流出を防ぐ効果を発揮する。さらに、本発明の有害物質不溶化剤は以下に述べるように有害物質の溶出抑制機能を有する組成物を含有するため、優れた溶出低減効果をもつと考えられる。 The insolubilizing agent for harmful substances of the present invention is soil contaminated with fluorine and boron, paper sludge, sewage sludge, fly ash and coal such as coal, slag such as blast furnace and gasifier, incineration ash such as slag of gasifier In addition to the object to be treated, such as iron ore slag, foundry sand, etc., add water, knead, and cure for several days in a wet state to solidify the object firmly and to disperse and disintegrate the treated soil and ash Prevents the elution and outflow of harmful substances by reducing water permeability. Furthermore, since the harmful substance insolubilizing agent of the present invention contains a composition having a function of suppressing the dissolution of harmful substances as described below, it is considered to have an excellent elution reduction effect.
 ここで、本発明の不溶化剤によるフッ素、ホウ素の不溶化の機構は、(1)マグネシウムイオン、カルシウムイオンとホウ酸、フッ素イオンとの化合物の形成、(2)さらに、明礬石やメタカオリン、ボーキサイト等に含まれるアルミニウム成分、珪酸成分、硫酸成分とマグネシウム、カルシウムとの難溶性化合物形成に伴うホウ素、フッ素の固定化、によるものと考えられる。この原理は水処理法における凝集分離法に極めて近く、それゆえ、本発明の不溶化剤は水処理剤としても好適に利用される。 Here, the mechanism of insolubilization of fluorine and boron by the insolubilizing agent of the present invention is as follows: (1) Formation of a compound of magnesium ion, calcium ion and boric acid, fluorine ion, (2) Further, alunite, metakaolin, bauxite, etc. This is considered to be due to the fixation of boron and fluorine accompanying the formation of a sparingly soluble compound of an aluminum component, a silicic acid component, a sulfuric acid component and magnesium and calcium. This principle is very close to the coagulation separation method in the water treatment method, and therefore the insolubilizing agent of the present invention is also suitably used as a water treatment agent.
 ところで、ホウ素は、濃度やpHにより形態が変化することが知られている。ホウ素は、比較的濃度が低い場合は、アルカリ性の領域では次式のように解離が進み、pH10~12の範囲ではほとんどが溶液中でイオン化しB(OH) の形態で存在する。また、pH8~9以下ではほとんど解離せずHBOの形態となる。 By the way, it is known that the form of boron changes depending on the concentration and pH. When the concentration of boron is relatively low, dissociation proceeds as shown in the following formula in the alkaline region, and in the range of pH 10 to 12, most of it is ionized in the solution and exists in the form of B (OH) 4 . Further, at a pH of 8 to 9 or less, it hardly dissociates and becomes H 3 BO 3 form.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、ホウ素は0.025M(およそ300mg/L)以上の濃度、pH6~11の範囲で、B(OH) 、B(OH) 、B(OH) などの形態となる。 Boron has a concentration of 0.025 M (approximately 300 mg / L) or more and a pH of 6 to 11, and B 3 O 3 (OH) 4 , B 5 O 5 (OH) 4 , B 7 O 7 (OH ) 4 - etc.
 したがって、効率よくホウ素を固定するためにはpHを制御し、ホウ素を固定するのに効率の良いイオン化した状態に変化させることが重要である。 Therefore, in order to immobilize boron efficiently, it is important to control the pH and change to an ionized state that is efficient for immobilizing boron.
 本発明の有害物質の不溶化剤においては、明礬石とメタカオリン、ボーキサイト等のアルミニウム含有原料、生石灰、消石灰、軽焼マグネシア、軽焼ドロマイト、酸性物質を組み合わせて使用することで、有害物質の処理効果を得るとともに、被処理物を目的とするpHに制御することができる。 In the hazardous substance insolubilizing agent of the present invention, by using a combination of alunite, metakaolin, aluminum-containing raw materials such as bauxite, quick lime, slaked lime, light burned magnesia, light burned dolomite, acidic substances, the treatment effect of harmful substances In addition, it is possible to control the object to be processed to a target pH.
 本発明の有害物質の不溶化剤を用いてホウ素の処理を行う場合においては、明礬石、メタカオリン等のアルミ含有原料と、生石灰、消石灰、軽焼マグネシア、軽焼ドロマイト、酸性物質を加えて処理後の土壌・灰のpHを10.0~12.5の範囲に、pHが高い領域では水酸化物イオンが競合イオンとなるため、好ましくは11.0~12.0の範囲にコントロールすることで、ホウ素を効率よく固定することができる。これに対し、軽焼マグネシアのみを添加した場合には、処理対象のpHは概ね10以下の条件となり、前述のホウ素固定のために望ましいpH範囲とすることができない。 In the case of processing boron using the hazardous substance insolubilizing agent of the present invention, after adding aluminum-containing raw materials such as alunite, metakaolin, quicklime, slaked lime, light-burned magnesia, light-burning dolomite, and acidic substances The pH of soil and ash is in the range of 10.0 to 12.5, and hydroxide ions are competing ions in the high pH range. Therefore, the pH is preferably controlled in the range of 11.0 to 12.0. Boron can be efficiently fixed. On the other hand, when only light-burned magnesia is added, the pH of the object to be treated is approximately 10 or less, and it cannot be set to a desirable pH range for the above-described boron fixation.
 また、本発明の有害物質の不溶化剤を用いてフッ素の不溶化処理を効率よく行うためには不溶化剤を添加しpHを9~12、より好ましくはpH9~11程度の範囲に制御することが好ましい。 Further, in order to efficiently perform the insolubilization treatment of fluorine using the harmful substance insolubilizing agent of the present invention, it is preferable to add an insolubilizing agent and control the pH within the range of about 9 to 12, more preferably about pH 9 to 11. .
 また、本発明の本発明の有害物質不溶化剤は、これらの有害物質の優れた固定能力を有するため、土壌、灰、スラグの固形物分に対して10質量%以下の添加で、環境基準以下まで溶出抑制を行うことが可能である。 Moreover, since the hazardous substance insolubilizing agent of the present invention of the present invention has an excellent fixing ability of these harmful substances, the addition of 10% by mass or less with respect to the solid matter of soil, ash, slag, and the environmental standard or less It is possible to suppress elution.
 なお、本発明の有害物質の不溶化剤を用いて、有害物質を確実に不溶化するためには、不溶化剤と被処理物を十分に混練することが望ましい。本不溶化剤は微細な無機粒子で構成されるため容易に攪拌・混練を行うことができるため、特殊な混練方法は必要としない。実際の処理には、ミキサーを用いた混練や、重機による攪拌混合処理などにより混練を行う方法が用いられる。例えばスタビライザー、ブルドーザ、バックホウ、自走式土壌改良機、高圧噴射法を用いた混練処理を行うことができ、さらには、ベルトコンベヤーと重力式混合装置の組み合わせや、回転打撃による撹拌方法など公知のいかなる混練方法を使用してもよい。 In addition, in order to reliably insolubilize harmful substances using the hazardous substance insolubilizer of the present invention, it is desirable to sufficiently knead the insolubilizer and the object to be treated. Since the insolubilizing agent is composed of fine inorganic particles and can be easily stirred and kneaded, no special kneading method is required. For the actual treatment, a method of kneading by a kneading using a mixer or a stirring and mixing treatment using a heavy machine is used. For example, a stabilizer, a bulldozer, a backhoe, a self-propelled soil conditioner, a kneading process using a high-pressure spray method can be performed, and further, a combination of a belt conveyor and a gravity-type mixing device, a stirring method by rotary impact, etc. Any kneading method may be used.
 本発明の有害物質不溶化剤は、汚染土壌や灰を堅固に固め、処理した土壌や灰の飛散や解砕を防ぎ、さらに透水性を低下させることにより、有害物の溶出、流出を防ぐ効果を発揮する。したがって、本発明の有害物質の不溶化剤を用いることによって、重金属を含有する石炭灰や焼却灰等と混合して、安全に埋め立て処理を行うことができ、さらに、例えば、粒状物に加工して道路路盤材料、裏込め材として安全にリサイクル利用を行うことができる。そして、本発明の有害物質の不溶化剤は、固化強度が従来の技術よりも大きいため、地盤強度を容易に確保することができ、また、長期の不溶化効果が期待できる。 The hazardous substance insolubilizing agent of the present invention has the effect of preventing the elution and outflow of harmful substances by solidifying the contaminated soil and ash, preventing the treated soil and ash from scattering and crushing, and further reducing the water permeability. Demonstrate. Therefore, by using the hazardous substance insolubilizing agent of the present invention, it can be mixed with coal ash or incinerated ash containing heavy metals, and can be safely landfilled. It can be safely recycled as roadbed material and backfill material. The harmful substance insolubilizing agent of the present invention has a solidification strength higher than that of the conventional technology, so that the ground strength can be easily secured and a long-term insolubilizing effect can be expected.
 以上のように、本発明の有害物質の不溶化方法は、有害物質を難溶性の形態として不溶化剤組成物に固定するメカニズムを利用するものであり、これは水処理法における凝集分離法の概念に極めて近い。このため本発明の不溶化剤は水処理剤としても好適に用いることができる。 As described above, the method for insolubilizing harmful substances of the present invention utilizes a mechanism for fixing harmful substances to the insolubilizing agent composition in a hardly soluble form, which is a concept of the coagulation separation method in the water treatment method. Very close. For this reason, the insolubilizer of this invention can be used suitably also as a water treatment agent.
 本発明の有害物質の不溶化剤を水処理剤として用いる場合には、本発明の不溶化剤をフッ素やホウ素等を含む排水に必要量添加し、通常30分から数時間混合撹拌し、沈殿物を形成させ、さらに固液分離を行うことで排水処理を行う。この場合フッ素やホウ素等の有害物質は水中から移動し沈殿物に固定されることにより、除去が行われる。 When the hazardous substance insolubilizing agent of the present invention is used as a water treatment agent, the required amount of the insolubilizing agent of the present invention is added to waste water containing fluorine, boron, etc., and usually mixed and stirred for 30 minutes to several hours to form a precipitate. In addition, wastewater treatment is performed by further performing solid-liquid separation. In this case, harmful substances such as fluorine and boron are removed by moving from the water and being fixed to the precipitate.
 この本発明の水処理方法は、凝集沈殿を形成する原理を利用するものであるため、シックナーなどの沈殿槽を用いて排水と汚泥を分離する一般的な方法により実施することができるが、MF膜などの膜処理方法と組み合わせて実施することもできる。さらに、本発明の有害物質の不溶化剤にポリアクリル酸などに代表される高分子業種剤と組み合わせることで、さらに水処理効果を向上させることができる。 Since the water treatment method of the present invention uses the principle of forming a coagulation sediment, it can be implemented by a general method of separating waste water and sludge using a sedimentation tank such as a thickener. It can also be implemented in combination with a film processing method such as a film. Furthermore, the water treatment effect can be further improved by combining the harmful substance insolubilizing agent of the present invention with a polymer business agent represented by polyacrylic acid or the like.
 なお、本発明は上記の実施例に限定されるものでなく、本発明の要旨の範囲内において種々の変形実施が可能である。 In addition, this invention is not limited to said Example, A various deformation | transformation implementation is possible within the range of the summary of this invention.
 以下、具体例に基づき、さらに詳細に説明する。 Hereinafter, more detailed description will be given based on specific examples.
 土壌にフッ化ナトリウムを添加し、フッ素含有量を100mg/kgに調整した汚染土を模擬的に作成し、これを湿潤に保ったまま3日間、養生した。 ナ ト リ ウ ム Contaminated soil was prepared by adding sodium fluoride to the soil and adjusting the fluorine content to 100 mg / kg, and was cured for 3 days while keeping it moist.
 この汚染土壌に表1に示す不溶化剤と水を添加し、モルタルミキサーにより3分混練後、20℃の恒温で1週間養生を行った。各サンプルを用いて、平成3年環境省告示第46号に示す方法に従って溶出試験を実施した。この結果を表2に示す。 The insolubilizing agent and water shown in Table 1 were added to this contaminated soil, kneaded with a mortar mixer for 3 minutes, and then cured at a constant temperature of 20 ° C. for 1 week. Using each sample, a dissolution test was performed according to the method shown in Ministry of the Environment Notification No. 46 in 1991. The results are shown in Table 2.
 不溶化剤を添加しない土壌、フッ素の一般的な処理剤である生石灰を用いた処理土のフッ素溶出濃度は土壌汚染対策法溶出量基準値0.8mg/Lを超過した結果となっている。これに対して本発明の不溶化剤組成、すなわち明礬石粉末、これと軽焼マグネシア、生石灰を組成とする不溶化剤を添加した実施例においてはいずれも基準値以下の値までフッ素の溶出を低減できている。 Fluorine elution concentration in soil without added insolubilizer and treated soil using quick lime, which is a general treatment agent for fluorine, exceeded the standard value of 0.8 mg / L for soil pollution countermeasures. On the other hand, in the examples where the insolubilizer composition of the present invention, that is, an alumite powder, a light calcined magnesia, and an insolubilizer composed of quicklime, were added, the elution of fluorine could be reduced to a value below the reference value. ing.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ここで、明礬石粉末としては昭和KDE株式会社製(SiO:45.4%、Al:21.7%、Fe:0.08%、SO:21.8%、KO:4.4%、粒径-100メシュ)、軽焼マグネシアは中国産軽焼マグネシア(MgO:92.8%、CaO:2.0%、粒度325メッシュ通過95%)、生石灰は上田石灰製造株式会社製(CaO:95.3%、SiO:0.7%、Al:0.3%、Fe:0.1%、MgO:0.8%、ig.loss:2.7%、粒度-0.5mmふるい通過97%)を用いた。また、フッ化ナトリウムは関東化学株式会社製の試薬を用いた。 Here, as alumite powder, manufactured by Showa KDE Co., Ltd. (SiO 2 : 45.4%, Al 2 O 3 : 21.7%, Fe 2 O 3 : 0.08%, SO 3 : 21.8%, K 2 O: 4.4%, particle size −100 mesh), light-burned magnesia is Chinese light-burned magnesia (MgO: 92.8%, CaO: 2.0%, particle size 325 mesh passing 95%), quick lime is Ueda Lime Manufacturing Co., Ltd. (CaO: 95.3%, SiO 2 : 0.7%, Al 2 O 3 : 0.3%, Fe 2 O 3 : 0.1%, MgO: 0.8%, ig .Loss: 2.7%, particle size-97% passing through 0.5 mm sieve). Moreover, the reagent by Kanto Chemical Co., Ltd. was used for sodium fluoride.
 フッ素を1,300mg/kg含有する廃石膏ボード(粒径-1mm程度)に表3の不溶化剤を添加し、水を加えてモルタルミキサーにより3分混練後、室温で1週間養生を行った。各不溶化試験サンプルを用いて、平成3年環境省告示第46号に示す方法に従って溶出試験を実施した。この結果を表4に示す。 To the waste gypsum board (particle size: about 1 mm) containing 1,300 mg / kg of fluorine, the insolubilizing agent shown in Table 3 was added, water was added and the mixture was kneaded with a mortar mixer for 3 minutes, and then cured at room temperature for 1 week. Using each insolubilization test sample, a dissolution test was performed according to the method shown in Ministry of the Environment Notification No. 46 in 1991. The results are shown in Table 4.
 不溶化剤を添加しない廃石膏ボードの溶出量は4.8mg/Lであり、また、フッ素の一般的な処理剤である石灰の混練処理により溶出量は、ほぼ倍まで増大した。本発明の不溶化剤はこれより優れた効果を示し、実施例4では石灰を用いてもフッ素の溶出量は半減し、実施例5~8においては環境基準値(溶出量0.8mg/L)以下までフッ素の溶出を抑制することができた。また、ボーキサイト、メタカオリンを用いた実施例では、より少ない添加量でフッ素の溶出量を基準値以下まで抑制を行うことができた。 The elution amount of waste gypsum board to which no insolubilizing agent was added was 4.8 mg / L, and the elution amount increased almost twice as a result of kneading of lime, which is a general treatment agent for fluorine. The insolubilizing agent of the present invention shows a better effect than this, and even if lime is used in Example 4, the amount of fluorine eluted is halved. In Examples 5 to 8, the environmental standard value (elution amount 0.8 mg / L) The elution of fluorine could be suppressed to the following. Moreover, in the Example using bauxite and metakaolin, it was possible to suppress the elution amount of fluorine to a reference value or less with a smaller addition amount.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 ここにメタカオリンはニュージーランド製カオリン粘土(SiO:48.0%、Al:37.5%、Fe:0.3%)を800℃で1時間焼成したものを用いた。また、ボーキサイトは中国製(組成:Al:85%以上、Fe:2%以下、粒度:-200メッシュ)を、消石灰は上田石灰製造株式会社製、特号消石灰(CaO:72.5%以上、不純物3%以下、粒度-0.3mm)を用いた。その他のものは前記のものと同じものを用いた。 Here, metakaolin used was a New Zealand kaolin clay (SiO 2 : 48.0%, Al 2 O 3 : 37.5%, Fe 2 O 3 : 0.3%) fired at 800 ° C for 1 hour. Bauxite is made in China (composition: Al 2 O 3 : 85% or more, Fe 2 O 3 : 2% or less, particle size: -200 mesh), slaked lime is made by Ueda Lime Manufacturing Co., Ltd., special name slaked lime (CaO: 72.5% or more, impurities 3% or less, particle size -0.3 mm) were used. Others were the same as those described above.
 土壌にホウ酸ナトリウムを添加し、ホウ素含有量を200mg/kgに調整した汚染土を模擬的に作成し、これを湿潤に保ったまま3日間、養生した。 The soil soil was prepared by adding sodium borate to the soil and adjusting the boron content to 200 mg / kg, and was cured for 3 days while keeping it moist.
 この汚染土壌に表5に示す不溶化剤と水を添加し、モルタルミキサーにより3分混練後、20℃の恒温で1週間養生を行った。各サンプルを用いて、平成3年環境省告示第46号に示す方法に従って溶出試験を実施した。この結果を表8に示す。 The insolubilizing agent and water shown in Table 5 were added to this contaminated soil, kneaded with a mortar mixer for 3 minutes, and then cured at a constant temperature of 20 ° C. for 1 week. Using each sample, a dissolution test was performed according to the method shown in Ministry of the Environment Notification No. 46 in 1991. The results are shown in Table 8.
 不溶化剤を添加しない土壌のホウ素の溶出量は16.8と大きな溶出を示すが、実施例9~11のように本発明の不溶化剤組成物を添加すると基準値以下まで溶出量を低減することができる。これに対して軽焼マグネシア、生石灰単体で処理を行った比較例においてはホウ素の溶出低減効果は認められるものの、本発明の組成物と比較してその効果は小さい。 The amount of boron dissolved in the soil without the addition of the insolubilizer is 16.8, showing a large amount of elution. However, when the insolubilizer composition of the present invention is added as in Examples 9 to 11, the amount of dissolution is reduced to below the reference value. Can do. On the other hand, in the comparative example which processed with light-burning magnesia and quicklime simple substance, although the boron elution reduction effect is recognized, the effect is small compared with the composition of this invention.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 試験に用いた原料は前記のものと同じものを使用した。また、ホウ酸ナトリウムは関東化学製の試薬を用いた。 The raw materials used in the test were the same as those described above. Moreover, the reagent made from Kanto Chemical was used for sodium borate.
 本発明の有害物質の不溶化剤を水処理剤として用いて排水処理を行った。 The wastewater treatment was performed using the hazardous substance insolubilizer of the present invention as a water treatment agent.
 フッ素濃度120mg/L、pH3.1の工場廃水に表7の組成の不溶化剤を添加し、50分攪拌し、10分静置後、上澄み液のフッ素濃度を電極式イオン濃度計により測定した。 The insoluble agent having the composition shown in Table 7 was added to factory wastewater having a fluorine concentration of 120 mg / L and pH 3.1, stirred for 50 minutes, allowed to stand for 10 minutes, and then the fluorine concentration of the supernatant was measured with an electrode ion concentration meter.
 処理後のフッ素濃度は元の工場排水から大きく低下し、表7のように海域への排水基準値(15mg/L)以下の濃度となった。この試験結果が示すように本発明の不溶化剤組成は、フッ素の高い処理能力を有していた。なお、不溶化剤の原料は前記と同じものを使用した。 The fluorine concentration after treatment was greatly reduced from the original factory effluent, and the concentration was below the standard value for effluent to the sea area (15 mg / L) as shown in Table 7. As shown by the test results, the insolubilizing agent composition of the present invention had a high fluorine treatment capacity. In addition, the same raw materials for the insolubilizer were used.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 ホウ素濃度12.5mg/L、pH7.6の地下水を300mlビーカに分取し、表8の組成の不溶化剤を添加し、5時間攪拌し、30分静置後上澄み液のホウ素濃度をMS-ICPにより測定した。処理後のホウ素濃度は表8に示すように、地下水基準値0.8mg/L以下の濃度となった。本発明の不溶化剤組成は、ホウ素を固定する反応活性が比較的低いため、ホウ素の濃度の低下が生ずるまで4時間を要したが、このような特性をもつため、地盤への注入剤などとして好適に用いることができる。なお、不溶化剤の原料は前記と同じものを用いた。 Groundwater with a boron concentration of 12.5 mg / L and pH 7.6 was collected in a 300 ml beaker, added with an insolubilizing agent having the composition shown in Table 8, stirred for 5 hours, and allowed to stand for 30 minutes. Measured by ICP. As shown in Table 8, the boron concentration after the treatment was a concentration of 0.8 mg / L or less of the groundwater reference value. The insolubilizing agent composition of the present invention has a relatively low reaction activity for fixing boron, and therefore it took 4 hours until the boron concentration decreased. It can be used suitably. In addition, the same material as the above was used for the insolubilizing agent.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (11)

  1. アルミニウム含有鉱物粉末・鉱石粉末を含有することを特徴とする有害物質の不溶化剤。 A hazardous substance insolubilizing agent characterized by containing aluminum-containing mineral powder or ore powder.
  2. 前記アルミニウム含有鉱物が明礬石であることを特徴とする請求項1記載の有害物質の不溶化剤。 The insoluble agent for harmful substances according to claim 1, wherein the aluminum-containing mineral is alunite.
  3. 前記アルミニウム含有鉱物がメタカオリン、ボーキサイト、赤土、焼成火山灰のいずれかであることを特徴とする請求項1記載の有害物質の不溶化剤。 2. The hazardous substance insolubilizing agent according to claim 1, wherein the aluminum-containing mineral is metakaolin, bauxite, red clay, or calcined volcanic ash.
  4. さらに、マグネシウム化合物、カルシウム化合物を含むことを含有することを特徴とする請求項1記載の有害物質の不溶化剤。 Furthermore, it contains containing a magnesium compound and a calcium compound, The insolubilizing agent of the harmful | toxic substance of Claim 1 characterized by the above-mentioned.
  5. 前記マグネシウム化合物が軽焼マグネシア、軽焼ドロマイト、硫酸マグネシウム、塩化マグネシウムのいずれかであることを特徴とする請求項4記載の有害物質の不溶化剤。 5. The harmful substance insolubilizing agent according to claim 4, wherein the magnesium compound is any one of light burned magnesia, light burned dolomite, magnesium sulfate, and magnesium chloride.
  6. 前記カルシウム化合物が、生石灰、消石灰、軽焼ドロマイト、塩化カルシウム、二水石膏、半水石膏のいずれかであることを特徴とする請求項4記載の有害物質の不溶化剤。 5. The harmful substance insolubilizing agent according to claim 4, wherein the calcium compound is any one of quick lime, slaked lime, light calcined dolomite, calcium chloride, dihydrate gypsum, and hemihydrate gypsum.
  7. さらに、酸性物質を含有することを特徴とする請求項1記載の有害物質の不溶化剤。 The hazardous substance insolubilizing agent according to claim 1, further comprising an acidic substance.
  8. 前記酸性物質が硫酸、塩酸、酢酸、塩化アルミニウム、硫酸アルミニウム、ポリ塩化アルミニウム、水酸化アルミニウム、硫酸第1鉄、硫酸第2鉄、塩化第1鉄、塩化第2鉄、ポリ硫酸第二鉄、水酸化鉄(II)、水酸化鉄(III)のいずれかであることを特徴とする請求項7記載の有害物質の不溶化剤。 The acidic substance is sulfuric acid, hydrochloric acid, acetic acid, aluminum chloride, aluminum sulfate, polyaluminum chloride, aluminum hydroxide, ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, polyferric sulfate, The hazardous substance insolubilizing agent according to claim 7, which is either iron hydroxide (II) or iron hydroxide (III).
  9. さらに、珪酸ナトリウムを含有することを特徴とする請求項1記載の有害物質の不溶化剤。 The toxic substance insolubilizing agent according to claim 1, further comprising sodium silicate.
  10. 請求項1~9のいずれか1項記載の有害物質の不溶化剤を用い、汚染土壌、焼却灰、又はガス化炉から排出される灰を不溶化することを特徴とする有害物質の不溶化方法。 A method for insolubilizing hazardous substances, comprising using the insolubilizing agent for hazardous substances according to any one of claims 1 to 9 to insolubilize contaminated soil, incinerated ash, or ash discharged from a gasification furnace.
  11. 請求項1~6のいずれか1項記載の有害物質の不溶化剤を排水に添加することを特徴とする水処理方法。 A water treatment method comprising adding the insolubilizing agent for harmful substances according to any one of claims 1 to 6 to waste water.
PCT/JP2009/057633 2008-04-16 2009-04-16 Insolubilizing agent for toxic substances, method for insolubilization of toxic substances, and water treatment process WO2009128490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508237A JPWO2009128490A1 (en) 2008-04-16 2009-04-16 Hazardous substance insolubilizer, hazardous substance insolubilization method and water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-106306 2008-04-16
JP2008106306 2008-04-16

Publications (1)

Publication Number Publication Date
WO2009128490A1 true WO2009128490A1 (en) 2009-10-22

Family

ID=41199177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057633 WO2009128490A1 (en) 2008-04-16 2009-04-16 Insolubilizing agent for toxic substances, method for insolubilization of toxic substances, and water treatment process

Country Status (2)

Country Link
JP (1) JPWO2009128490A1 (en)
WO (1) WO2009128490A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099079A (en) * 2009-11-09 2011-05-19 Fukuoka Univ Method for producing soil conditioner, soil conditioner, and method for repairing contaminated soil by using the same
JP2011101830A (en) * 2009-11-10 2011-05-26 Waseda Univ Water treatment agent and water treatment method
JP2012036243A (en) * 2010-08-04 2012-02-23 Taiheiyo Cement Corp Material and method for preventing elution of heavy metal
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals
JP2012157834A (en) * 2011-02-01 2012-08-23 Yoshizawa Lime Industry Removing agent for harmful substances in wastewater and removal method using the same
JP2013227553A (en) * 2012-03-30 2013-11-07 Yoshino Gypsum Co Ltd Insolubilizing and solidifying agent for specific toxic substance containing gypsum and soil improvement method using the same
KR101334861B1 (en) 2013-08-05 2013-11-29 서정율 Method for manufacturing porous pellet type water treatment agent
JP2014050841A (en) * 2013-11-08 2014-03-20 Waseda Univ Water treatment method
JP2015178098A (en) * 2014-02-27 2015-10-08 Jfeスチール株式会社 Method of suppressing boron elution from boron-containing substance and boron elution reformation treated material
CN105906017A (en) * 2016-06-23 2016-08-31 江门市江海区炜洁净水材料有限公司 Preparing method for polymeric aluminum ferric sulfate water purifying agent
WO2016158914A1 (en) * 2015-03-30 2016-10-06 吉澤石灰工業株式会社 Toxic substance insolubilizer and method for toxic substance insolubilization
JP2017179341A (en) * 2016-03-28 2017-10-05 住友大阪セメント株式会社 Countermeasure material for pollution by heavy metal or the like, and countermeasure method for pollution by heavy metal or the like using the countermeasure material for pollution
JP2019056081A (en) * 2017-09-22 2019-04-11 住友大阪セメント株式会社 Pollution countermeasure material for heavy metal or the like and pollution countermeasure method for heavy metal or the like using the same
US10850256B2 (en) 2012-03-30 2020-12-01 Yoshino Gypsum Co., Ltd. Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improving method
JP2022038097A (en) * 2020-08-26 2022-03-10 株式会社ダイセン Method for producing soil improver
JP7440859B2 (en) 2019-01-29 2024-02-29 国立大学法人九州大学 How to treat boron-containing water
JP7458654B2 (en) 2022-01-11 2024-04-01 三友プラントサービス株式会社 Method for insolubilizing gypsum dihydrate, method for insolubilizing gypsum hemihydrate, method for producing gypsum composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225383A (en) * 1998-11-30 2000-08-15 Sumitomo Metal Ind Ltd Method for fixing fluorine, method for stabilizing industrial waste containing fluorine, and material to be embedded in earth and its production
JP2000301101A (en) * 1999-04-20 2000-10-31 Okutama Kogyo Co Ltd Treatment method of refuse incineration fly ash and acidic gas removing agent for refuse incineration exhaust gas
JP2001259570A (en) * 2000-01-13 2001-09-25 Hideaki Suito Treatment technique for stabilizing industrial waste containing fluorine
JP2002355505A (en) * 2001-05-30 2002-12-10 Mitsubishi Paper Mills Ltd Coagulant
WO2005087664A1 (en) * 2004-03-16 2005-09-22 Waseda University Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance
JP2005336033A (en) * 2004-05-28 2005-12-08 Sekisui Chem Co Ltd Inorganic granule, method of manufacturing the same and method of purifying heavy-metal-containing water by using the same
JP2007302885A (en) * 2006-04-14 2007-11-22 Univ Waseda Insolubilizing agent for harmful substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225383A (en) * 1998-11-30 2000-08-15 Sumitomo Metal Ind Ltd Method for fixing fluorine, method for stabilizing industrial waste containing fluorine, and material to be embedded in earth and its production
JP2000301101A (en) * 1999-04-20 2000-10-31 Okutama Kogyo Co Ltd Treatment method of refuse incineration fly ash and acidic gas removing agent for refuse incineration exhaust gas
JP2001259570A (en) * 2000-01-13 2001-09-25 Hideaki Suito Treatment technique for stabilizing industrial waste containing fluorine
JP2002355505A (en) * 2001-05-30 2002-12-10 Mitsubishi Paper Mills Ltd Coagulant
WO2005087664A1 (en) * 2004-03-16 2005-09-22 Waseda University Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance
JP2005336033A (en) * 2004-05-28 2005-12-08 Sekisui Chem Co Ltd Inorganic granule, method of manufacturing the same and method of purifying heavy-metal-containing water by using the same
JP2007302885A (en) * 2006-04-14 2007-11-22 Univ Waseda Insolubilizing agent for harmful substance

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099079A (en) * 2009-11-09 2011-05-19 Fukuoka Univ Method for producing soil conditioner, soil conditioner, and method for repairing contaminated soil by using the same
JP2011101830A (en) * 2009-11-10 2011-05-26 Waseda Univ Water treatment agent and water treatment method
JP2012036243A (en) * 2010-08-04 2012-02-23 Taiheiyo Cement Corp Material and method for preventing elution of heavy metal
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals
JP2012157834A (en) * 2011-02-01 2012-08-23 Yoshizawa Lime Industry Removing agent for harmful substances in wastewater and removal method using the same
JP2013227553A (en) * 2012-03-30 2013-11-07 Yoshino Gypsum Co Ltd Insolubilizing and solidifying agent for specific toxic substance containing gypsum and soil improvement method using the same
US10850256B2 (en) 2012-03-30 2020-12-01 Yoshino Gypsum Co., Ltd. Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improving method
KR101334861B1 (en) 2013-08-05 2013-11-29 서정율 Method for manufacturing porous pellet type water treatment agent
JP2014050841A (en) * 2013-11-08 2014-03-20 Waseda Univ Water treatment method
JP2015178098A (en) * 2014-02-27 2015-10-08 Jfeスチール株式会社 Method of suppressing boron elution from boron-containing substance and boron elution reformation treated material
WO2016158914A1 (en) * 2015-03-30 2016-10-06 吉澤石灰工業株式会社 Toxic substance insolubilizer and method for toxic substance insolubilization
CN107109185A (en) * 2015-03-30 2017-08-29 吉泽石灰工业股份有限公司 The insoluble method of harmful substance insolubilizing agent and harmful substance
JPWO2016158914A1 (en) * 2015-03-30 2017-09-07 吉澤石灰工業株式会社 Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances
KR101909853B1 (en) 2015-03-30 2018-12-18 요시자와 셋카이 고교 가부시키가이샤 Methods of Insolubilizing Hazardous Substances and Methods of Insolubilization of Hazardous Substances
JP2017179341A (en) * 2016-03-28 2017-10-05 住友大阪セメント株式会社 Countermeasure material for pollution by heavy metal or the like, and countermeasure method for pollution by heavy metal or the like using the countermeasure material for pollution
CN105906017A (en) * 2016-06-23 2016-08-31 江门市江海区炜洁净水材料有限公司 Preparing method for polymeric aluminum ferric sulfate water purifying agent
JP2019056081A (en) * 2017-09-22 2019-04-11 住友大阪セメント株式会社 Pollution countermeasure material for heavy metal or the like and pollution countermeasure method for heavy metal or the like using the same
JP7440859B2 (en) 2019-01-29 2024-02-29 国立大学法人九州大学 How to treat boron-containing water
JP2022038097A (en) * 2020-08-26 2022-03-10 株式会社ダイセン Method for producing soil improver
JP7458654B2 (en) 2022-01-11 2024-04-01 三友プラントサービス株式会社 Method for insolubilizing gypsum dihydrate, method for insolubilizing gypsum hemihydrate, method for producing gypsum composition

Also Published As

Publication number Publication date
JPWO2009128490A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2009128490A1 (en) Insolubilizing agent for toxic substances, method for insolubilization of toxic substances, and water treatment process
KR101112719B1 (en) The solidification block composition and its manufacturing method that using the sludge and inorganic waste resources
JP5697334B2 (en) Heavy metal insolubilizer and method for insolubilizing heavy metal
JP4990865B2 (en) Solidified insolubilizer for soil and soil treatment method
Li et al. Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus
KR100860017B1 (en) Soil aggregate composition for civil engineering and construction materials using process sludge and manufacturing method thereof
JPWO2009001719A1 (en) Hazardous substance insolubilizer and method of insolubilizing hazardous substances
KR100919620B1 (en) The artificial soil composition and its manufacturing method that using the industrial by-product for recovering an abandoned quarry mining
KR100981358B1 (en) The soil composition and its manufacturing method that using the dredged soils and industrial by-product for reclaiming the public surface of water
JP2005255737A (en) Method for producing heavy metal adsorbent from waste and heavy metal adsorbent obtained by the method
JP2006187773A (en) Agent for solidifying and insolubilizing soil contaminated by contaminants which are cyanide, phosphorous and/or nitrogen and/or arsenic
JP2003225640A (en) Solidifying and insolubilizing agent for contaminated soil
KR101257447B1 (en) A method for preparing banking material using waste resources
KR101909853B1 (en) Methods of Insolubilizing Hazardous Substances and Methods of Insolubilization of Hazardous Substances
Ho et al. Potential investigation of concrete fines as an alternative material: A novel neutralizer for acid mine drainage treatment
JP6157947B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP2017145294A (en) Agent and method for inhibiting the elution of harmful material
JP5913675B1 (en) Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances
JP4712290B2 (en) Hazardous material collecting material and method of treating sewage and soil using the same
JP5877049B2 (en) Anti-elution agent for harmful substances
JP5836096B2 (en) Earthwork materials
Dahhou et al. Reusing drinking water sludge: Physicochemical features, environmental impact and applications in building materials: A mini review
Wang et al. Green and Sustainable Stabilization/Solidification
Wang et al. 15 Green and Sustainable
JP2014118427A (en) Elution inhibitor of harmful substance and elution inhibition method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010508237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09733590

Country of ref document: EP

Kind code of ref document: A1