JP2006143976A - Method and apparatus for reduction of leaching out of heavy metals in improved matter - Google Patents

Method and apparatus for reduction of leaching out of heavy metals in improved matter Download PDF

Info

Publication number
JP2006143976A
JP2006143976A JP2004339843A JP2004339843A JP2006143976A JP 2006143976 A JP2006143976 A JP 2006143976A JP 2004339843 A JP2004339843 A JP 2004339843A JP 2004339843 A JP2004339843 A JP 2004339843A JP 2006143976 A JP2006143976 A JP 2006143976A
Authority
JP
Japan
Prior art keywords
heavy metals
ground
cement
improved
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004339843A
Other languages
Japanese (ja)
Other versions
JP3698714B1 (en
Inventor
Toshio Fukuda
利夫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004339843A priority Critical patent/JP3698714B1/en
Application granted granted Critical
Publication of JP3698714B1 publication Critical patent/JP3698714B1/en
Priority to TW94134215A priority patent/TWI265157B/en
Publication of JP2006143976A publication Critical patent/JP2006143976A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of realizing easily and economically a method of solidifying the ground firmly and preventing leaching out of heavy metals from the solidified improved matter as thoroughly as possible. <P>SOLUTION: The method comprises a mixing process of mixing a cement type ground-improving material with a liquid hardening agent which combines with heavy metals to produce only slightly soluble compounds and exerts alkalinity enhancing the action of precipitation and fixing within improved ground and a mixing treatment process of injecting the cement type improving material added and mixed with the liquid hardening agent into the ground while stirring with a stirring blade to construct improved matter. The liquid hardening agent is a 70 wt.% or higher solution: it contains a sodium salt as the main ingredient, is alkaline and has a content of chloride ion of 1-10 wt.% and a content of sodium ion of 1-10 wt.%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地盤の上層、中層、深層などにセメント系改良材を注入しつつ地盤を撹拌翼で撹拌して地盤の改良体を構築する混合処理工法において、改良体からの有害な重金属類の溶出量を低減させるための液状硬化剤を利用した改良体中の重金属の溶出を低減する方法及びその装置に関するものである。   The present invention is a mixed processing method in which a ground improvement body is constructed by stirring the ground with a stirring blade while injecting a cement-based improvement material into the upper layer, middle layer, deep layer, etc. of the ground. The present invention relates to a method and apparatus for reducing elution of heavy metals in an improved body using a liquid curing agent for reducing the amount of elution.

軟弱なシルト質粘土地盤や柔らかい砂質地盤で構成されている地盤上に、道路、護岸岸壁などの構造物や建築物を構築するに際して、安定性の確保、沈下防止、側方移動防止、液状化防止などを目的として、地盤の上層、中層、深層などをセメント系改良材で固化して、強固な地盤を確保するために、混合処理工法が行なわれている。
図2に示すように、前記セメント系改良材を地盤31中に注入しながら撹拌して固化することで強固な改良体26が得られる。この改良体26は、杭式、壁式、格子式、ブロック式など様々な形状に改良される。この工法に使用されているセメント系改良材としては、普通ポルトランドセメント、高炉セメントB種の他、セメント系固化材が用いられている。必要に応じてセメントスラリーの流動性を保つためにAE減水剤遅延型の混和剤が用いられることもある。
改良体26からの六価クロム等の重金属の溶出は、土とセメント系改良材を混合して固化する過程で、水和反応によりセメントから溶出した六価クロムの重金属が同時に生成する水和物で十分固定できなかった場合に特に発生し、水和物生成の阻害が著しい火山灰質粘土等を改良した場合に土壌環境基準を上回る六価クロムの重金属が溶出する場合がある。
When building structures and buildings such as roads and revetments on soft silty clay ground and soft sandy ground, ensuring stability, preventing settlement, preventing side movement, liquid For the purpose of preventing erosion and the like, a mixed processing method is performed in order to solidify the upper layer, middle layer, deep layer, etc. of the ground with a cement-based improving material to ensure a solid ground.
As shown in FIG. 2, a solid improvement body 26 is obtained by stirring and solidifying the cement-based improvement material while being injected into the ground 31. The improved body 26 is improved to various shapes such as a pile type, a wall type, a lattice type, and a block type. As the cement-based improving material used in this construction method, ordinary portland cement and blast furnace cement B type as well as cement-based solidifying material are used. If necessary, an AE water reducing agent delayed type admixture may be used to maintain the fluidity of the cement slurry.
The elution of heavy metals such as hexavalent chromium from the improved body 26 is a hydrate in which the heavy metals of hexavalent chromium eluted from the cement by the hydration reaction are simultaneously generated in the process of mixing and solidifying the soil and the cement-based improving material. This occurs especially when it cannot be fixed sufficiently, and there is a case where heavy metals of hexavalent chromium exceeding the soil environment standard may be eluted when improving volcanic ash clay, which significantly inhibits hydrate formation.

また、混合処理工法で改良された改良体は、セメントの凝結及び硬化の後に生じた改良体水と周辺土壌との接触するときの浸出特性の問題がある。改良体又は改良体水の浸出の割合ができる限り少ないことが望まれ、それによって水の浸入に伴なう改良体中に包括された重金属が水の中に現われることのないようにしなければならない。それには、改良体の強度が決定的な意義を有し、改良体の強度、特にその耐圧強度及び表面強度もまた結果として重金属類が周囲に放出されることを避けるために最低限度を下回らないようにする必要がある。   Moreover, the improved body improved by the mixed treatment method has a problem of leaching characteristics when the improved body water generated after the setting and hardening of cement comes into contact with the surrounding soil. It is desirable that the rate of leaching of the improved body or the improved body water should be as small as possible, so that heavy metals encapsulated in the improved body due to water ingress should not appear in the water. . For this purpose, the strength of the improved body has a decisive significance, and the strength of the improved body, in particular its pressure strength and surface strength, also does not fall below a minimum to avoid heavy metals being released into the environment as a result. It is necessary to do so.

つぎに、固化処理された改良体26の長期健全性に関して、図2に示すように、改良体境界部においては施工後に材齢(水和反応)が経過するに従って、改良体26の強度低下現象が確認されている。
例えば、図2に示す杭式の場合、改良体26の直径Dは、長期間劣化しないことが健全性のために望ましいが、改良体周辺の地盤31の土壌条件によっては、改良体26内のCa量の流出32が起こり、改良体周辺劣化部33が発生し、この改良体周辺劣化部33の厚さdは、次第に進み、それに伴なって、改良体周辺劣化部33の強度は極端に低くなり、セメントを含んだ強度の低い土壌が存在することになる。改良体26の一部の改良体周辺劣化部33の強度低下をきたすだけでなく、改良体26の一部として構築された改良体周辺劣化部33で不溶化されていた六価クロムなどの重金属類が溶出する恐れが生じてくる。
Next, regarding the long-term soundness of the solidified improved body 26, as shown in FIG. 2, the strength of the improved body 26 decreases as the material age (hydration reaction) elapses after construction at the boundary of the improved body. Has been confirmed.
For example, in the case of the pile type shown in FIG. 2, it is desirable for the soundness that the diameter D of the improved body 26 does not deteriorate for a long time, but depending on the soil conditions of the ground 31 around the improved body, Ca outflow 32 occurs, and an improved body peripheral deterioration portion 33 is generated. The thickness d of the improved body peripheral deterioration portion 33 gradually increases, and accordingly, the strength of the improved body peripheral deterioration portion 33 is extremely increased. There will be low-strength soil containing cement. Heavy metals such as hexavalent chromium which have been insolubilized in the improved body peripheral deterioration portion 33 constructed as a part of the improved body 26 as well as a reduction in strength of the improved body peripheral deterioration portion 33 of a part of the improved body 26 May be eluted.

一方、土壌汚染対策として、混合処理工法は、比較的深部の汚染に対して掘削除去ができない場合に適用され、重金属等の有害物質に汚染された地盤にセメント系改良材などを注入し、現位置撹拌することにより、地盤から溶出しないように封じ込めるものである。重金属類に汚染されている土壌を固化しても、重金属類の含有量が低減するわけではないが、基本的にこの工法で固化することで溶出が防止されることになる。
しかしながら、上述した改良体から周辺未改良地盤部へのCa量溶出に伴う改良体の劣化の進行に伴い、改良体に封じ込められている有害物質が溶出することになる。
On the other hand, as a countermeasure against soil contamination, the mixed treatment method is applied when excavation and removal cannot be performed for relatively deep contamination, and cement-based improvement materials are injected into the ground contaminated with toxic substances such as heavy metals. By position agitation, it is contained so as not to elute from the ground. Solidifying soil contaminated with heavy metals does not reduce the content of heavy metals, but elution is basically prevented by solidifying with this construction method.
However, with the progress of the deterioration of the improved body accompanying the elution of the Ca amount from the improved body to the surrounding unimproved ground part, harmful substances contained in the improved body are eluted.

土壌汚染対策としての固化工法は、スラリー状のセメント系改良材、又は必要に応じてpHの低いセメントなどの改良材を汚染土壌中に注入し、改良材と汚染土を撹拌混合し両者の化学反応を利用して改良体中に汚染土を封じ込める工法である。セメント改良材としては、高炉セメントB種、普通ポルトランドセメント、セメント系固化材を用い、pHの上昇を極力抑える必要がある場合は、その目的にあったセメントを使用する。
特開2002−274907 特開2002−265253 特開2001−342461 特開2001−316158 特開2001−311077
The solidification method as a countermeasure against soil contamination consists of injecting a slurry-like cement-based improving material or, if necessary, an improving material such as cement having a low pH into the contaminated soil, stirring and mixing the improving material and the contaminated soil, It is a method of containing contaminated soil in the improved body using reaction. As the cement improving material, blast furnace cement type B, ordinary Portland cement, or cement-based solidifying material is used. When it is necessary to suppress the increase in pH as much as possible, a cement suitable for the purpose is used.
JP2002-274907 JP 2002-265253 A JP 2001-342461 A JP 2001-316158 A JP 2001-311077 A

そこで、本発明者等は、このようにして固化された改良体から溶出される六価クロムや、改良体の劣化による重金属類の溶出を低減するために種々検討したところ、セメント系改良材に、液状硬化剤を添加し、土壌に混合することにより、固化された改良体からの六価クロムその他の重金属類の溶出が抑制できることを見出した。
本発明が解決しようとする第1の課題は、地盤を強固に固化すると共に、固化された改良体からの重金属類の溶出を可能な限り防止する方法及び装置を提供することである。
本発明が解決しようとする第2の課題は、簡単で経済的に第1の課題を解決する方法及び装置を提供することである。
Therefore, the present inventors have made various studies in order to reduce elution of hexavalent chromium eluted from the solidified improved body and heavy metals due to deterioration of the improved body. It was found that by adding a liquid curing agent and mixing it with soil, elution of hexavalent chromium and other heavy metals from the solidified improved product can be suppressed.
The first problem to be solved by the present invention is to provide a method and an apparatus for solidifying the ground firmly and preventing elution of heavy metals from the solidified improved body as much as possible.
The second problem to be solved by the present invention is to provide a method and apparatus for solving the first problem in a simple and economical manner.

本発明は、改良すべき地盤にスラリー状のセメント系改良材を注入しつつ撹拌翼を推進し、地盤を撹拌混合して安定した改良体を形成する混合処理工法における重金属の溶出低減方法において、前記セメント系改良材に液状硬化剤を添加し、固化された改良体からの六価クロムその他の重金属類の溶出を抑制するための改良体中の重金属の溶出を低減する方法及びその装置である。
前記液状硬化剤は、70重量%以上の溶液に、ナトリウム塩が主成分として含まれるとともにアルカリ性を呈し、塩素イオンの含有率が1〜10重量%であり、かつ、ナトリウムイオンの含有率が1〜10重量%であり、コバルトの含有率が0.01〜0.1重量%である。
The present invention is a method for reducing heavy metal elution in a mixed processing method in which a stirring blade is propelled while injecting a slurry-like cement-based improving material into the ground to be improved, and the ground is stirred and mixed to form a stable improved body. A method and apparatus for reducing elution of heavy metals in an improved body by suppressing the elution of hexavalent chromium and other heavy metals from the solidified improved body by adding a liquid curing agent to the cement-based improved material .
The liquid curing agent contains sodium salt as a main component in a solution of 70% by weight or more, exhibits alkalinity, has a chlorine ion content of 1 to 10% by weight, and a sodium ion content of 1 The content of cobalt is 0.01 to 0.1% by weight.

本発明によれば、セメント系改良材に、重金属類と結合して難溶性の化合物を生成し、改良体中に沈殿・固定する作用を強化するためのアルカリ性を呈する液状硬化剤を付加したので、地盤を強固に固化すると共に、固化された改良体からの重金属類の溶出を可能な限り防止することができる。従って、改良体である混合処理土は、劣化することなく長期に安定した土壌を提供することができる。   According to the present invention, the cement-based improved material is added with a liquid curing agent exhibiting alkalinity to enhance the action of binding to heavy metals to form a poorly soluble compound and precipitating and fixing in the improved body. In addition to solidifying the ground firmly, elution of heavy metals from the solidified improved body can be prevented as much as possible. Therefore, the mixed treated soil, which is an improved body, can provide a stable soil for a long time without deterioration.

本発明によれば、70重量%以上の溶液に、ナトリウム塩が主成分として含まれるとともにアルカリ性を呈し、塩素イオンの含有率が1〜10重量%であり、かつ、ナトリウムイオンの含有率が1〜10重量%であり、コバルトの含有率が0.01〜0.1重量%であるアルカリ性を呈する液状硬化剤としたので、簡単で経済的に本発明の方法を実現することができる。特に、大量かつ広範囲での処理に効果的であり、トータルコストを安くすることができる。   According to the present invention, a sodium salt is contained as a main component in a solution of 70% by weight or more, exhibits alkalinity, has a chlorine ion content of 1 to 10% by weight, and has a sodium ion content of 1 10% by weight and the content of cobalt is 0.01 to 0.1% by weight. The liquid curing agent exhibiting alkalinity is used, so that the method of the present invention can be realized easily and economically. In particular, it is effective for a large amount and a wide range of processing, and the total cost can be reduced.

本発明による改良体中の重金属の溶出を低減する方法及びその装置は、次のような構成からなる。
(1)セメント系改良材は、その水和反応の過程で水酸化カルシウム(Ca(OH))を生成し、アルカリ性となる。この(Ca(OH))から解離した水酸基(OH)が重金属類と難溶性の水酸化物沈殿を生成し、改良体中に沈殿・固定する。
本発明の方法及び装置には、後述する特有な硬化剤が添加されることにより、前記改良体中への沈殿・固定作用を効果的に行なわせる。この硬化剤は、液状であることが好ましい。
例えば、六価クロムは、水に対する溶解性が高く、この溶解度の大きさは、地下水のpH・酸化還元電位などに左右される。六価クロムは、還元雰囲気で還元されて三価クロムになるため、六価クロムが溶出しない傾向を示す。三価クロムは、化学的に安定しているため、毒性が著しく下がる。
なお、特有な硬化剤は、粉末であってもよく、この場合には、セメント系改良材に水とともに混合する。
以下の実施例では、液状硬化剤が用いられる。
The method and apparatus for reducing elution of heavy metals in the improved body according to the present invention have the following configuration.
(1) The cement-based improving material generates calcium hydroxide (Ca (OH) 2 ) in the course of its hydration reaction, and becomes alkaline. The hydroxyl group (OH ) dissociated from (Ca (OH) 2 ) generates a hardly-soluble hydroxide precipitate with heavy metals, and precipitates and fixes in the improved body.
In the method and apparatus of the present invention, by adding a specific curing agent to be described later, the precipitation / fixing action in the improved body is effectively performed. This curing agent is preferably liquid.
For example, hexavalent chromium has high solubility in water, and the magnitude of this solubility depends on the pH of the groundwater, the oxidation-reduction potential, and the like. Hexavalent chromium is reduced in a reducing atmosphere to become trivalent chromium, so that hexavalent chromium tends not to elute. Since trivalent chromium is chemically stable, its toxicity is significantly reduced.
The specific curing agent may be a powder, and in this case, it is mixed with water in a cementitious improvement material.
In the following examples, a liquid curing agent is used.

(2)セメント系改良材は、その水和反応によりさまざまな水和物を生成し、これらの水和物が置換固溶や表面吸着により重金属類を固定する能力を有する。
pHが高いセメント改良土中の六価クロムが、セメント改良土より周辺未改良地盤に溶出するのは、周辺未改良地盤は、一般にセメント改良土よりpHが低いため、六価クロムは、土壌に吸着しやすい状態になるためである。
本発明に用いられる液状硬化剤は、この吸着作用を進行させない。
すなわち、液状硬化剤の存在により、六価クロムが周辺土壌に吸着される割合を減少させる。
(2) The cement-based improving material generates various hydrates by the hydration reaction, and these hydrates have an ability to fix heavy metals by substitution solid solution or surface adsorption.
The hexavalent chromium in the cement-modified soil with a high pH is eluted from the cement-improved soil into the surrounding unmodified ground because the surrounding unmodified ground is generally lower in pH than the cement-modified soil. It is because it will be in the state which is easy to adsorb | suck.
The liquid curing agent used in the present invention does not advance this adsorption action.
That is, the presence of the liquid curing agent reduces the rate at which hexavalent chromium is adsorbed on the surrounding soil.

(3)セメント系改良材に添加された液状硬化剤は、材齢の経過に伴なう水和作用の進行により生成した水和物が空隙を充填し、硬化体組織を緻密化する。この組織の緻密化により重金属を物理的に封じ込める作用を示す。 (3) In the liquid curing agent added to the cement-based improving material, the hydrate produced by the progress of the hydration action with the age of the material fills the voids and densifies the hardened body structure. This structure has the effect of physically containing heavy metals by densification.

セメント系改良材は、(1)、(2)及び(3)の相乗効果により、物理・化学的に重金属類の有害物質に対して安定な固化・不溶化効果を持つ。   The cement-based improving material has a solidifying and insolubilizing effect that is physically and chemically stable against harmful substances of heavy metals due to the synergistic effect of (1), (2) and (3).

従来から公知の一般的な混合処理工法、すなわち、地盤にセメント系改良材を注入しつつ地盤を撹拌翼で撹拌して改良体を構築する混合処理工法を図1に基づき説明する。
なお、混合処理工法は、様々な機械が用いられており、図1に示す実施例は、その一例である。
10は、アジテーターで、このアジテーター10には、セメント系改良材ホッパー11からセメント系改良材が投入され、希釈液としての水供給部12から水和反応のための水が投入され、アジテーター撹拌器13で撹拌される。
また、本発明の方法及び装置に用いられる硬化剤として、液状硬化剤ホッパー14から重金属類の無害化のための液状硬化剤が投入混合されて撹拌される。
A conventionally known general mixing treatment method, that is, a mixing treatment method in which an improved body is constructed by stirring the ground with a stirring blade while injecting a cement-based improving material into the ground will be described with reference to FIG.
In the mixing treatment method, various machines are used, and the embodiment shown in FIG. 1 is an example.
Reference numeral 10 denotes an agitator. The agitator 10 is supplied with a cement-based improving material from a cement-based improving material hopper 11, and is supplied with water for a hydration reaction from a water supply unit 12 as a diluting solution. 13 is stirred.
Further, as a curing agent used in the method and apparatus of the present invention, a liquid curing agent for detoxifying heavy metals is charged from the liquid curing agent hopper 14 and mixed and stirred.

撹拌混合されてセメント系改良材としてのグラウト液が得られ、このグラウト液がグラウトポンプ15から圧送管16に圧送される。圧送管16内のグラウト液量は、流量計17で計測され、また、地盤31への注入圧力は、圧力計18で計測される。
グラウト液の注入時には、バルブ28とバルブ30は閉じてバルブ19を開いて混合処理機20の撹拌軸22にグラウト液を圧送し、撹拌軸22の先端の吐出孔25から地盤31に注入する。このとき、駆動装置20で回転する撹拌軸22の先端に掘削翼24と撹拌翼23が設けられ、掘削翼24で地盤31を下向きに掘削し、グラウト液が混合するように撹拌翼23で地盤31を撹拌する。
グラウト液の注入後、材齢の経過で、地盤31の内部では水和作用が進行し、強固な改良体26が形成される。
なお、吐出孔25からのグラウト液は、地盤31を下向きに掘削している下降時に注入しても良いし、撹拌軸22の上昇時に注入するようにしても良い。また、撹拌軸22は、2軸以上であっても良い。
注入の終了後、バルブ19を閉じ、バルブ28とバルブ30を開いて圧縮機27から圧縮空気供給管35を介して圧搾空気を圧送管16に送ると、洗浄液槽29からの洗浄液が洗浄液供給管36を介して吸引されてバルブ19から先の圧送管16内に残っていたグラウト液が地盤31に噴射され、圧送管16内が洗浄される。
A grout liquid as a cement-based improving material is obtained by stirring and mixing, and this grout liquid is pumped from the grout pump 15 to the pressure feed pipe 16. The amount of grout liquid in the pressure feeding pipe 16 is measured by the flow meter 17, and the injection pressure to the ground 31 is measured by the pressure gauge 18.
When injecting the grouting liquid, the valve 28 and the valve 30 are closed and the valve 19 is opened to pump the grouting liquid to the agitation shaft 22 of the mixing processor 20 and inject it into the ground 31 from the discharge hole 25 at the tip of the agitation shaft 22. At this time, the excavation blade 24 and the stirring blade 23 are provided at the tip of the stirring shaft 22 rotated by the driving device 20, and the ground 31 is excavated downward by the excavation blade 24 so that the ground is mixed by the stirring blade 23 so that the grout liquid is mixed. 31 is stirred.
After the injection of the grouting liquid, the hydration action proceeds in the ground 31 as the material ages, and a strong improvement body 26 is formed.
The grout liquid from the discharge hole 25 may be injected when the ground 31 is being excavated downward, or may be injected when the stirring shaft 22 is raised. Further, the stirring shaft 22 may be two or more axes.
After the injection is finished, the valve 19 is closed, the valves 28 and 30 are opened, and the compressed air is sent from the compressor 27 via the compressed air supply pipe 35 to the pressure feed pipe 16, so that the cleaning liquid from the cleaning liquid tank 29 is washed with the cleaning liquid supply pipe. The grout liquid sucked through the valve 36 and remaining in the pressure feed pipe 16 from the valve 19 is sprayed to the ground 31 to clean the inside of the pressure feed pipe 16.

以上のような混合処理工法において、液状硬化剤ホッパー14から重金属類の無害化のための液状硬化剤がアジテーター10に投入されて、改良材ホッパー11からのセメント系改良材及び水供給部12からの水と一緒に撹拌混合される。前記液状硬化剤の添加量は、混合処理工法における改良対象土の性状に応じてセメント系改良材に対して0.3〜15重量%(C×wt%)の範囲内で設定する。この液状硬化剤のセメント系改良材への添加量は、添加効果を加味して適宜決められる。例えば、改良対象土が重金属類の含有量の多い性状を示す場合は、セメント系改良材に対する液状硬化剤の添加割合を多くし、含有量の少ない性状を示す場合は、セメント系改良材に対する液状硬化剤の添加割合を少なくする。また、前述の通り、改良体の強度が重金属類の溶出を低減するために極めて重要であるが、この強度を得るためには、一般的に、改良対象土1mあたりその地盤の性状によって、また、目標とする強度によってセメント系改良材の添加量が70〜300kgとされている。従って、液状硬化剤の添加割合をセメント系改良材の添加量が少ないときは多くし、多いときは少なくするなど、改良対象土に対するセメント系改良材の添加量に拘わらず、地盤に最適な液状硬化剤が添加されるように調整することが必要であり、このことにより、重金属の溶出を可及的に低減することができる。
この液状硬化剤の最良の配合の一例は、次の通りである。
70重量%以上の溶液にナトリウム塩が主成分として含まれて高いアルカリ性(具体的にはpH=10.4)を呈する。
塩素イオンの含有率が1〜10重量%(具体的には平均4.6重量%)。
ナトリウムイオンの含有率が1〜10重量%(具体的には平均4.8重量%)。
コバルトの含有率が0.01〜0.1重量%(具体的には平均0.06重量%)。
カルシウムイオンの含有率が0.1重量%以下。
蒸発残留物(10.5℃、24時間で測定)が10〜20重量%(具体的には平均16.7%)。
密度1.149g/cm
粘度4.4m・Pas。
In the above mixed processing method, a liquid curing agent for detoxifying heavy metals is introduced into the agitator 10 from the liquid curing agent hopper 14, and from the cement-based improvement material and water supply unit 12 from the improvement material hopper 11. Stir and mix with water. The addition amount of the liquid curing agent is set within a range of 0.3 to 15% by weight (C × wt%) with respect to the cement-based improvement material according to the property of the soil to be improved in the mixed processing method. The amount of the liquid curing agent added to the cement-based improving material is appropriately determined in consideration of the effect of addition. For example, if the soil to be improved shows properties with a high content of heavy metals, increase the ratio of the liquid hardener added to the cement-based improvement material, and if it shows properties with a low content, Reduce the proportion of hardener added. In addition, as described above, the strength of the improved body is extremely important for reducing the elution of heavy metals, but in order to obtain this strength, generally, according to the properties of the ground per 1 m 3 of the soil to be improved, Moreover, the addition amount of a cement-type improvement material shall be 70-300 kg by the target intensity | strength. Therefore, the liquid hardening agent is added when the addition amount of the cement-based improvement material is small, and when it is large, it is decreased. It is necessary to adjust so that a hardening | curing agent may be added, and, thereby, elution of heavy metal can be reduced as much as possible.
An example of the best formulation of this liquid curing agent is as follows.
A sodium salt is contained as a main component in a solution of 70% by weight or more and exhibits high alkalinity (specifically, pH = 10.4).
The content of chloride ions is 1 to 10% by weight (specifically, 4.6% by weight on average).
The content of sodium ions is 1 to 10% by weight (specifically, an average of 4.8% by weight).
The cobalt content is 0.01 to 0.1% by weight (specifically, an average of 0.06% by weight).
The content of calcium ions is 0.1% by weight or less.
The evaporation residue (measured at 10.5 ° C. for 24 hours) is 10 to 20% by weight (specifically, 16.7% on average).
Density 1.149 g / cm 3 .
Viscosity 4.4 m · Pas.

以上のような配合とした理由は、つぎのとおりである。
(1)セメント系改良材は、その水和反応の過程で水酸化カルシウム(Ca(OH))を生成し、アルカリ性となる。この(Ca(OH))から解離した水酸基(OH)が重金属類と難溶性の水酸化物沈殿を生成し、改良体中に沈殿・固定する。
本発明の方法及び装置に用いられる液状硬化剤は、この沈殿・固定作用をより効果的に行なわせる。
例えば、六価クロムは、水に対する溶解性が高く、この溶解度の大きさは、地下水のpH・酸化還元電位などに左右される。六価クロムは、還元雰囲気で還元されて三価クロムになるため、六価クロムが溶出しない傾向を示す。三価クロムは、化学的に安定しているため、毒性が著しく下がる。
液状硬化剤により酸化雰囲気にしゅう鉄酸を添加し、還元雰囲気へ転換を図った場合、六価クロム溶出濃度は、転換前の数分の1に低下した。
六価クロムは、還元性物質によって化学的に安定した三価クロムに還元されるため、還元性を有する土と改良材が混合される場合には、六価クロムは発生しにくくなる。
六価クロム固定能力の高いモノサルフェート相を生成するセメント鉱物(CA)の初期材齢での水和反応は非常に顕著であり、実際の改良体では、これらの水和生成物による六価クロムの固定も同時に作用するので、六価クロムの溶出はより抑制される。
The reason why the above composition is adopted is as follows.
(1) The cement-based improving material generates calcium hydroxide (Ca (OH) 2 ) in the course of its hydration reaction, and becomes alkaline. The hydroxyl group (OH ) dissociated from (Ca (OH) 2 ) generates a hardly-soluble hydroxide precipitate with heavy metals, and precipitates and fixes in the improved body.
The liquid curing agent used in the method and apparatus of the present invention makes this precipitation / fixing action more effective.
For example, hexavalent chromium has high solubility in water, and the magnitude of this solubility depends on the pH of the groundwater, the oxidation-reduction potential, and the like. Hexavalent chromium is reduced in a reducing atmosphere to become trivalent chromium, so that hexavalent chromium tends not to elute. Since trivalent chromium is chemically stable, its toxicity is significantly reduced.
When oxalic acid was added to the oxidizing atmosphere with a liquid curing agent to convert to a reducing atmosphere, the hexavalent chromium elution concentration decreased to a fraction of that before the conversion.
Hexavalent chromium is reduced to chemically stable trivalent chromium by a reducing substance, so that hexavalent chromium is less likely to be generated when reducing earth and improving material are mixed.
The hydration reaction at the initial age of the cement mineral (C 3 A) that produces a monosulfate phase having a high hexavalent chromium fixing ability is very remarkable. Since fixation of valent chromium acts simultaneously, elution of hexavalent chrome is further suppressed.

(2)セメント系改良材は、その水和反応によりさまざまな水和物を生成し、これらの水和物が置換固溶や表面吸着により重金属類を固定する能力を有する。
pHが高いセメント改良土中の六価クロムが、セメント改良土より周辺未改良地盤に溶出するのは、周辺未改良地盤は、一般にセメント改良土よりpHが低いため、六価クロムは、土壌に吸着しやすい状態になるためである。
本発明の方法及び装置に用いられる液状硬化剤は、この吸着作用を進行させない。
すなわち、液状硬化剤の存在により、改良体26から六価クロムが周辺未改良地盤に吸着される割合を減少させる。
酸化鉄は、土粒子表面にごく普通に存在し、この酸化鉄の含有率の低い周辺未改良地盤では、添加剤の存在によるpHの低下によって六価クロムの吸着が増加する。
このようにして、六価クロムは、改良体により強く吸着することにより、周辺未改良地盤へ溶出しなくなる。
(2) The cement-based improving material generates various hydrates by the hydration reaction, and these hydrates have an ability to fix heavy metals by substitution solid solution or surface adsorption.
The hexavalent chromium in the cement-modified soil with a high pH is eluted from the cement-improved soil into the surrounding unmodified ground because the surrounding unmodified ground is generally lower in pH than the cement-modified soil. It is because it will be in the state which is easy to adsorb | suck.
The liquid curing agent used in the method and apparatus of the present invention does not advance this adsorption action.
That is, due to the presence of the liquid curing agent, the rate at which hexavalent chromium is adsorbed from the improved body 26 to the surrounding unmodified ground is reduced.
Iron oxide is very commonly present on the surface of the soil particles, and in the surrounding unmodified ground where the content of iron oxide is low, the adsorption of hexavalent chromium increases due to the decrease in pH due to the presence of the additive.
In this way, hexavalent chromium does not elute to the surrounding unmodified ground by being strongly adsorbed by the improved body.

(3)セメント系改良材に添加された液状硬化剤は、材齢の経過に伴なう水和作用の進行により生成した水和物が空隙を充填し、硬化体組織を緻密化する。この組織の緻密化により重金属を物理的に封じ込める作用を示す。 (3) In the liquid curing agent added to the cement-based improving material, the hydrate produced by the progress of the hydration action with the age of the material fills the voids and densifies the hardened body structure. This structure has the effect of physically containing heavy metals by densification.

セメント系改良材は、以上の(1)、(2)及び(3)の相乗効果により、物理・化学的に重金属類の有害物質に対して安定な固化・不溶化効果を持つ。   The cement-based improving material has a solidifying / insolubilizing effect that is physically and chemically stable against harmful substances such as heavy metals due to the synergistic effects of (1), (2), and (3).

前記液状硬化剤の前記配合による作用効果をさらに詳しく説明する。
液状硬化剤に含まれるナトリウム塩の主成分は、炭酸ナトリウム及び塩化ナトリウムである。炭酸ナトリウムは、液状硬化剤をセメント系改良材に添加して固化する場合に、固化された改良体のアルカリ性を助長して中性化による機械的強度の低下を防止することを主目的として添加される成分であり、また、塩化ナトリウムは、液状硬化剤をセメント系改良材に添加して固化する場合に、炭酸ナトリウムとともにセメント水和の促進を図る目的で添加される成分である。したがって、改良体から六価クロム等の重金属やホルモン阻害化学物質が溶出されて拡散されることを確実に防止できる。
The effect of the said liquid hardening | curing agent by the said mixing | blending is demonstrated in detail.
The main components of the sodium salt contained in the liquid curing agent are sodium carbonate and sodium chloride. Sodium carbonate is added mainly for the purpose of preventing the deterioration of mechanical strength due to neutralization by promoting the alkalinity of the solidified improved body when solidifying by adding a liquid hardener to the cement-based improving material. Sodium chloride is a component added for the purpose of promoting cement hydration together with sodium carbonate when a liquid curing agent is added to a cement-based improving material and solidified. Therefore, it is possible to reliably prevent the heavy metal such as hexavalent chromium and the hormone-inhibiting chemical substance from being eluted and diffused from the improved body.

液状硬化剤における塩素イオンの含有率を1〜10重量%の範囲としたのは、1重量%未満では、塩化ナトリウム等で供給される塩素イオンの添加効果が改良体において発揮されず、10重量%を超えると、塩素イオンが過剰となり、改良体への添加効果が頭打ちとなるからである。したがって、この塩素イオンのセメント系改良材への添加量は、添加効果を加味して適宜決められる。例えば、セメント系改良材に対する液状硬化剤の添加割合が多い場合には、塩素イオンの添加量を前記範囲の下限側に設定し、液状硬化剤の添加割合が少ない場合には、塩素イオンの添加量を前記範囲の上限側に設定することが望ましい。   The reason why the content of chlorine ions in the liquid curing agent is in the range of 1 to 10% by weight is that when less than 1% by weight, the effect of adding chlorine ions supplied by sodium chloride or the like is not exhibited in the improved body, and 10% by weight. This is because if it exceeds 50%, chlorine ions become excessive and the effect of addition to the improved product reaches its peak. Therefore, the amount of chlorine ions added to the cement-based improving material is appropriately determined in consideration of the effect of addition. For example, when the addition ratio of the liquid curing agent to the cement-based improvement material is large, the addition amount of chlorine ions is set to the lower limit side of the above range, and when the addition ratio of the liquid curing agent is small, addition of chlorine ions It is desirable to set the amount on the upper limit side of the range.

液状硬化剤におけるナトリウムイオンの含有率を1〜10重量%の範囲としたのは、1重量%未満では、塩化ナトリウムや炭酸ナトリウムで供給されるナトリウムイオンの添加効果が改良体において発揮されず、10重量%を超えると、ナトリウムイオンが過剰となり、改良体への添加効果が頭打ちとなるからである。したがって、このナトリウムイオンのセメント系改良材への添加量は、添加効果を加味して適宜決められる。例えば、セメント系改良材に対する液状硬化剤の添加割合が多い場合には、ナトリウムイオンの添加量を前記範囲の下限側に設定し、液状硬化剤の添加割合が少ない場合には、ナトリウムイオンの添加量を前記範囲の上限側に設定することが望ましい。   The content of sodium ions in the liquid curing agent is in the range of 1 to 10% by weight. If the content is less than 1% by weight, the effect of adding sodium ions supplied by sodium chloride or sodium carbonate is not exhibited in the improved product, This is because when it exceeds 10% by weight, sodium ions become excessive, and the effect of addition to the improved product reaches its peak. Therefore, the amount of sodium ion added to the cement-based improving material is appropriately determined in consideration of the effect of addition. For example, when the addition ratio of the liquid curing agent to the cement-based improvement material is large, the addition amount of sodium ions is set to the lower limit side of the above range, and when the addition ratio of the liquid curing agent is small, addition of sodium ions It is desirable to set the amount on the upper limit side of the range.

液状硬化剤には、この液状硬化剤をセメント系改良材へ添加して改良体とする場合に、炭酸ナトリウムと同様に改良体のアルカリ性を助長して中性化による機械的強度の低下を防止することを主目的として添加されるアンモニウム塩が含まれている。このアンモニウム塩の含有量は、2重量%以下であることが好ましい。また、アンモニウム塩は、塩化アンモニウムであることが好ましい。   For liquid hardeners, when this liquid hardener is added to a cement-based improving material to improve it, it promotes the alkalinity of the improved body in the same way as sodium carbonate to prevent the mechanical strength from decreasing due to neutralization. Ammonium salts added for the main purpose are included. The content of this ammonium salt is preferably 2% by weight or less. The ammonium salt is preferably ammonium chloride.

液状硬化剤における蒸発残留物の含有率を10〜20重量%の範囲としたのは、10重量%未満では、前記塩素イオン及びナトリウムイオンの添加効果を期待できる合計含有率を確保することができず、また、20重量%を超える場合には、前記塩素イオン及びナトリウムイオンの添加効果が頭打ちになるばかりでなく、液状硬化剤の含有率を十分確保できないからである。   The content of the evaporation residue in the liquid curing agent is in the range of 10 to 20% by weight. If the content is less than 10% by weight, the total content can be ensured in which the effect of adding the chlorine ions and sodium ions can be expected. In addition, when the amount exceeds 20% by weight, not only the effect of adding the chlorine ions and sodium ions reaches a peak, but also the content of the liquid curing agent cannot be sufficiently ensured.

液状硬化剤におけるコバルトの含有率を0.01〜0.1重量%としたのは、錯体を形成するコバルト化合物を含有することにより、改良体の機械的強度を上昇させ、また、重金属や有害物質を保持し、溶出を防止することができるためである。   The reason why the content of cobalt in the liquid curing agent is 0.01 to 0.1% by weight is to increase the mechanical strength of the improved body by containing a cobalt compound that forms a complex, This is because the substance can be retained and elution can be prevented.

液状硬化剤におけるカルシウムイオンの含有率を0.1重量%以下としたのは、カルシウムイオンが含まれる場合には、前記ナトリウム塩としての炭酸ナトリウムとの反応で生成される炭酸カルシウムの量が無視できない程度になり、この炭酸カルシウムが改良体の性状に悪影響を与え、結果として前記有害物質の溶出、拡散を有効に防止できないからである。   The reason why the content of calcium ions in the liquid curing agent is 0.1% by weight or less is that when calcium ions are included, the amount of calcium carbonate produced by the reaction with sodium carbonate as the sodium salt is ignored. This is because the calcium carbonate adversely affects the properties of the improved body, and as a result, the elution and diffusion of the harmful substances cannot be effectively prevented.

セメント系改良材による固化・不溶化とともに、粘土鉱物の吸着特性や遮水特性を利用した覆土・敷土工法や遮水工法を併用することで周辺環境への影響をより低減することが可能である。   In addition to solidification and insolubilization with cement-based improvement materials, it is possible to further reduce the impact on the surrounding environment by using a soil-covering / laying-in construction method and a water-impervious construction method that utilize the adsorption properties and water-insulating properties of clay minerals. .

本発明による混合処理工法における改良体中の重金属の溶出を低減する方法の説明図である。It is explanatory drawing of the method of reducing the elution of the heavy metal in the improvement body in the mixing treatment method by this invention. 本発明による混合処理工法における改良体中の重金属の溶出を低減する方法の概念図である。It is a conceptual diagram of the method of reducing the elution of the heavy metal in the improved body in the mixing treatment method by this invention.

符号の説明Explanation of symbols

10…アジテーター、11…セメント系改良材ホッパー、12…水供給部、13…アジテーター撹拌器、14…液状硬化剤ホッパー、15…グラウトポンプ、16…圧送管、17…流量計、18…圧力計、19…バルブ、20…混合処理機、21…駆動装置、22…撹拌軸、23…撹拌翼、24…掘削翼、25…吐出孔、26…改良体、27…圧縮機、28…バルブ、29…洗浄液槽、30…バルブ、31…地盤、32…Caの溶出、33…改良体周辺劣化部、34…支持地盤、35…圧縮空気供給管、36…洗浄液供給管。
DESCRIPTION OF SYMBOLS 10 ... Agitator, 11 ... Cement system improvement material hopper, 12 ... Water supply part, 13 ... Agitator stirrer, 14 ... Liquid hardening agent hopper, 15 ... Grout pump, 16 ... Pumping pipe, 17 ... Flow meter, 18 ... Pressure gauge , 19 ... valve, 20 ... mixing processor, 21 ... drive device, 22 ... stirring shaft, 23 ... stirring blade, 24 ... excavation blade, 25 ... discharge hole, 26 ... improved body, 27 ... compressor, 28 ... valve, DESCRIPTION OF SYMBOLS 29 ... Cleaning liquid tank, 30 ... Valve, 31 ... Ground, 32 ... Ca elution, 33 ... Improved body periphery deterioration part, 34 ... Support ground, 35 ... Compressed air supply pipe, 36 ... Cleaning liquid supply pipe.

Claims (8)

セメント系の地盤改良材に、重金属類と結合して難溶性の化合物を生成し地盤の改良体中に沈殿・固定する作用を強化するためのアルカリ性を呈する硬化剤を付加混合する液状硬化剤の混合工程と、この液状硬化剤の付加混合されたセメント系改良材を軟弱地盤又はゆるい砂質地盤に注入しつつ撹拌翼で撹拌して改良体を構築する混合処理工程とからなることを特徴とする改良体中の重金属の溶出を低減する方法。   A liquid curing agent that is added to a cement-based ground improvement material and combined with heavy metals to form a sparingly soluble compound and to enhance the action of precipitation and fixation in the ground improvement body. It is characterized by comprising a mixing step and a mixing treatment step of constructing an improved body by stirring with a stirring blade while injecting the cement-based improving material additionally mixed with the liquid curing agent into soft ground or loose sandy ground A method for reducing elution of heavy metals in an improved body. 硬化剤は、液状であり、70重量%以上の溶液に、ナトリウム塩が主成分として含まれるとともにアルカリ性を呈し、塩素イオンの含有率が1〜10重量%であり、かつ、ナトリウムイオンの含有率が1〜10重量%であり、コバルトの含有率が0.01〜0.1重量%であることを特徴とする請求項1記載の改良体中の重金属の溶出を低減する方法。   The curing agent is in a liquid form, and contains a sodium salt as a main component in a solution of 70% by weight or more, exhibits alkalinity, has a chlorine ion content of 1 to 10% by weight, and a sodium ion content. The method for reducing elution of heavy metals in the improved body according to claim 1, wherein the content of cobalt is 1 to 10 wt% and the content of cobalt is 0.01 to 0.1 wt%. 硬化剤は、液状であり、セメント系改良材の水和反応により生成された水和物が表面吸着により重金属類を固定する能力を強化するために、改良体のpHが周辺土壌より高くなるように塩素イオンとナトリウムイオンの含有率を調整したことを特徴とする請求項1又は2記載の改良体中の重金属の溶出を低減する方法。   The hardening agent is liquid, and the hydrate produced by the hydration reaction of the cement-based improvement material enhances the ability to fix heavy metals by surface adsorption so that the pH of the improvement body becomes higher than the surrounding soil. The method for reducing elution of heavy metals in the improved product according to claim 1 or 2, wherein the contents of chlorine ions and sodium ions are adjusted. 液状硬化剤を添加したセメント系改良材による混合処理工法の改良体は、固化・不溶化とともに粘土鉱物の吸着特性や遮水特性を利用したことを特徴とする請求項1,2又は3記載の改良体中の重金属の溶出を低減する方法。   The improvement according to claim 1, 2 or 3, characterized in that the improved body of the mixed processing method using a cement-based improving material to which a liquid hardener is added utilizes the adsorption characteristics and water shielding characteristics of clay minerals in addition to solidification and insolubilization. A method for reducing elution of heavy metals in the body. アルカリ性を呈する液状硬化剤の添加量は、混合処理工法における改良対象土の性状に応じてセメント系改良材に対して0.3〜15重量%(C×wt%)の範囲内で設定するようにしたことを特徴とする請求項1、2、3又は4記載の改良体中の重金属の溶出を低減する方法。   The addition amount of the liquid curing agent exhibiting alkalinity is set within a range of 0.3 to 15% by weight (C × wt%) with respect to the cement-based improvement material according to the property of the soil to be improved in the mixed processing method. The method for reducing elution of heavy metals in the improved product according to claim 1, 2, 3 or 4. セメント系の地盤改良材に、重金属類と結合して難溶性の化合物を生成し地盤の改良体中に沈殿・固定する作用を強化するためのアルカリ性を呈する硬化剤を付加混合して混合スラリーとする混合槽と、前記混合スラリーを注入地盤へ圧送する圧送管と、この圧送管から供給される混合スラリーを地盤に注入しつつ撹拌する掘削撹拌機とを具備したことを特徴とする改良体中の重金属の溶出を低減する装置。   A cement-based ground improvement material is combined with a mixed slurry by adding an alkaline curing agent to strengthen the action of forming a poorly soluble compound by combining with heavy metals and precipitating and fixing in the ground improvement body. In an improved body comprising a mixing tank, a pumping pipe for pumping the mixed slurry to the injection ground, and an excavating stirrer for stirring while injecting the mixed slurry supplied from the pumping pipe to the ground A device that reduces the elution of heavy metals. 混合スラリーを注入地盤へ圧送する圧送管に、圧縮空気を供給する圧縮空気供給管を連結したことを特徴とする請求項6記載の改良体中の重金属の溶出を低減する装置。   The apparatus for reducing elution of heavy metals in an improved body according to claim 6, wherein a compressed air supply pipe for supplying compressed air is connected to a pressure feeding pipe for feeding the mixed slurry to the injection ground. 混合スラリーを注入地盤へ圧送する圧送管に、この圧送管へ洗浄液を供給する洗浄液供給管を連結したことを特徴とする請求項6又は7記載の改良体中の重金属の溶出を低減する装置。
The apparatus for reducing elution of heavy metals in an improved body according to claim 6 or 7, wherein a cleaning liquid supply pipe for supplying a cleaning liquid to the pressure feeding pipe is connected to a pressure feeding pipe for pumping the mixed slurry to the injection ground.
JP2004339843A 2004-11-25 2004-11-25 Method and apparatus for reducing elution of heavy metals in improved body Active JP3698714B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004339843A JP3698714B1 (en) 2004-11-25 2004-11-25 Method and apparatus for reducing elution of heavy metals in improved body
TW94134215A TWI265157B (en) 2004-11-25 2005-09-30 Method for reducing heavy metal leach-out in modifying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004339843A JP3698714B1 (en) 2004-11-25 2004-11-25 Method and apparatus for reducing elution of heavy metals in improved body

Publications (2)

Publication Number Publication Date
JP3698714B1 JP3698714B1 (en) 2005-09-21
JP2006143976A true JP2006143976A (en) 2006-06-08

Family

ID=35093853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339843A Active JP3698714B1 (en) 2004-11-25 2004-11-25 Method and apparatus for reducing elution of heavy metals in improved body

Country Status (2)

Country Link
JP (1) JP3698714B1 (en)
TW (1) TWI265157B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291057A (en) * 2007-05-22 2008-12-04 Shimoda Gijutsu Kenkyusho:Kk Grout and method of grouting by using the same
JP2009102925A (en) * 2007-10-25 2009-05-14 Toshio Fukuda Degradation reducing method and degradation reducing material for cement-based mixed improved body
JP2017530274A (en) * 2014-09-03 2017-10-12 ヨーグ イーアンドシー Environmentally friendly earth retaining wall and its construction method
JP2020147681A (en) * 2019-03-13 2020-09-17 デンカ株式会社 Ground improving material, cement milk and ground improving method
JP7465115B2 (en) 2020-02-27 2024-04-10 太平洋セメント株式会社 Ground improvement material and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291057A (en) * 2007-05-22 2008-12-04 Shimoda Gijutsu Kenkyusho:Kk Grout and method of grouting by using the same
JP2009102925A (en) * 2007-10-25 2009-05-14 Toshio Fukuda Degradation reducing method and degradation reducing material for cement-based mixed improved body
JP2017530274A (en) * 2014-09-03 2017-10-12 ヨーグ イーアンドシー Environmentally friendly earth retaining wall and its construction method
JP2020147681A (en) * 2019-03-13 2020-09-17 デンカ株式会社 Ground improving material, cement milk and ground improving method
JP7245678B2 (en) 2019-03-13 2023-03-24 デンカ株式会社 SOIL IMPROVEMENT MATERIAL, CEMENT MILK, AND SOIL IMPROVEMENT METHOD
JP7465115B2 (en) 2020-02-27 2024-04-10 太平洋セメント株式会社 Ground improvement material and its manufacturing method

Also Published As

Publication number Publication date
TW200619166A (en) 2006-06-16
JP3698714B1 (en) 2005-09-21
TWI265157B (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP5399573B2 (en) Cement-based deep-mixing additive and method for constructing improved cement-based deep-mixing treatment using this additive
JP6693770B2 (en) Ground improvement material and ground improvement method using the same
JP2011157700A (en) Soil improving method
JP6531902B2 (en) Heavy metal insolubilizing composition and method for repairing heavy metal contaminated soil
KR100884285B1 (en) The soil stabilization for which this for super-high-pressure injection and this were used with hardening agent for soft soil stabilization
JP3698714B1 (en) Method and apparatus for reducing elution of heavy metals in improved body
KR100940802B1 (en) The deep mixing method of soil stabilization for which a hardener for weak soil stabilization, this mix processor and this were used
JP6529821B2 (en) Powder stabilization agent for ground stabilization, ground stabilization material, and ground stabilization method using the same
KR101051968B1 (en) Deep soil mixing method using eco-friendly soil grouting material
JP2007204941A (en) Carbonated ground improvement construction method
JP2006150341A (en) Method for improving/solidifying soil
JP4093808B2 (en) Soil solidifying agent
JP3952834B2 (en) Alkaline mud treatment method and alkaline mud modifier
JP7265498B2 (en) Ground improvement method
JP3688263B2 (en) Organic chlorine compound contaminated soil purification material and contaminated soil purification construction method using the same
JP6497990B2 (en) Liquid admixture for ground stabilization, ground stabilization material, and ground stabilization method using the same
JP2003236521A (en) Treating material and treating method of soil contaminated with fluorine
JP4473300B2 (en) Deterioration reducing method and deterioration reducing material of cement-based mixed treatment improved body
JP2002029812A (en) Method of reducing eluting quantity of heavy metal in cement-based solidified soil using artificial zeolite
JP6750817B2 (en) Water pollution prevention method
JP2009036005A (en) Method for improving soft ground
JP2006055724A (en) Method for soil restoration
JP3993776B2 (en) Solidification method of contaminated soil
JP5002806B2 (en) Soil purification material
JP4620419B2 (en) Purification material for organic chlorine compound contamination and purification method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3698714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250