JP2006219547A - Soil-solidifying material - Google Patents

Soil-solidifying material Download PDF

Info

Publication number
JP2006219547A
JP2006219547A JP2005032474A JP2005032474A JP2006219547A JP 2006219547 A JP2006219547 A JP 2006219547A JP 2005032474 A JP2005032474 A JP 2005032474A JP 2005032474 A JP2005032474 A JP 2005032474A JP 2006219547 A JP2006219547 A JP 2006219547A
Authority
JP
Japan
Prior art keywords
soil
magnesium oxide
solidification
particles
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005032474A
Other languages
Japanese (ja)
Inventor
Yutaka Matsuda
豊 松田
Katsuichi Kunimatsu
勝一 国松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda Giken Industry Co Ltd
Original Assignee
Matsuda Giken Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda Giken Industry Co Ltd filed Critical Matsuda Giken Industry Co Ltd
Priority to JP2005032474A priority Critical patent/JP2006219547A/en
Publication of JP2006219547A publication Critical patent/JP2006219547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil-solidifying material which can change the pH of treated soil to a weak alkaline to neutral region, does not elute a harmful substance, and can impart high solidification strengths to various soils. <P>SOLUTION: This soil-solidifying material containing magnesium oxide as a main component is characterized in that the magnesium oxide has an average particle diameter (D<SB>50</SB>) of 2.50 to 4.5μm and a standard deviation of 0.20 to 0.35 μm. The soil-solidifying material, wherein the magnesium oxide has preferably a particle size distribution comprising 5 to 1 μm particles in an amount of ≥60% and 15 to 5 μm particles in an amount of ≤35%. If necessary, the soil-solidifying material preferably further contains at least one of a solidifying agent, a pH-adjusting agent, an organic polymer coagulating agent and/or a water-absorbing agent, and a solidification accelerator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は土壌用固化材に関し、詳しくは火山灰土やシールド工法、地中連続壁工法、浚渫工法、表層及び深層地盤改良工法等の発生現場からの発生土のような土壌を固化させるため、又は先受け工や薬液注入工等により地盤を改良するための土壌用固化材に関する。   The present invention relates to a solidifying material for soil, in particular, to solidify soil such as volcanic ash soil, shield method, underground continuous wall method, dredging method, surface layer and deep ground improvement method, etc. The present invention relates to a solidifying material for soil for improving the ground by receiving work or chemical injection.

火山灰土や発生土のような土壌は水分を多量に含み流動性があり、そのままでは運搬、輸送が困難である。そこで、これらの土壌に土壌用固化材を添加した上で運搬、輸送する方法が採られている。また、これらの土壌を改質する目的でも土壌用固化材が用いられている。   Soil such as volcanic ash soil and generated soil contains a large amount of moisture and is fluid, and as such is difficult to transport and transport. Therefore, a method of transporting and transporting these soils after adding a solidifying material for soil has been adopted. Moreover, the solidification material for soil is also used for the purpose of modifying these soils.

これらの土壌用固化材としては、セメント系固化材、生石灰系固化材、石膏系固化材や有機高分子系凝集剤等が使用されている。   As these solidifying materials for soil, cement-based solidified materials, quicklime-based solidified materials, gypsum-based solidified materials, organic polymer-based flocculants and the like are used.

上記セメント系固化材や生石灰系固化材は、火山灰土や発生土に対して通常10〜15重量%添加するが、このような添加量では、処理土壌のpHが12以上になり、また、運搬、搬送が可能な程度に固化するまでに長時間を要するという問題がある。   The cement-based solidified material and quicklime-based solidified material are usually added in an amount of 10 to 15% by weight with respect to the volcanic ash soil or the generated soil. There is a problem that it takes a long time to solidify to such an extent that it can be conveyed.

さらに、上記石膏系固化材では、処理土壌は短時間で固化するが、水に接触すると固化材が溶解して処理土壌が溶解してしまい、また多量に水分を含む土壌の場合は固化不良を起こす。   Furthermore, in the above-mentioned gypsum-based solidifying material, the treated soil solidifies in a short time, but when contacted with water, the solidified material dissolves and the treated soil dissolves, and in the case of soil containing a large amount of moisture, solidification failure occurs. Wake up.

上記有機高分子凝集剤でも固化時間は早いが処理土壌は耐水性がなく、水に接触すると処理土壌が崩壊してしまう。特に、水分を多量に含む土壌の場合には、有機高分子系凝集剤の添加量が大きくなり、処理土壌が弾性体となって、重機類で突き崩したり、搬出したりする作業が困難となる。   Even with the organic polymer flocculant, the solidification time is fast, but the treated soil is not water resistant, and the treated soil collapses when in contact with water. In particular, in the case of soil that contains a large amount of water, the amount of organic polymer flocculant added becomes large, and the treated soil becomes an elastic body, which makes it difficult to break down or carry it out with heavy machinery. Become.

一方、地質条件の悪い地山ではトンネル切羽奥の掘削予定個所の上周部の地盤を改良する先受け工が実施されており、また地盤強化、止水、遮水、液状化防止等を目的として地盤中の間隙に薬液を注入する薬液注入工が実施されている。これらの目的でも土壌用固化材が用いられている。   On the other hand, in the natural ground where the geological conditions are poor, a preparatory work is being carried out to improve the ground at the upper part of the site to be excavated at the back of the tunnel face, and the purpose is to strengthen the ground, stop water, shut off water, prevent liquefaction, etc. As an example, a chemical solution injection method for injecting a chemical solution into a gap in the ground has been implemented. For these purposes, soil solidification materials are also used.

上記先受け工にあっては、従来主としてセメント系固化材やウレタン系固化材が使用され、また上記薬液注入工にあっては、主として水ガラス系の固化材が使用されている。   Conventionally, cement-based solidified material and urethane-based solidified material are mainly used in the above-mentioned prior construction, and water glass-based solidified material is mainly used in the above-mentioned chemical solution injecting work.

セメント系固化材の場合には改良地盤から高アルカリ分や6価クロムが溶出するおそれがあり、注入圧が異常に上昇して注入困難となる場合がある。このような場合にはウレタン系固化材が使用されるが、ウレタン系固化材の場合には早期に強度が発現されるが、ウレタン系固結剤が改良地盤から溶出して環境を汚染すると云う問題点があり、またコストにも問題がある。更に密な砂質土にはウレタン系固結剤であっても注入が困難となる。   In the case of a cement-based solidified material, there is a risk that high alkali content or hexavalent chromium may be eluted from the improved ground, and the injection pressure may rise abnormally and may be difficult to inject. In such a case, a urethane-based solidified material is used, but in the case of a urethane-based solidified material, strength is expressed early, but it is said that the urethane-based solidified agent is eluted from the improved ground and pollutes the environment. There is a problem, and there is also a problem with cost. Furthermore, it is difficult to inject even a urethane-based caking agent into dense sandy soil.

さらに、水ガラス系固化材にあっては、早期のホモゲル強度や長期のホモゲル強度が充分でないし、改良地盤中の水ガラス固化物からシリカ分が溶脱して強度が劣化する問題点、あるいはセメント系固化材と同様に改良地盤中から高アルカリ分が溶出する問題点がある。   Furthermore, in the water glass-based solidified material, the initial homogel strength and the long-term homogel strength are not sufficient, and the silica is leached from the water glass solidified material in the improved ground, or the strength deteriorates, or the cement There is a problem that high alkali content is eluted from the improved ground as well as the system solidified material.

このため、従来より用いられている固化材に代えて、酸化マグネシウム又は水酸化マグネシウムを主成分とする固化材が提案されている。   For this reason, it replaces with the conventionally used solidification material, and the solidification material which has magnesium oxide or magnesium hydroxide as a main component is proposed.

例えば特許文献1(特開昭51−20414号公報)では、水酸化マグネシウムと塩基性アルミニウム複合塩とを組み合わせた固化材が提案され、また特許文献2(特開2000−239660号公報)では酸化マグネシウムと多価金属塩とを組み合わせた固化材が提案されている。   For example, Patent Document 1 (Japanese Patent Laid-Open No. 51-20414) proposes a solidifying material in which magnesium hydroxide and a basic aluminum composite salt are combined, and Patent Document 2 (Japanese Patent Laid-Open No. 2000-239660) proposes an oxidation material. Solidification materials combining magnesium and polyvalent metal salts have been proposed.

特開昭51−20414号公報Japanese Patent Laid-Open No. 51-20414 特開2000−239660号公報JP 2000-239660 A

上記酸化マグネシウム又は水酸化マグネシウムを含有する固化材にあっては、処理土壌のpHを水道法第4条に示された水質基準の許容値の上限8.6を下回るようにすることができ、また有害物質が溶出することもない。さらには早期のホモゲル強度や長期のホモゲル強度が比較的高く、溶脱も少なく、処理土壌の強度は耐久性を有し経時的な劣化の問題もない。   In the solidified material containing magnesium oxide or magnesium hydroxide, the pH of the treated soil can be made to be lower than the upper limit 8.6 of the allowable value of the water quality standard indicated in Article 4 of the Water Supply Law, In addition, no harmful substances are eluted. Furthermore, the initial homogel strength and the long-term homogel strength are relatively high, leaching is small, the strength of the treated soil is durable, and there is no problem of deterioration over time.

しかしながら、酸化マグネシウム又は水酸化マグネシウムを主体とする土壌用固化材は、上記多くの利点を有するものの、土壌に添加したときに固化強度が未だ充分ではないという問題があり、各種土壌にさらなる高い水準の固化強度を付与する土壌用固化材が望まれている。   However, although the solidified material for soil mainly composed of magnesium oxide or magnesium hydroxide has the above-mentioned many advantages, there is a problem that the solidified strength is still not sufficient when added to the soil, and it has a higher level in various soils. There is a demand for a solidified material for soil that imparts a solidified strength.

従って、本発明の目的は、処理土壌のpHを弱アルカリ〜中性領域にすることができ、また有害物質の溶出がないと共に、各種土壌に高い固化強度を付与することができる土壌用固化材を提供することにある。   Therefore, the object of the present invention is to make the pH of the treated soil a weak alkaline to neutral region, and there is no elution of harmful substances, and a solidified material for soil that can impart high solidification strength to various soils. Is to provide.

そこで、本発明者らは、検討の結果、特定の粉体特性を有する酸化マグネシウムを用いた土壌用固化材が上記目的を達成し得ることを知見し、本発明に到達した。   Thus, as a result of the study, the present inventors have found that a solidified material for soil using magnesium oxide having specific powder characteristics can achieve the above object, and have reached the present invention.

すなわち、本発明は、酸化マグネシウムを主成分とする土壌用固化材であって、該酸化マグネシウムの平均粒径(D50)が2.50μm〜4.50μm、標準偏差が0.20μm〜0.35μmという粉体特性を備えるものである。 That is, the present invention is a soil solidifying material mainly composed of magnesium oxide, wherein the magnesium oxide has an average particle diameter (D 50 ) of 2.50 μm to 4.50 μm and a standard deviation of 0.20 μm to 0.00. It has a powder characteristic of 35 μm.

そして、本件発明に係る土壌用固化剤は、その酸化マグネシウム粉粒の持つ粒度分布として5μm未満〜1μmの粒子が60%以上、15μm未満〜5μmの粒子が35%以下であることを特徴とする土壌用固化材を提供するものである。   And the solidifying agent for soil according to the present invention is characterized in that the particle size distribution of the magnesium oxide powder is less than 5 μm to 1 μm particles of 60% or more and less than 15 μm to 5 μm particles of 35% or less. A solidifying material for soil is provided.

本発明に係る土壌用固化材に用いられる上記酸化マグネシウムは、平均粒径(D50)が3.00μm〜4.00μm、標準偏差が0.25μm〜0.30μmで有ることがより好ましい。そして、係る場合の酸化マグネシウム粉の粒度分布は、5μm未満〜1μmの粒子が65%〜75%、15μm未満〜5μmの粒子が25%〜30%であることが好ましい。 More preferably, the magnesium oxide used in the solidifying material for soil according to the present invention has an average particle diameter (D 50 ) of 3.00 μm to 4.00 μm and a standard deviation of 0.25 μm to 0.30 μm. And it is preferable that the particle size distribution of the magnesium oxide powder in such a case is 65% to 75% for particles of less than 5 μm to 1 μm and 25% to 30% for particles of less than 15 μm to 5 μm.

また、本発明に係る土壌用固化材は、固化剤を含有することが望ましく、このような固化剤として多価金属塩が好ましく用いられる。   In addition, the solidifying material for soil according to the present invention desirably contains a solidifying agent, and a polyvalent metal salt is preferably used as such a solidifying agent.

さらに、本発明に係る土壌用固化材は、その用途によって種々の配合剤を含有させることが望ましい。このような配合剤としては、pH調整剤、有機高分子凝集剤及び/又は吸水剤、及び固化促進剤のいずれか1種以上である。   Furthermore, it is desirable that the solidifying material for soil according to the present invention contains various compounding agents depending on its use. Such a compounding agent is at least one of a pH adjuster, an organic polymer flocculant and / or a water absorbing agent, and a solidification accelerator.

本発明の土壌用固化材は、酸化マグネシウムを主体とするものであるから、対象土壌のpHを中性域に保持でき、また有害物質の溶出もなく、強度は耐久性を有し経時的な劣化の問題もないことに加えて、特定の粉体特性を有する酸化マグネシウムを用いていることから、各種土壌を迅速に固化させ、且つ、高い固化強度を付与することができる。   Since the solidifying material for soil of the present invention is mainly composed of magnesium oxide, the pH of the target soil can be maintained in a neutral range, no toxic substances are eluted, and the strength is durable and time-dependent. Since there is no problem of deterioration and magnesium oxide having specific powder characteristics is used, various soils can be rapidly solidified and high solidification strength can be imparted.

以下、本発明を実施するための最良形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

(本発明に係る土壌用固化材)
本発明に係る土壌用固化材に用いられる酸化マグネシウムには、特定の粉体特性を有するものである。すなわち、本発明に係る土壌用固化材では、酸化マグネシウムを主成分とする土壌用固化材であって、平均粒径(D50)が2.50μm〜4.50μm、好ましくは3.00μm〜4.00μm、標準偏差が0.20μm〜0.35μm、好ましくは0.25μm〜0.30μmの粉体特性を備える酸化マグネシウム粉を用いる。
(Solidifying material for soil according to the present invention)
Magnesium oxide used for the solidifying material for soil according to the present invention has specific powder characteristics. That is, the soil solidifying material according to the present invention is a soil solidifying material mainly composed of magnesium oxide, and has an average particle size (D 50 ) of 2.50 μm to 4.50 μm, preferably 3.00 μm to 4. Magnesium oxide powder having a powder property of 0.000 μm and a standard deviation of 0.20 μm to 0.35 μm, preferably 0.25 μm to 0.30 μm is used.

ここで、本件発明に係る土壌固化剤に含ませる酸化マグネシウムの平均粒径は、2.50μm〜4.50μmの範囲とすることが好ましい。この酸化マグネシウムの平均粒径が小さくなるほど、土壌との接触界面面積が大きくなり、反応性が高く、早期に固化を完了させることが出来る。しかしながら、固化反応があまりにも早くなると、固化した後の土壌に微小なクラックが生じたして外観が悪くなり、固化後の硬さが高くなりすぎて、人が踏みしめたときの感触に心地よさが生じないのである。即ち、土壌固化剤を構成する酸化マグネシウム粉粒の平均粒径が、2.50μm未満となると、固化反応時間が短すぎて、上述のように外観が悪く脆くなり、歩行感触が悪くなる。一方、土壌固化剤を構成する酸化マグネシウム粉粒の平均粒径が、4.50μmを超えると、固化時間が長くなり、作業効率が著しく劣るものとなる。従って、上記範囲の平均粒径の粉粒から構成された土壌固化剤を用いることで、従来ばらついていた固化時間を均質化し、且つ、制御することとが可能となる。更に、当該土壌固化剤の粉粒の平均粒径を、3.00μm〜4.00μmの範囲とすることが、より好ましい。当該土壌固化剤の酸化マグネシウム粉粒の平均粒径が、この範囲にあると固化反応に要する時間が殆ど変動することなく、最も安定したものとなるのである。   Here, it is preferable that the average particle diameter of the magnesium oxide contained in the soil solidifying agent according to the present invention is in the range of 2.50 μm to 4.50 μm. The smaller the average particle size of the magnesium oxide, the larger the contact interface area with the soil, the higher the reactivity, and the solidification can be completed early. However, if the solidification reaction becomes too fast, fine cracks will occur in the soil after solidification and the appearance will deteriorate, the hardness after solidification will become too high, and it will feel comfortable when people step on it. Does not occur. That is, when the average particle diameter of the magnesium oxide powder constituting the soil solidifying agent is less than 2.50 μm, the solidification reaction time is too short, the appearance is poor and brittle as described above, and the walking feeling is deteriorated. On the other hand, when the average particle diameter of the magnesium oxide powder constituting the soil solidifying agent exceeds 4.50 μm, the solidification time becomes long, and the working efficiency becomes remarkably inferior. Therefore, it is possible to homogenize and control the solidification time, which has been conventionally dispersed, by using a soil solidifying agent composed of particles having an average particle diameter in the above range. Furthermore, it is more preferable that the average particle size of the particles of the soil solidifying agent is in the range of 3.00 μm to 4.00 μm. When the average particle diameter of the magnesium oxide powder of the soil solidifying agent is within this range, the time required for the solidification reaction hardly varies and the most stable one is obtained.

そして、当該土壌固化剤の酸化マグネシウム粉粒が上記範囲の平均粒径を備えることを前提として、5μm未満〜1μmの粒子が60%以上、15μm未満〜5μmの粒子が35%以下の酸化マグネシウムを用いるのが好ましい。上述の酸化マグネシウムの平均粒径は、粉粒の細かさを表す一定の指標としての機能は果たすものの、粗粒がどの程度含まれているかの指標とはなり得ない。これに対し、ここに述べたような如き粒度分布の意味するところは、ここで表示していない範囲の粗粒が、どの程度存在するかの指標となる。即ち、上記粒度分布から、5μm未満〜1μmの粒子が60%以上、15μm未満〜5μmの粒子が35%以下であるから、15μm以上の粗粒及び1μm未満の極微粒のトータルが5%程度は存在する可能性が有ることになる。そして、この全てが15μm以上の粗粒として考えても、粗粒が5%を超えないことになる。このように良好な粒度分布を持つ土壌固化剤を用いることで、更に固化時間等の制御が容易となるのである。   And on the premise that the magnesium oxide powder particles of the soil solidifying agent have an average particle size in the above range, particles of less than 5 μm to 1 μm are 60% or more, and particles of less than 15 μm to 5 μm are 35% or less of magnesium oxide. It is preferable to use it. The average particle diameter of the magnesium oxide described above serves as a constant index representing the fineness of the powder particles, but cannot be an index of how much coarse particles are contained. On the other hand, what is meant by the particle size distribution as described herein is an index of how much coarse particles in a range not shown here are present. That is, from the above particle size distribution, particles of less than 5 μm to 1 μm are 60% or more and particles of less than 15 μm to 5 μm are 35% or less, so the total of coarse particles of 15 μm or more and ultrafine particles of less than 1 μm is about 5%. There is a possibility that it exists. And even if all of these are considered as coarse particles of 15 μm or more, the coarse particles do not exceed 5%. By using a soil solidifying agent having such a good particle size distribution, the solidification time and the like can be further controlled.

そして、この粒度分布に関して、より明確に粒度分布を特定すると、5μm未満〜1μmの粒子が5%〜75%、15μm未満〜5μmの粒子が25%〜30%の酸化マグネシウム粉となる。ここで述べた範囲は、本件発明者等の研究の結果、粒度分布を一定の範囲の納めるように鋭意努力した結果の、実績としての範囲である。   When the particle size distribution is specified more clearly with respect to this particle size distribution, particles of less than 5 μm to 1 μm become 5% to 75%, and particles of less than 15 μm to 5 μm become 25% to 30% magnesium oxide powder. The range described here is a range as a result of the results of the present inventors' research and diligent efforts to keep the particle size distribution within a certain range.

平均粒径(D50)、標準偏差、5μm未満〜1μmの粒子量及び5μm未満〜5μmの粒子量が上記範囲から外れた酸化マグネシウムを用いても、固化時間が長く、各種土壌に短時間で適正な固化強度を付与することができない。 Even when using magnesium oxide whose average particle size (D 50 ), standard deviation, particle size of less than 5 μm to 1 μm and particle size of less than 5 μm to 5 μm is out of the above range, the solidification time is long, and it can be quickly applied to various soils. Appropriate solidification strength cannot be imparted.

これら平均粒径(D50)、標準偏差、5μm未満〜1μmの粒子量及び5μm未満〜5μmの粒子量は、下記の方法により測定される。本件発明に言う平均粒径の測定は、酸化マグネシウム粉0.1gをSNディスパーサント5468の0.1%水溶液(サンノプコ社製)と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320−X100型(Leeds+Northrup社製)を用いて行った。 The average particle diameter (D 50 ), standard deviation, the amount of particles of less than 5 μm to 1 μm, and the amount of particles of less than 5 μm to 5 μm are measured by the following methods. The average particle size in the present invention is measured by mixing 0.1 g of magnesium oxide powder with a 0.1% aqueous solution of SN Dispersant 5468 (manufactured by San Nopco) and using an ultrasonic homogenizer (US-300T, manufactured by Nippon Seiki Seisakusho). After dispersing for 5 minutes, the measurement was performed using a laser diffraction / scattering particle size distribution analyzer, Micro Trac HRA 9320-X100 (Leeds + Northrup).

本発明に係る土壌用固化材は、固化剤を含有することが望ましい。このような固化剤としては、主として多価金属塩が使用される。上記多価金属塩としては、硫酸アルミニウム、硫酸第1鉄、ポリ硫酸第2鉄、ポリ塩化アルミニウム、明礬、仮焼明礬石、硫酸亜鉛等が例示され、上記多価金属塩は2種以上混合使用されてもよい。   The solidifying material for soil according to the present invention preferably contains a solidifying agent. As such a solidifying agent, a polyvalent metal salt is mainly used. Examples of the polyvalent metal salt include aluminum sulfate, ferrous sulfate, polyferric sulfate, polyaluminum chloride, alum, calcined alunite, zinc sulfate and the like. May be used.

固化剤として、上記多価金属塩の中でも硫酸アルミニウム、ポリ塩化アルミニウム、硫酸第1鉄、ポリ硫酸第2鉄は対象となる土壌のpHを低くする作用があり、この点からも望ましく用いられる。以上に述べてきた固化剤は、酸化マグネシウム100重量部に対して、10重量部〜100重量部含有されることが望ましい。   Among the above-mentioned polyvalent metal salts, aluminum sulfate, polyaluminum chloride, ferrous sulfate, and polyferric sulfate have the effect of lowering the pH of the target soil as the solidifying agent, and are desirably used from this point. The solidifying agent described above is desirably contained in an amount of 10 to 100 parts by weight with respect to 100 parts by weight of magnesium oxide.

本発明に係る土壌固化材は、その用途によって種々の配合剤を含有させることが望ましい。このような配合剤としては、pH調整剤、有機高分子凝集剤及び/又は吸水剤、及び固化促進剤のいずれか1種以上が挙げられる。   It is desirable that the soil solidifying material according to the present invention contains various compounding agents depending on its use. Examples of such a compounding agent include one or more of a pH adjuster, an organic polymer flocculant and / or a water absorbing agent, and a solidification accelerator.

処理土壌を弱アルカリ性〜中性に維持するためにはpH調整剤が含有される。該pH調整剤としては、pHを5.8〜pH8.6の中性領域とするために酸性剤が用いられる。このような酸性剤としては例えばシュウ酸、クエン酸、リンゴ酸、ベンゼンスルホン酸、スルファミン酸等の粉末状の有機酸、硫酸アンモニウム、ベンゼンスルホン酸アンモニウム等の強酸と弱塩基との粉末状の塩、塩化第2鉄、塩化マグネシウム、硫酸マグネシウム、塩化アンモニウム等の粉末状の酸性塩等が使用される。上記pH調整剤は2種以上混合使用されてもよい。該pH調整剤は、土壌用固化材中に5重量%〜50重量%含有されるが、土壌のpHに応じて含有量を調整すべきであることはいうまでもない。   A pH adjuster is contained in order to keep the treated soil weakly alkaline to neutral. As the pH adjuster, an acid agent is used in order to adjust the pH to a neutral range of 5.8 to 8.6. Examples of such an acid agent include powdered organic acids such as oxalic acid, citric acid, malic acid, benzenesulfonic acid, and sulfamic acid, and powdered salts of strong acid and weak base such as ammonium sulfate and ammonium benzenesulfonate, Powdered acidic salts such as ferric chloride, magnesium chloride, magnesium sulfate, and ammonium chloride are used. Two or more of the above pH adjusters may be used in combination. The pH adjuster is contained in the solidified material for soil in an amount of 5% by weight to 50% by weight. Needless to say, the content should be adjusted according to the pH of the soil.

処理土壌の水分が例えば50重量%以上の多量に含まれる場合には、有機高分子凝集剤及び/又は吸水剤が含有されてもよい。該有機高分子凝集剤としては、例えばポリアクリル酸ナトリウム、ポリアクリルアミド、アクリル酸ナトリウム−アクリルアミド共重合体、ポリエチレンオキサイド等の合成高分子凝集剤、グアガム、キサンタンガム、アルギン酸等の天然高分子凝集剤等があり、該吸水剤としては例えば下水焼却灰、木炭、活性炭、シリカゲル等がある。そして、有機高分子凝集剤及び/又は吸水剤は、土壌用固化材中に0.1重量%〜2.0重量%含有されるが、土壌の水分含有量に応じて含有量を調整すべきであることはいうまでもない。   When the moisture of the treated soil is contained in a large amount of, for example, 50% by weight or more, an organic polymer flocculant and / or a water absorbing agent may be contained. Examples of the organic polymer flocculants include synthetic polymer flocculants such as sodium polyacrylate, polyacrylamide, sodium acrylate-acrylamide copolymer, polyethylene oxide, natural polymer flocculants such as guar gum, xanthan gum, and alginic acid. Examples of the water absorbing agent include sewage incineration ash, charcoal, activated carbon, and silica gel. The organic polymer flocculant and / or water-absorbing agent is contained in the solidified material for soil in an amount of 0.1% to 2.0% by weight, but the content should be adjusted according to the moisture content of the soil. Needless to say.

処理土壌の固化を促進するためにさらに固化促進剤が含有される。該固化促進剤としては、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、エチレンカーボネート、イソシアナート化合物等の水と反応して炭酸ガスを発生することができる化合物が使用される。該固化促進剤は上記pH調整剤と併用すると、処理土壌のpHが高い場合でも、容易にpHを低くすることができるので、酸性助剤としても使用できる。
固化促進材は、土壌用固化材中に0.3重量%〜10.0重量%含有されることが望ましい。
In order to promote the solidification of the treated soil, a solidification accelerator is further contained. As the solidification accelerator, a compound capable of generating carbon dioxide gas by reacting with water, such as sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, ethylene carbonate, isocyanate compound, or the like is used. When the solidification accelerator is used in combination with the above pH adjuster, the pH can be easily lowered even when the pH of the treated soil is high, so that it can also be used as an acidic auxiliary agent.
It is desirable that the solidification promoting material is contained in the solidification material for soil in an amount of 0.3% by weight to 10.0% by weight.

上記成分において、酸化マグネシウムと固化剤とは土壌の固化反応によって土壌が固化せしめられるが、pH調整剤によってpHを弱アルカリ〜中性領域、好ましくはpH5〜pH9、さらに好ましくはpH5.8〜pH8.6に調整して酸化マグネシウムと固化剤と土壌との固化反応を促進され、固化促進剤を加えることにより固化が一層促進される。また、水分を多量に含有する土壌の場合には、上記成分に加えて、有機高分子凝集剤及び/又は吸水剤を加えると、土壌が凝縮して水が排除され、あるいは土壌中の水が吸収され、望ましい土壌固化物が得られる。   In the above components, the magnesium oxide and the solidifying agent solidify the soil by the solidification reaction of the soil, but the pH is adjusted to a weak alkali to neutral region, preferably pH 5 to pH 9, more preferably pH 5.8 to pH 8 by the pH adjusting agent. The solidification reaction of magnesium oxide, a solidifying agent, and soil is promoted by adjusting to .6, and solidification is further promoted by adding a solidification accelerator. In addition, in the case of soil containing a large amount of water, adding an organic polymer flocculant and / or a water absorbing agent in addition to the above components will condense the soil and eliminate the water, or It is absorbed and the desired soil solidification is obtained.

さらに、所望によって、炭酸カルシウム、無水石膏、半水石膏、タルク、未焼ドロマイト、ケイ石粉、スラグ等の充填剤が含有されてもよい。そして、これら充填剤は、土壌用固化材中に25重量%〜500重量%含有される。   Further, if desired, a filler such as calcium carbonate, anhydrous gypsum, hemihydrate gypsum, talc, unbaked dolomite, quartzite powder, slag may be contained. And these fillers are contained in 25% by weight to 500% by weight in the solidified material for soil.

本発明に係る土壌用固化材は、火山灰土や発生土等のような土壌を固化させるため、又は先受け土や薬液注入工等により地盤を改良するために用いられる。   The solidifying material for soil according to the present invention is used for solidifying soil such as volcanic ash soil or generated soil, or for improving the ground by receiving soil or chemical injection.

本発明に係る土壌用固化材は、土壌に添加する前に全成分を混合し、その後、土壌に添加されてもよいし、また各成分を個々に土壌に添加してもよいし、さらに成分のうちの二種以上を予め混合しておいて土壌に添加してもよい。   The solidifying material for soil according to the present invention mixes all the components before adding to the soil, and then may be added to the soil, or each component may be added individually to the soil, and further the components Two or more of them may be mixed in advance and added to the soil.

本発明に係る土壌用固化材の土壌に対する添加量は、土質、含水量によって適宜決定される。一般に粘性の大きい土質(粘土質)の場合には添加量を少なくし、粘性の小さい土質(砂質)の場合には添加量を多くする。また、含水量の大きい土壌の場合には添加量を多くし、含水量の小さな土壌の場合には添加量を少なくする。一般的には含水率80重量%〜100重量%の土壌の場合には、本発明に係る土壌用固化材は土壌1m当たり30kg〜100kg程度添加され、含水率100重量%〜200重量%の土壌の場合には、本発明に係る土壌用固化材は土壌1m当たり50kg〜200kg程度添加される。 The amount of the solidified material for soil according to the present invention added to the soil is appropriately determined depending on the soil quality and water content. In general, the amount of addition is reduced in the case of soil with a high viscosity (clay), and the amount of addition is increased in the case of soil with a low viscosity (sand). Further, the amount of addition is increased in the case of soil with a high water content, and the amount of addition is decreased in the case of soil with a low water content. In general, in the case of soil having a water content of 80% by weight to 100% by weight, the solidified material for soil according to the present invention is added in an amount of about 30 kg to 100 kg per 1 m 3 of soil, and the water content is 100% by weight to 200% by weight. In the case of soil, about 50 kg to 200 kg of soil solidifying material according to the present invention is added per 1 m 3 of soil.

本発明に係る土壌用固化材にシリカ成分を含有する火山灰土等を混合して土壌用混合固化材として用いることもできる。この場合には、土壌用固化材100重量部に対して、火山灰土5重量部〜300重量部配合される。   The solidified material for soil according to the present invention may be mixed with volcanic ash soil containing a silica component and used as a mixed solidified material for soil. In this case, 5 parts by weight to 300 parts by weight of volcanic ash soil is blended with 100 parts by weight of the solidified material for soil.

このような土壌用混合固化材は、固化に必要とされる非晶質成分であるアロフェンのごときシリカ成分を補給し、これによりシリカ成分が少ない火山灰土、沖積土壌、サンド質土壌の適正な固化が可能となる。 以下、本発明を実施例に基づき具体的に説明する。   Such mixed solidification material for soil replenishes silica components such as allophane, which is an amorphous component required for solidification, and thereby appropriate solidification of volcanic ash soil, alluvial soil, sandy soil with less silica component Is possible. Hereinafter, the present invention will be specifically described based on examples.

土壌用固化材に用いる酸化マグネシウムとして下記の性状を有するものを用いた。
・平均粒径 (D50) :3.52μm
・標準偏差 :0.266μm
・1μm未満 :2.32%
・5μm未満〜1μmの粒子 :69.33%
・15μm未満〜5μmの粒子 :28.35%
・15μm以上 :0.00%
The thing with the following property was used as magnesium oxide used for the solidification material for soil.
・ Average particle diameter (D 50 ): 3.52 μm
Standard deviation: 0.266 μm
・ Less than 1 μm: 2.32%
-Particles of less than 5 μm to 1 μm: 69.33%
-Particles of less than 15 μm to 5 μm: 28.35%
・ 15μm or more: 0.00%

上記酸化マグネシウム100重量部と硫酸アルミニウム(固化剤)20重量部とからなる土壌用固化材100kgを火山灰土(関東ローム)に1mに添加し、混合攪拌した。この処理土壌を大気中で養生した場合の固化状況を表1に示す。 100 kg of solidified material for soil consisting of 100 parts by weight of magnesium oxide and 20 parts by weight of aluminum sulfate (solidifying agent) was added to 1 m 3 of volcanic ash soil (Kanto loam), and mixed and stirred. Table 1 shows the solidification status when this treated soil is cured in the atmosphere.

(比較例1)
土壌用固化材に用いる酸化マグネシウムとして下記の性状を有するものを用いた。
・平均粒径 (D50) :13.73μm
・標準偏差 :0.473μm
・1μm未満 :4.04%
・5μm未満〜1μmの粒子 :11.36%
・15μm未満〜5μmの粒子 :24.15%
・15μm以上 :60.45%
(Comparative Example 1)
The thing with the following property was used as magnesium oxide used for the solidification material for soil.
・ Average particle diameter (D 50 ): 13.73 μm
Standard deviation: 0.473 μm
・ Less than 1 μm: 4.04%
-Particles of less than 5 μm to 1 μm: 11.36%
-Particles of less than 15 μm to 5 μm: 24.15%
・ 15μm or more: 60.45%

上記酸化マグネシウム100重量部と硫酸アルミニウム(固化剤)20重量部とからなる土壌用固化材100kgを火山灰土(関東ローム)に1mに添加し、混合攪拌した。この処理土壌を大気中で養生した場合の固化状況を表1に示す。 100 kg of solidified material for soil consisting of 100 parts by weight of magnesium oxide and 20 parts by weight of aluminum sulfate (solidifying agent) was added to 1 m 3 of volcanic ash soil (Kanto loam), and mixed and stirred. Table 1 shows the solidification status when this treated soil is cured in the atmosphere.

Figure 2006219547
Figure 2006219547

表1から明らかとなるように、実施例1は比較例1に比して、火山灰土に対する固化を迅速に行い、且つ、高い固化強度を速やかに付与することができる。表1に掲載した内容から、7日後〜20日後の一軸圧縮強さを見ると実施例の方が高くなっている。そして、60日後の固化強度に関しては、実施例及び比較例共に大きな差異は無いように思われるが、実施例の方が若干高めの強度となる。これらのことから、土壌固化剤に含まれる酸化マグネシウムの粒径が細かくなることにより、反応性が上がり固化速度が上昇し、同時に良好な固化強度を得ることが出来ることが理解出来る。   As can be seen from Table 1, compared to Comparative Example 1, Example 1 can quickly solidify volcanic ash soil and can quickly impart high solidification strength. From the contents listed in Table 1, the uniaxial compression strength after 7 to 20 days is higher in the examples. And about the solidification intensity | strength after 60 days, although it seems that there is no big difference in an Example and a comparative example, the Example becomes a slightly higher intensity | strength. From these facts, it can be understood that when the particle size of magnesium oxide contained in the soil solidifying agent is reduced, the reactivity is increased and the solidification rate is increased, and at the same time, good solidification strength can be obtained.

本発明の土壌用固化材は、特定の粉体特性を有する酸化マグネシウムを用いていることから、各種土壌の固化を迅速に行い、且つ、高い固化強度を付与することができる。このため、各種土壌用の固化材として工期の短縮化が可能で、広範な用途に好適に用いられる。   Since the solidified material for soil of the present invention uses magnesium oxide having specific powder characteristics, it can quickly solidify various soils and impart high solidification strength. For this reason, the construction period can be shortened as a solidifying material for various soils, and it is suitably used for a wide range of applications.

Claims (7)

酸化マグネシウムを主成分とする土壌用固化材であって、
当該酸化マグネシウムは、平均粒径(D50)が2.50μm〜4.50μm、標準偏差が0.20μm〜0.35μmである酸化マグネシウム粉であることを特徴とする土壌用固化材。
A solidifying material for soil mainly composed of magnesium oxide,
The magnesium oxide is a magnesium oxide powder having an average particle size (D 50 ) of 2.50 μm to 4.50 μm and a standard deviation of 0.20 μm to 0.35 μm.
当該酸化マグネシウム粉の粉粒の持つ粒度分布が、5μm未満〜1μmの粒子が60%以上、15μm未満〜5μmの粒子が35%以下であることを特徴とする請求項1に記載の土壌用固化材。 The solidification for soil according to claim 1, wherein the particle size distribution of the magnesium oxide powder is 60% or more of particles of less than 5 µm to 35% of particles of less than 15 µm to 5 µm. Wood. 上記酸化マグネシウム粉の平均粒径(D50)が3.00μm〜4.00μm、標準偏差が0.25μm〜0.30μmである請求項1又は請求項2に記載の土壌用固化材。 The solidified material for soil according to claim 1 or 2, wherein the magnesium oxide powder has an average particle size (D 50 ) of 3.00 µm to 4.00 µm and a standard deviation of 0.25 µm to 0.30 µm. 当該酸化マグネシウム粉の粉粒の持つ粒度分布が、5μm未満〜1μmの粒子が65%〜75%、15μm未満〜5μmの粒子が25%〜30%である請求項3に記載の土壌用固化材。 4. The solidified material for soil according to claim 3, wherein the particle size distribution of the magnesium oxide powder particles is 65% to 75% of particles of less than 5 μm to 1 μm and 25% to 30% of particles of less than 15 μm to 5 μm. . 固化剤を含有する請求項1〜請求項4のいずれかに記載の土壌用固化材。 The solidifying material for soil according to any one of claims 1 to 4, comprising a solidifying agent. 上記固化剤が多価金属塩である請求項5に記載の土壌用固化材。 The solidifying material for soil according to claim 5, wherein the solidifying agent is a polyvalent metal salt. pH調整剤、有機高分子凝集剤及び/又は吸水剤、及び固化促進剤のいずれか1種以上を含有する請求項1〜請求項6のいずれかに記載の土壌用固化材。 The solidifying material for soil according to any one of claims 1 to 6, comprising any one or more of a pH adjuster, an organic polymer flocculant and / or a water absorbing agent, and a solidification accelerator.
JP2005032474A 2005-02-09 2005-02-09 Soil-solidifying material Pending JP2006219547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032474A JP2006219547A (en) 2005-02-09 2005-02-09 Soil-solidifying material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032474A JP2006219547A (en) 2005-02-09 2005-02-09 Soil-solidifying material

Publications (1)

Publication Number Publication Date
JP2006219547A true JP2006219547A (en) 2006-08-24

Family

ID=36982073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032474A Pending JP2006219547A (en) 2005-02-09 2005-02-09 Soil-solidifying material

Country Status (1)

Country Link
JP (1) JP2006219547A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481360B1 (en) * 2009-10-05 2010-06-16 太平洋セメント株式会社 Insolubilizing material
JP2010131517A (en) * 2008-12-04 2010-06-17 Taiheiyo Cement Corp Insolubilizing agent
JP2013150952A (en) * 2012-01-25 2013-08-08 Ube Industries Ltd Insolubilizing method
JP2014088521A (en) * 2012-10-31 2014-05-15 Taiheiyo Cement Corp Solidification material and processing method of contaminated soil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239660A (en) * 1999-02-17 2000-09-05 Tousei Sangyo Kk Soil-solidifying agent
JP2002206090A (en) * 2000-11-09 2002-07-26 Matsuda Giken Kogyo Kk Neutral soil-solidifying agent and method of improving ground and the like, and means for preventing elution of heavy metal
JP2003334526A (en) * 2002-05-21 2003-11-25 Konoike Constr Ltd Method for solidifying and insolubilizing polluted soil, or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239660A (en) * 1999-02-17 2000-09-05 Tousei Sangyo Kk Soil-solidifying agent
JP2002206090A (en) * 2000-11-09 2002-07-26 Matsuda Giken Kogyo Kk Neutral soil-solidifying agent and method of improving ground and the like, and means for preventing elution of heavy metal
JP2003334526A (en) * 2002-05-21 2003-11-25 Konoike Constr Ltd Method for solidifying and insolubilizing polluted soil, or the like

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131517A (en) * 2008-12-04 2010-06-17 Taiheiyo Cement Corp Insolubilizing agent
JP4481360B1 (en) * 2009-10-05 2010-06-16 太平洋セメント株式会社 Insolubilizing material
JP2011079919A (en) * 2009-10-05 2011-04-21 Taiheiyo Cement Corp Insolubilizing material
JP2013150952A (en) * 2012-01-25 2013-08-08 Ube Industries Ltd Insolubilizing method
JP2014088521A (en) * 2012-10-31 2014-05-15 Taiheiyo Cement Corp Solidification material and processing method of contaminated soil

Similar Documents

Publication Publication Date Title
JP2001348571A (en) Ground-modifying material
JP2008255193A (en) Soil hardener
JP3479715B2 (en) Soil solidifying agent
JP2006219547A (en) Soil-solidifying material
KR101475883B1 (en) Composition for promoting solidification of soil
JP2006272286A (en) Grouting material for soil improvement and insolubilization method of soil contaminant using the same
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP5423959B2 (en) Fast-hardening injection material using fast-curing material for injection material
EP2113494B1 (en) Cement additive, cement composition, cement composition comprising waste material, and processes for making and using the same
WO2019244856A1 (en) Heavy metal-insolubilized solidification material and technique for improving contaminated soil
TWI434818B (en) Manufacture of artificial stone
JP2006265885A (en) Treating method of construction sludge generated in cellular shield construction method
JP7244971B1 (en) Ground consolidation material and ground grouting method using it
JP2015181994A (en) Selenium insolubilizing material for soil, and method for insolubilizing selenium in soil
CN1329336C (en) Cement early strength agent and its prepn
JP6269721B2 (en) How to improve dredged soil
JP2019143030A (en) Modifier of soft weak soil or the like, and solidification treatment method of remaining soil
JP4564647B2 (en) Soil solidifying agent
JP2002060751A (en) Hexavalent chromium elution-reducing agent and cement composition by using the same
KR100881149B1 (en) High water content dredging mud solidification stabilizer and it&#39;s improved soil production method
JP6331514B2 (en) Slightly acidic solidification method for soil
JP6204099B2 (en) Ground improvement method
JP6854382B1 (en) Soil pavement material and soil pavement method
JP2006143976A (en) Method and apparatus for reduction of leaching out of heavy metals in improved matter
KR20130076244A (en) Stabilization material for heavy metals from wastes by hauyne and gypsum and controlling method for leaching using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110714