JP2009102925A - Degradation reducing method and degradation reducing material for cement-based mixed improved body - Google Patents
Degradation reducing method and degradation reducing material for cement-based mixed improved body Download PDFInfo
- Publication number
- JP2009102925A JP2009102925A JP2007277062A JP2007277062A JP2009102925A JP 2009102925 A JP2009102925 A JP 2009102925A JP 2007277062 A JP2007277062 A JP 2007277062A JP 2007277062 A JP2007277062 A JP 2007277062A JP 2009102925 A JP2009102925 A JP 2009102925A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- improved body
- deterioration
- improved
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 189
- 239000004568 cement Substances 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000015556 catabolic process Effects 0.000 title abstract description 7
- 238000006731 degradation reaction Methods 0.000 title abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 58
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 42
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 40
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 34
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims abstract description 24
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims abstract description 22
- 235000002639 sodium chloride Nutrition 0.000 claims abstract description 21
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 20
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011780 sodium chloride Substances 0.000 claims abstract description 17
- 229910000027 potassium carbonate Inorganic materials 0.000 claims abstract description 12
- 239000001103 potassium chloride Substances 0.000 claims abstract description 12
- 235000011164 potassium chloride Nutrition 0.000 claims abstract description 12
- 235000019270 ammonium chloride Nutrition 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 150000003839 salts Chemical class 0.000 claims abstract description 4
- 230000006866 deterioration Effects 0.000 claims description 131
- 230000006872 improvement Effects 0.000 claims description 39
- 239000002689 soil Substances 0.000 claims description 26
- 238000003756 stirring Methods 0.000 claims description 26
- 239000002002 slurry Substances 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 13
- 238000003672 processing method Methods 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 3
- 238000010828 elution Methods 0.000 abstract description 18
- 238000013019 agitation Methods 0.000 abstract description 2
- 235000011181 potassium carbonates Nutrition 0.000 abstract description 2
- 235000017550 sodium carbonate Nutrition 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 description 29
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 17
- 238000006703 hydration reaction Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000010276 construction Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 230000009471 action Effects 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 150000004677 hydrates Chemical class 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- 239000011398 Portland cement Substances 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 239000011400 blast furnace cement Substances 0.000 description 5
- 230000036571 hydration Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 229910001414 potassium ion Inorganic materials 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910001653 ettringite Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 235000012241 calcium silicate Nutrition 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011440 grout Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000010920 waste tyre Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
Description
本発明は、地盤にセメント系改良材を注入混合してセメント系混合処理改良体を構築する混合処理工法において、セメント系改良材に改良体劣化低減材を添加して、改良体周辺部の劣化を低減し、劣化を原因とした対象箇所および周辺地盤への重金属類による地盤の汚染を防止するセメント系混合処理改良体の劣化低減方法及び劣化低減材に関するものである。 The present invention relates to a mixed processing method in which a cement-based improvement material is constructed by injecting and mixing a cement-based improvement material into the ground, and an improved body deterioration reducing material is added to the cement-based improvement material, so that the deterioration of the periphery of the improvement body It is related with the deterioration reduction method and deterioration reduction material of the cement-type mixing treatment improvement body which reduce pollution, and prevent the contamination of the ground by the heavy metal to the object location and surrounding ground which caused deterioration.
軟弱地盤上に、道路基礎、住宅地盤基礎、河川堤防基礎、防波堤基礎、護岸基礎、岸壁基礎、橋脚基礎、タンク基礎、建物基礎、擁壁基礎、地下構造壁などの構造物を構築するに際して、安定性の確保、沈下防止、側方移動防止、液状化防止、止水壁、地下構造壁等を目的として、セメント系改良材で地盤を固化して強固な基礎を確保するために様々な混合処理工法が行なわれている。
混合処理工法により得られた改良体は現位置で確実に所要の強度が確保できる等品質面での優れた特性を生かして、あらゆる用途に適用されてきている。混合処理工法には、表層処理工法、深層混合処理工法、中層混合処理工法、柱状コラム工法、ソイルセメント柱列壁工法、地下連続壁工法等があるが、これらの工法において構築された改良体が長期に亘りその機能を果たすためには、改良体内部の各部の強度は材齢経過に伴い、増加することはあっても設計時に設定した材料強度を下回ってはならない。
しかし、強固な改良地盤を造成しても、セメント系改良地盤の境界部は、周辺の地盤や地下水に暴露されることによって、改良体の表面、即ち周辺地盤と接している部分が徐々に化学反応を起こし、改良体周辺部が侵食を受け、劣化し、強度が低下することが確認されている。これらの劣化が進めば、最悪の場合には構造的安定性も失う危険性がある。
When building structures such as road foundations, residential foundations, river dike foundations, breakwater foundations, revetment foundations, pier foundations, pier foundations, tank foundations, building foundations, retaining wall foundations, and underground structural walls on soft ground, Various mixes to solidify the ground with cement-based improvement materials and secure a solid foundation for the purpose of ensuring stability, preventing settlement, preventing lateral movement, preventing liquefaction, water blocking walls, underground structural walls, etc. Processing methods are being implemented.
Improved bodies obtained by the mixing treatment method have been applied to various uses by taking advantage of excellent quality characteristics such as ensuring the required strength at the current position. The mixed treatment method includes surface layer treatment method, deep layer treatment method, middle layer mixed treatment method, columnar column method, soil cement column wall method, underground continuous wall method, etc. In order to perform the function for a long period of time, the strength of each part inside the improved body should not be lower than the material strength set at the time of design even though it increases with the aging of the material.
However, even if a strong improved ground is created, the boundary of the cement-based improved ground is exposed to the surrounding ground and groundwater, so that the surface of the improved body, that is, the portion in contact with the surrounding ground is gradually chemically It has been confirmed that a reaction occurs and the periphery of the improved body is eroded, deteriorates, and the strength decreases. As these degradations progress, there is a risk of losing structural stability in the worst case.
セメント系混合処理改良体の力学的特性は、これまで30年に亘り詳細に調べられてきているが、長期耐久性に関する研究は限られている。改良体の長期健全性については、実工事で20年経過後の一軸圧縮強度は長期的に強度増加傾向を示しており、施工後93日から20年の間に1.6倍〜2.6倍の強度増加を示していることが確認されたという報告がある一方で、改良体表面は確実に劣化が進むとする報告もあり、安全で確実な構造物の建設のために、劣化の進行を抑え、抑制する技術が望まれている。 The mechanical properties of the cement-based mixed treatment improved body have been examined in detail for 30 years, but studies on long-term durability are limited. Regarding the long-term soundness of the improved body, the uniaxial compressive strength after 20 years in actual construction shows a tendency to increase in the long term, and 1.6 times to 2.6 from 93 days to 20 years after construction. While there is a report that it has been confirmed that the strength is doubled, there is also a report that the surface of the improved body is surely deteriorated, and the progress of deterioration is promoted for the construction of a safe and reliable structure. There is a demand for a technology that suppresses and suppresses the above.
改良体の劣化について具体的に記述すると、図5に示すように、固化処理された改良体26の長期健全性に関して、改良体周辺部においては施工後に材齢が経過するに従って、改良体26の強度低下現象が生じ、その部分は改良体が劣化している。混合処理工法において改良された改良体の周辺部は、実際の工事で測定した結果、施工後数ヶ月〜1年で数mm
〜10mm、施工後20年経過して30mm〜50mmという劣化領域が測定されている。
改良体26の直径Dは、長期間劣化しないことが健全性のために望ましいが、改良体26周辺の地盤31の土壌に改良体26内のCa量の流出が起こり、改良体周辺劣化部33が発生し、この改良体周辺劣化部33の厚さdは、次第に進み、それにともなって、改良体周辺劣化部33の強度は極端に低くなり、改良体26の一部として構築された改良体周辺劣化部33で不溶化されていた六価クロムなどの重金属類が溶出する恐れが生じてくる。
そこで、本発明者等は、固化された改良体から溶出される六価クロム等の重金属や、改良体の劣化による重金属類の溶出を低減する方法及びその装置を既に提案した(特許文献1)。
A degradation region of 30 mm to 50 mm has been measured after 10 years from construction to 20 mm.
Although it is desirable for the soundness that the diameter D of the improved
Therefore, the present inventors have already proposed a method and apparatus for reducing elution of heavy metals such as hexavalent chromium eluted from a solidified improved body and heavy metals due to deterioration of the improved body (Patent Document 1). .
しかし、それでも若干の問題があることが判明したので、固化された改良体から溶出される六価クロム等の重金属や、改良体の劣化による重金属類の溶出を低減するために種々検討したところ、セメント系改良材に、改良体劣化低減材を添加し、地盤に混合することにより、固化された改良体周辺部の劣化を低減できることを見出した。
本発明が解決しようとする第1の課題は、改良体を強固に固化すると共に、固化された改良体周辺部の劣化を可能な限り低減する方法を提供することである。
本発明が解決しようとする第2の課題は、簡単で経済的に第1の課題を解決する方法を提供することである。
However, since it was found that there are still some problems, various studies were conducted to reduce elution of heavy metals such as hexavalent chromium eluted from the solidified improved body and heavy metals due to deterioration of the improved body. It has been found that the deterioration of the solidified improved body can be reduced by adding the improved body deterioration reducing material to the cement-based improving material and mixing it with the ground.
The first problem to be solved by the present invention is to provide a method for solidifying the improved body and reducing deterioration of the solidified improved body as much as possible.
The second problem to be solved by the present invention is to provide a simple and economical method for solving the first problem.
前記特許文献1記載の改良体中の重金属類の溶出を低減する方法およびその装置は、セメント系の地盤改良材に、重金属類と結合して難溶性の化合物を生成し地盤の改良体中に沈殿・固定する作用を強化するためのアルカリ性を呈する硬化剤を付加混合する液状硬化剤の混合工程と、この液状硬化剤の付加混合されたセメント系改良材を軟弱地盤又はゆるい砂質地盤に注入しつつ撹拌翼で撹拌して改良体を構築する混合処理工程とからなり、前記硬化剤は、アルカリ性を呈した液状であり、70重量%以上の溶液に、炭酸ナトリウムと塩化ナトリウムを主成分とするナトリウム塩と、含有率をそれぞれ1〜10重量%の範囲で調整した塩素イオン及びナトリウムイオンと、含有率が0.01〜1.0重量%のコバルトと、含有率が2重量%以下のアンモニウム塩と、含有率が0.1重量%以下のカルシウムイオンとを含み、この液状硬化剤の添加量は、混合処理工法における改良対象土の性状に応じてセメント系改良材に対して0.3〜15重量%(C×wt%)の範囲内で設定するようにしたことを特徴とする。
しかしながら、上記技術によれば、一軸圧縮強度、重金属類の溶出量について一応の成果が見られているものの、含有成分であるコバルトは化学物質排出移動量届出制度(PRTR制度)対象品であり、実質的に扱いが難しい面もあり、本発明ではコバルト以外のアルカリ成分の調整を行って種々実験を行った結果、塩化カリウムその他有効な材料を紛体状で扱い、液体状にして添加することで改良体の劣化を低減する方法を知見し、本発明を完成するに至った。
The method and apparatus for reducing the elution of heavy metals in the improved body described in
However, according to the above technology, although uniaxial compressive strength and elution amount of heavy metals have been seen for the time being, cobalt, which is a component, is a product subject to the chemical substance release and transfer notification system (PRTR system). In the present invention, various experiments were conducted by adjusting alkali components other than cobalt in the present invention. As a result, potassium chloride and other effective materials were handled in powder form and added in liquid form. The inventors have found a method for reducing the deterioration of the improved body and have completed the present invention.
本発明は、地盤にセメント系改良材を注入混合してセメント系混合処理改良体を構築する混合処理工法において、セメント系改良材に改良体劣化低減材を添加して、固化された改良体周辺部の劣化を低減する方法である。
前記改良体劣化低減材は、具体的には、アルカリ性を呈した粉体状であり、次の範囲で調整した材料である。
炭酸ナトリウム 20〜50重量%
塩化ナトリウム 20〜50重量%
炭酸カリウム 10〜40重量%
塩化カリウム 40重量%以下
塩化アンモニウム 15重量%以下
その他 0〜30重量%
The present invention relates to a mixed processing method in which a cement-based improvement material is constructed by injecting and mixing cement-based improvement material into the ground, and by adding an improved material deterioration reducing material to the cement-based improvement material, This is a method of reducing the deterioration of the part.
Specifically, the improved body deterioration reducing material is in the form of a powder exhibiting alkalinity, and is a material adjusted in the following range.
Sodium carbonate 20-50% by weight
Sodium chloride 20-50% by weight
Potassium carbonate 10-40% by weight
Potassium chloride 40 wt% or less Ammonium chloride 15 wt% or less Other 0-30 wt%
セメント系改良材に付加混合する改良体劣化低減材は、混合処理工法における改良対象土の性状に応じてセメント系改良材1に対して、0.3〜5重量%、好ましくは0.5〜3重量%の範囲内で添加するように設定する。この結果、簡単で経済的に本発明の方法を実現することができる。大深度の混合処理のような大量かつ広範囲での工事にも、住宅地盤の基礎に使用される柱状コラム工法などの少量の工事においても効果的であり、トータルコストを安くすることができる。
さらに詳しくは、改良体劣化低減材は、炭酸ナトリウムと塩化ナトリウムを主成分とするナトリウム塩を含む。炭酸ナトリウムは、改良体劣化低減材をセメント系改良材に添加して固化する場合に、固化された改良体のアルカリ性を助長して中性化による機械的強度の低下を防止する。塩化ナトリウムは、改良体劣化低減材をセメント系改良材に添加して固化する場合に、炭酸ナトリウムとともにセメント水和の促進を図り、改良体の劣化を低減し六価クロム等の重金属類やホルモン阻害化学物質が溶出されて拡散されることを確実に防止できる。
また、本発明では、改良体のpHが周辺土壌より高くなるように炭酸ナトリウム及び塩化ナトリウムの含有率をそれぞれ20〜50重量%の範囲で調整したので、塩素イオン、ナトリウムイオンにより、カルシウムの溶出を低減し、ひいては六価クロム等の重金属類が土壌に吸着する作用を進行させず、改良体により強く吸着することにより周辺未改良地盤へ溶出しにくくなる。
改良体劣化低減材における炭酸カリウムの含有率を10〜40重量%の範囲とし、塩化カリウムの含有率を40重量%以下としたのは、炭酸カリウムは無機イオンの結晶であり水に対する溶解度が高く、pH11程度の強いアルカリを示し、塩化カリウムは水溶液中では電離してカリウムイオン(K+)と塩化物イオン(CL−)になる。この強アルカリ電解水により改良体のpHコントロールができ、改良体は水和反応を促進し、イオン濃度の変化に応じてイオン荷電が修正され、それぞれの吸着力を強めて、硬化を促進させる。即ち、改良体の機械的強度を上昇させ、また、重金属類や有害物質を保持し、劣化をより一層低減することができる。
また、改良体劣化低減材に15重量%以下のアンモニウム塩を含有したので、改良体劣化低減材をセメント系改良材へ添加して改良体とする場合に、炭酸ナトリウムと同様に改良体のアルカリ性を助長して中性化による機械的強度の低下を防止している。
The improved body deterioration reducing material added and mixed with the cement-based improving material is 0.3 to 5% by weight, preferably 0.5 to 5% with respect to the cement-based improving
More specifically, the improved body deterioration reducing material includes a sodium salt mainly composed of sodium carbonate and sodium chloride. Sodium carbonate promotes the alkalinity of the solidified improved body and prevents a decrease in mechanical strength due to neutralization when the improved body deterioration reducing material is added to a cement-based improved material and solidified. Sodium chloride promotes cement hydration together with sodium carbonate when solidified by adding the improved material deterioration reducing material to the cement-based improved material, reducing the deterioration of the improved material and reducing heavy metals such as hexavalent chromium and hormones. It is possible to reliably prevent the inhibitory chemical substance from being eluted and diffused.
In the present invention, the content of sodium carbonate and sodium chloride was adjusted in the range of 20 to 50% by weight so that the pH of the improved body was higher than that of the surrounding soil. As a result, the action of heavy metals such as hexavalent chromium adsorbing to the soil does not proceed, and it is difficult to elute into the surrounding unmodified ground by adsorbing strongly with the improved body.
The content of potassium carbonate in the improved deterioration-reducing material is in the range of 10 to 40% by weight and the content of potassium chloride is 40% by weight or less because potassium carbonate is a crystal of inorganic ions and has high solubility in water. It shows a strong alkali of about
In addition, since the improved body deterioration reducing material contains 15% by weight or less of an ammonium salt, when the improved body deterioration reducing material is added to the cement-based improving material to obtain an improved body, the alkalinity of the improved body is similar to that of sodium carbonate. To prevent the mechanical strength from being lowered due to neutralization.
また、劣化低減材には、その他の含有材料として、ケイ酸ナトリウム、硫酸ナトリウム、硫酸カリウム、硫酸カルシウム、燐酸カルシウム、硫酸マグネシウム、燐酸マグネシウム等から選ばれるアルカリ金属化合物なども加えることができる。 Moreover, an alkali metal compound selected from sodium silicate, sodium sulfate, potassium sulfate, calcium sulfate, calcium phosphate, magnesium sulfate, magnesium phosphate and the like can be added to the deterioration reducing material.
なお、本発明においては、さらに重金属固定化剤を併用することも出来、この場合併用できる重金属固定材としては、キレート系重金属固定化剤、粘土鉱物系重金属固定化剤、高分子化合物系重金属固定化剤、セメント系重金属固定化剤、硫酸アルミニウムのような酸性のアルミニウム化合物などが挙げられる。これらの含有率は(0009)とともに0〜30重量%の範囲で使用することができるが、上記重金属固定化剤は高価であるため30%を超える場合には、ランニングコストが高くなり好ましくない。いずれにしても本発明の効果を損なわない範囲で添加することも差し支えない。本発明はセメント系改良材と改良体劣化低減材に重金属固定材とを加えて化学的に非常に安定したセメント水和物結晶固化体となるので、改良体の劣化を低減し、改良体からの重金属の溶出を防止することができる。 In the present invention, a heavy metal fixing agent can be used in combination. In this case, the heavy metal fixing material that can be used in combination includes a chelate heavy metal fixing agent, a clay mineral heavy metal fixing agent, and a polymer compound heavy metal fixing. Agents, cementitious heavy metal fixing agents, and acidic aluminum compounds such as aluminum sulfate. These contents can be used in the range of 0 to 30% by weight together with (0009). However, since the heavy metal fixing agent is expensive, if it exceeds 30%, the running cost becomes high, which is not preferable. In any case, it may be added as long as the effects of the present invention are not impaired. In the present invention, a cement hydrate improvement material and an improved body deterioration reducing material are added with a heavy metal fixing material to form a chemically very stable cement hydrate crystal solidified body. Of heavy metals can be prevented.
本発明に使用するセメント系改良材は、普通ポルトランドセメント、高炉セメントB種、一般軟弱土用・特殊土用・高有機質土用・六価クロム溶出抑制用などのセメント系固化材、シリカセメント、フライアッシュセメント、急硬性セメント等、いわゆる水硬性物質と呼ばれるものであれば良く、これらを単体で用いても、2種以上を併用しても良い。一般的にセメントの使用量は、対象となる地盤1m3に対して50〜300kg/m3であり、可及的に少量のセメントを用いて圧縮強度が大きく、改良体の劣化を低減し、有害物質を溶出しない固化物を得ることが望ましい。 The cement-based improving material used in the present invention includes ordinary portland cement, blast furnace cement type B, general soft soil, special soil, high organic soil, hexavalent chromium elution suppression, etc., cement cement, silica cement, What is called a so-called hydraulic substance such as fly ash cement and rapid hardening cement may be used, and these may be used alone or in combination of two or more. In general, the amount of cement used is 50 to 300 kg / m 3 per 1 m 3 of the target ground, and the compressive strength is high with as little cement as possible, reducing deterioration of the improved body, It is desirable to obtain a solidified product that does not elute harmful substances.
一方、セメント系混合処理改良体が地盤に及ぼしうる影響としては、高アルカリの溶出、およびセメント系改良材自体に含まれる六価クロムもしくはセメント系改良材によって固化された改良体に含まれる重金属類の溶出の2つが挙げられる。
固化により改良体中の重金属類はマトリックスの緻密化による物理的封じ込め、難水溶性物質の生成、水和生成物による吸着、固定化といった作用により大幅に抑制されるが、セメント自体には、その原材料に起因して六価クロムや鉛等の重金属類が含まれることが既に認識されている。例えば、セメント系改良材の主構成材料であるポルトランドセメントは、その原料の大半が石灰石、粘土、ケイ石等の天然資源であることから、主構成成分(Ca、Si、Al、Fe)のほかにクロム(Cr)等の微量成分を含んでいる。自然界のクロムは三価の状態で存在しており、セメント原料中の三価クロムはセメントの焼成過程においてその一部が六価クロムに酸化されセメント中に存在し、各セメント会社のセメントには平均で約10mg/kgの六価クロムが含有されているという報告がある。
一方で、セメントの製造過程においては、その設備や焼成技術を活用することで、他産業からの多量の廃棄物・副産物を受け入れている。汚泥、スラッジ、建設発生土などは原料代替として、木屑、廃プラスチック、廃タイヤなどは熱エネルギーとして、高炉スラッグ、石炭灰などは混合材料として使用されている。最近では、セメント1トンを製造するのに400kgの廃棄物・副産物を活用しているという現状でもある。
On the other hand, the effects of cement-based mixed treatment improvements on the ground include elution of high alkali and heavy metals contained in the improvements solidified by hexavalent chromium or cement-based improvement materials contained in the cement-type improvement materials themselves. Two elutions of
Solidification of the heavy metals in the improved body by solidification is greatly suppressed by actions such as physical containment by densification of the matrix, formation of poorly water-soluble substances, adsorption by hydrated products, and immobilization. It has already been recognized that heavy metals such as hexavalent chromium and lead are included due to raw materials. For example, Portland cement, which is the main component of cement-based improvement materials, is made up of natural resources such as limestone, clay, and quartzite, so the main components (Ca, Si, Al, Fe) are also included. Contains trace components such as chromium (Cr). Chromium in the natural world exists in a trivalent state, and trivalent chromium in the cement raw material is partly oxidized to hexavalent chromium in the cement firing process and exists in the cement. There is a report that an average of about 10 mg / kg of hexavalent chromium is contained.
On the other hand, in the manufacturing process of cement, by utilizing its facilities and firing technology, it accepts a large amount of waste and by-products from other industries. Sludge, sludge, construction waste soil, etc. are used as raw material substitutes, wood chips, waste plastic, waste tires, etc. are used as thermal energy, and blast furnace slug, coal ash, etc. are used as mixed materials. Recently, 400 kg of waste and by-products are being used to produce 1 ton of cement.
セメント水和物による六価クロムなどの重金属の固定機構は、エトリンガイト(3Ca0・Al2O3・3CaSO4・32H20)やモノサルフェート等の水和物への固定や、ケイ酸カルシウム水和物(C-S-H)への表面吸着及び生成した水和物が間隙を埋めることによる組織の緻密化などの複合的な作用によるものである。セメント系混合処理改良体の場合には、改良の対象となる地盤の粘土鉱物や有機成分の影響により水和物の生成が阻害され、その結果水和物により固定されなかった六価クロムが溶出する。水和反応の主体であるべきカルシウムイオンが周辺部の他の反応系に持ち去られたのでは、水和反応の化学バランスが崩れる。よって本発明の劣化低減材を混合することにより、改良体が石灰含有量を増大し、アルカリ性の組成となること、さらには急速な水和反応によって水和阻止効果の及ぶ前に固化を達成することで、アルミン酸石灰水和物の水和反応を促進しエトリンガイトの生成をより多くするもので、これら塩基は改良体の劣化を低減し、重金属を含む有害物を固定し、溶出させない状態にするものである。 The fixation mechanism of heavy metals such as hexavalent chromium by cement hydrate is fixed to hydrates such as ettringite (3Ca0 ・ Al 2 O 3・ 3CaSO 4・ 32H 2 0) and monosulfate, and hydrated calcium silicate. This is due to a complex action such as surface adsorption to the substance (C—S—H) and densification of the structure by the formed hydrate filling the gap. In the case of improved cement-based mixed treatment, the formation of hydrates is hindered by the influence of clay minerals and organic components of the ground to be improved, resulting in the elution of hexavalent chromium that was not fixed by the hydrates. To do. If calcium ions that should be the main component of the hydration reaction are taken away by other reaction systems in the surrounding area, the chemical balance of the hydration reaction is lost. Therefore, by mixing the deterioration reducing material of the present invention, the improved body increases the lime content, becomes an alkaline composition, and further achieves solidification before reaching the hydration inhibitory effect by a rapid hydration reaction. By promoting the hydration reaction of lime aluminate hydrate and increasing the production of ettringite, these bases reduce the deterioration of the improved body, fix harmful substances including heavy metals, and do not elute To do.
本発明によるセメント系混合処理改良体の劣化を低減する方法は、次のような構成からなる。
(1)セメント系改良材は、その水和反応の過程で水酸化カルシウム(Ca(OH)2)を生成し、アルカリ性となる。この(Ca(OH)2)から解離した水酸基(OH−)が重金属類と難溶性の水酸化物沈澱を生成し、改良体中に沈殿・固定する。
改良体が劣化する部分では、カルシウム量の低下、pHの低下、強度の低下が見られる。この事実からセメント系改良土の劣化の機構は、MgCl2等の塩化物とCa(OH)2との反応によるCaCl2の生成と溶出及びこれに伴う改良土の硬化体組織の多孔化、Ca(OH)2の溶解に伴うセメント硬化体の多孔化などが考えられる。本発明の方法及び装置には、特有な改良体劣化低減材が添加されることにより、前記改良体中への沈殿・固定作用を効果的に行なわせる。
The method of reducing the deterioration of the cement-based mixed treatment improving body according to the present invention has the following configuration.
(1) The cement-based improving material generates calcium hydroxide (Ca (OH) 2 ) in the course of its hydration reaction, and becomes alkaline. The hydroxyl group (OH − ) dissociated from (Ca (OH) 2 ) generates a hardly soluble hydroxide precipitate with heavy metals, and precipitates and fixes in the improved body.
In the part where the improved body deteriorates, a decrease in calcium content, a decrease in pH, and a decrease in strength are observed. From this fact, the degradation mechanism of cementitious improved soil is the formation and elution of CaCl 2 by the reaction of chlorides such as MgCl 2 and Ca (OH) 2 and the resulting hardening of the hardened structure of the improved soil, Ca It is conceivable that the cement hardened body becomes porous due to dissolution of (OH) 2 . In the method and apparatus of the present invention, by adding a specific improved body deterioration reducing material, the precipitation and fixing action in the improved body is effectively performed.
(2)セメント系改良材は、その水和反応によりさまざまな水和物を生成する。水和反応はセメントと水とが反応して不溶性のセメント水和物を作り凝結固化する。セメントの水和反応は複雑で、長い年月にわたって変化し、セメントのクリンカ鉱物であるエーライト、ビーライト、アルミネート相、フェライト相が水と反応し水和物を形成、水和反応が進むとエトリンガイトやモノサルフェートといった水和物も形成される。これらの水和物が置換固溶や表面吸着により重金属類を固定する能力を有する。
pHが高いセメント混合処理改良体中のカルシウムが、改良体より周辺未改良地盤に溶出し、ひいては、六価クロム等の重金属類がセメント混合処理改良体より周辺未改良地盤に溶出するのは、周辺未改良地盤は、一般にセメント混合処理改良体よりpHが低いため、地盤に吸着しやすい状態になるためである。
本発明に用いられる改良体劣化低減材は、この吸着作用を進行させない。すなわち、改良体劣化低減材の存在により、改良体周辺部の劣化を低減させ、ひいては、六価クロム等の重金属類が周辺地盤に吸着される割合を減少させる。
(2) The cement-based improving material generates various hydrates by its hydration reaction. In the hydration reaction, cement and water react to form an insoluble cement hydrate and solidify. Cement hydration reactions are complex and change over time, and the cement clinker minerals alite, belite, aluminate and ferrite phases react with water to form hydrates and the hydration reaction proceeds. Hydrates such as ettringite and monosulfate are also formed. These hydrates have the ability to fix heavy metals by substitution solid solution or surface adsorption.
Calcium in the cement-mixed treated improvement body having a high pH is eluted from the improved body to the surrounding unmodified ground, and as a result, heavy metals such as hexavalent chromium are eluted from the cement-mixed treated improvement body to the surrounding unmodified ground. This is because the surrounding unimproved ground generally has a pH lower than that of the cement-mixed modified body, and thus is easily adsorbed on the ground.
The improved body deterioration reducing material used in the present invention does not advance this adsorption action. That is, the presence of the improved body deterioration reducing material reduces the deterioration of the periphery of the improved body, and consequently reduces the rate of adsorption of heavy metals such as hexavalent chromium on the surrounding ground.
(3)セメント系改良材に添加された改良体劣化低減材は、材齢の経過に伴う水和作用の進行により生成した水和物が空隙を充填し、硬化体組織を緻密化する。この組織の緻密化により改良体周辺部の劣化を低減させ重金属類を物理的に封じ込める作用を示す。 (3) In the improved body deterioration reducing material added to the cement-based improved material, the hydrate produced by the progress of the hydration action with the aging of the age fills the voids and densifies the hardened body structure. This densification of the structure reduces the deterioration of the periphery of the improved body and shows the effect of physically containing heavy metals.
改良体劣化低減材を添加したセメント系改良材は、(1)、(2)及び(3)の相乗効果により、物理・化学的に改良体の劣化を低減し、重金属類の有害物質に対して安定な固化・不溶化効果を持つ。この改良体劣化低減材は、液状でも紛体状であってもよいが、工場から出荷時には粉体状であり、輸送を経て、現地でミキシングタンクにおいて液体状にするのが輸送コストの観点から望ましい。
以下の実施例では、改良体劣化低減材が用いられる。
The cement-based improvement material with the addition of the improved body deterioration reducing material reduces the deterioration of the improved body physically and chemically due to the synergistic effect of (1), (2) and (3), and against the harmful substances of heavy metals. And has a solidifying and insolubilizing effect. This improved material deterioration reducing material may be in the form of liquid or powder, but it is in the form of powder when shipped from the factory, and it is desirable from the viewpoint of transportation cost that it is transported and made liquid in the mixing tank on site. .
In the following examples, the improved body deterioration reducing material is used.
この改良体劣化低減材の最良の配合の一例は、次の通りである。
・炭酸ナトリウム20〜50重量%、具体的には平均27重量%
・塩化ナトリウム20〜50重量%、具体的には平均36重量%
・炭酸カリウム10〜40重量%、具体的には平均27重量%
・塩化カリウム40重量%以下
・塩化アンモニウム15重量%以下、具体的には平均6重量%
・その他0〜30重量%、具体的には平均4重量%
以上のような配合とした理由は前述しているとおりである。
An example of the best blend of the improved body deterioration reducing material is as follows.
Sodium carbonate 20-50% by weight, specifically 27% on average
Sodium chloride 20-50% by weight, specifically 36% on average
-Potassium carbonate 10-40% by weight, specifically 27% on average
・ Potassium chloride 40 wt% or less ・ Ammonium chloride 15 wt% or less, specifically 6 wt% on average
・ Others 0-30% by weight, specifically 4% by weight on average
The reason for the above composition is as described above.
前記改良体劣化低減材の前記配合による作用効果をさらに詳しく説明する。
改良体劣化低減材に含まれるナトリウム塩の主成分は、炭酸ナトリウム及び塩化ナトリウムである。炭酸ナトリウムは、改良体劣化低減材をセメント系改良材に添加して固化する場合に、固化された改良体のアルカリ性を助長して中性化による機械的強度の低下を防止することを主目的として添加される成分である。塩化ナトリウムは、改良体劣化低減材をセメント系改良材に添加して固化する場合に、炭酸ナトリウムとともにセメント水和の促進を図る目的で添加される成分である。したがって、改良体からの劣化を確実に低減できる。
The effect by the said mixing | blending of the said improved body deterioration reducing material is demonstrated still in detail.
The main components of the sodium salt contained in the improved body deterioration reducing material are sodium carbonate and sodium chloride. The purpose of sodium carbonate is to prevent the deterioration of mechanical strength due to neutralization by promoting the alkalinity of the solidified improved body when the improved body deterioration reducing material is added to the cement-based improved material and solidified. It is a component added as. Sodium chloride is a component added for the purpose of promoting cement hydration together with sodium carbonate when the improved body deterioration reducing material is added to the cement-based improving material and solidified. Therefore, deterioration from the improved body can be reliably reduced.
改良体劣化低減材における炭酸ナトリウム及び塩化ナトリウムの含有率を20〜50重量%の範囲としたのは、20重量%未満では、塩化ナトリウム等で供給される塩素イオン、ナトリウムイオンの添加効果が改良体において発揮されず、50重量%を超えると、塩素イオン、ナトリウムイオンが過剰となり、改良体への添加効果が頭打ちとなるからである。したがって、この炭酸ナトリウム、および塩化ナトリウムのセメント系改良材への添加量は、添加効果を加味して適宜決められる。 The content of sodium carbonate and sodium chloride in the improved body deterioration reducing material is in the range of 20 to 50% by weight. If the content is less than 20% by weight, the effect of adding chlorine ions and sodium ions supplied with sodium chloride and the like is improved. This is because when it exceeds 50% by weight, chlorine ions and sodium ions become excessive, and the effect of addition to the improved body reaches its peak. Therefore, the amount of sodium carbonate and sodium chloride added to the cement-based improving material is appropriately determined in consideration of the effect of addition.
改良体劣化低減材における炭酸カリウムの含有率を10〜40重量%の範囲としたのは、10重量%未満では、炭酸カリウムで供給されるカリウムイオンの添加効果が改良体において発揮されず、40重量%を超えると、カリウムイオンが過剰となり、改良体への添加効果が頭打ちとなるからである。また、塩化カリウムの含有率を40重量%以下としたのは、40重量%以上ではカリウムイオンが過剰となり、改良体への添加効果が頭打ちとなるからである。したがって、このカリウムイオンのセメント系改良材への添加量は、添加効果を加味して適宜決められる。 The content of potassium carbonate in the improved body deterioration reducing material is in the range of 10 to 40% by weight. If it is less than 10% by weight, the effect of adding potassium ions supplied by potassium carbonate is not exhibited in the improved body. This is because if it exceeds wt%, potassium ions become excessive and the effect of addition to the improved product reaches its peak. The reason why the content of potassium chloride is 40% by weight or less is that potassium ions are excessive when the content is 40% by weight or more, and the effect of addition to the improved product reaches its peak. Accordingly, the amount of potassium ion added to the cement-based improving material is appropriately determined in consideration of the effect of addition.
改良体劣化低減材には、この改良体劣化低減材をセメント系改良材へ添加して改良体とする場合に、炭酸ナトリウムと同様に改良体のアルカリ性を助長して中性化による機械的強度の低下を防止することを主目的として添加されるアンモニウム塩が含まれている。このアンモニウム塩の含有量は、15重量%以下であることが好ましい。また、アンモニウム塩は、塩化アンモニウムであることが好ましい。 In the improved body deterioration reducing material, when this improved body deterioration reducing material is added to a cement-based improvement material to make an improved body, the mechanical strength due to neutralization is promoted by promoting the alkalinity of the improved body in the same manner as sodium carbonate. An ammonium salt added mainly for the purpose of preventing a decrease in the pH is included. The content of this ammonium salt is preferably 15% by weight or less. The ammonium salt is preferably ammonium chloride.
上記改良体劣化低減材は、最良の形態の一つであり、その性状は次のようなものである。
改良体劣化低減材の色調は透明色を呈し、溶解した場合のpHは9〜12でアンモニア臭を呈し、比重は1.20〜1.24である。
セメント系混合処理改良体に改良体劣化低減材を添加することにより、改良体の一軸圧縮強度を高め、原料およびセメント系改良材中に含有される有害物質の溶出、拡散が確実に防止され、改良体の劣化が低減できるので環境への影響を最小限にすることができる。
The improved body deterioration reducing material is one of the best modes, and its properties are as follows.
The color tone of the improved material deterioration-reducing material exhibits a transparent color, and when dissolved, the pH is 9 to 12, an ammonia odor is exhibited, and the specific gravity is 1.20 to 1.24.
By adding the improved body deterioration reducing material to the cement-based mixed processing improved body, the uniaxial compressive strength of the improved body is increased, and the elution and diffusion of harmful substances contained in the raw material and the cement-based improved material are surely prevented, Since the deterioration of the improved body can be reduced, the environmental impact can be minimized.
セメント系改良材に、改良体劣化低減材を付加混合してセメントスラリー液とする混合槽と、前記セメントスラリー液を地盤へ注入圧送する圧送管と、この圧送管から供給されるセメントスラリー液を地盤に注入しつつ撹拌する混合処理機と、前記セメントスラリー液を地盤へ注入圧送する圧送管に連結され、改良体劣化低減材の付加混合されたセメント系改良材としてのセメントスラリー液が得られ、このセメントスラリー液が地盤へ注入される。このとき、掘削翼で地盤を掘削しつつ、セメントスラリー液を注入・撹拌し、改良体が構築される。 A mixing tank in which an improved body deterioration reducing material is added to the cement-based improving material to form a cement slurry liquid, a pressure feeding pipe for injecting and feeding the cement slurry liquid to the ground, and a cement slurry liquid supplied from the pressure feeding pipe It is connected to a mixing processor that stirs while injecting into the ground, and a pressure feeding pipe that injects and feeds the cement slurry liquid to the ground, and a cement slurry liquid as a cement-based improvement material in which an improved body deterioration reducing material is added and mixed is obtained. The cement slurry liquid is injected into the ground. At this time, a cement slurry liquid is poured and stirred while excavating the ground with excavating blades, and an improved body is constructed.
地盤を撹拌翼で撹拌して改良体を構築する混合処理工法は、地盤の表層の1mから2mを対象とする場合には表層処理工法、3mから65mを対象とする場合には深層混合処理工法と称し、表層と深層の中間を対象とする場合は浅層・中層混合処理工法と称する場合もある。柱状の改良を実施する工法はソイルセメントコラム工法、又は柱状コラム工法と称しており、他方、地中に連続した壁体を構築する工法としてはソイルセメント柱列壁工法、地下連続壁工法等がある。
また、いずれの工法の場合においても、水平攪拌方式、垂直攪拌方式、斜め攪拌方式があり、攪拌軸は単軸から複数軸、多い場合は8軸のものもあり、攪拌方式には機械攪拌式と高圧噴射式、又、両者の併用方式がある。機械攪拌式にはスラリー状のセメント系改良材を地盤に注入攪拌して改良体を造成するスラリー系と、粉体状のセメント系改良材を地盤に圧送し攪拌混合する粉体系がある。改良体劣化低減材はいずれの方式においても用いることができ、これらの工法において構築された改良体の周辺部の劣化を低減し、ひいては改良体劣化を原因とした重金属類による地盤の汚染を防止するために改良体劣化低減材を使用し、また、改良体中の重金属類の溶出を低減することができる。
The mixed processing method that constructs the improved body by stirring the ground with stirring blades is the surface processing method when the surface layer of the ground is 1m to 2m, and the deep mixing method when the target is 3m to 65m. In some cases, the intermediate layer between the surface layer and the deep layer may be referred to as a shallow / middle mixed processing method. The method of improving the columnar shape is called the soil cement column method or the columnar column method. On the other hand, the soil cement column wall method, the underground continuous wall method, etc. is there.
In any of the methods, there are horizontal stirring method, vertical stirring method, and oblique stirring method, and there are a plurality of stirring shafts from a single shaft to a plurality of shafts, and in many cases, there are 8 shafts. And a high-pressure injection type, or a combination of both types. The mechanical stirring type includes a slurry system in which a slurry-like cementitious improving material is injected and stirred into the ground to form an improved body, and a powder system in which a powdery cementitious improving material is pumped to the ground and stirred and mixed. The improved body deterioration reducing material can be used in any method, reducing the deterioration of the peripheral part of the improved body constructed by these methods, and thus preventing soil contamination due to heavy metals caused by the improved body deterioration Therefore, the improved body deterioration reducing material can be used, and the elution of heavy metals in the improved body can be reduced.
混合処理工法は、様々な機械設備が用いられており、一般的な混合処理工法、すなわち、地盤にセメント系改良材を注入しつつ撹拌翼で撹拌して改良体を構築する混合処理工法を図1に基づき説明する。4は混合槽で、この混合槽4には、セメント系改良材ホッパー1からセメント系改良材が投入され、水供給部ホッパー2から水和反応のための水が投入され、必要な場合には遅効性硬化剤などの添加剤が添加剤ホッパー3より供給され、混合槽4の中で均質なセメントスラリー状になるまで回転攪拌翼5により撹拌される。
Various mechanical equipment is used for the mixing treatment method, and a general mixing treatment method, that is, a mixing treatment method in which an improved body is constructed by stirring with a stirring blade while injecting a cement-based improvement material into the ground is illustrated. 1 will be described. 4 is a mixing tank. The
前記混合槽4の中で均質なセメントスラリー状になったセメント系改良材を主材とするセメントスラリー液は、アジテータ6に蓄えられ、このセメントスラリー液がグラウトポンプ7から圧送管8を通して圧送される。この圧送管8内のセメントスラリー液量は、流量計で計測され、また、地盤14への注入圧力は、圧力計で計測される。
セメントスラリー液の注入時には、混合処理機9の撹拌軸10にセメントスラリー液を圧送し、撹拌軸10の先端の吐出孔13から地盤14に注入する。このとき、混合処理機9の駆動部により回転する撹拌軸10の先端に掘削翼12と撹拌翼11が設けられ、掘削翼12で地盤14を下向きに掘削し、セメントスラリー液が混合するように撹拌翼11で地盤14を撹拌する。セメントスラリー液の注入後、材齢の経過で、地盤14の内部では水和作用が進行し改良体26が形成される。
なお、吐出孔13からのセメントスラリー液は、地盤14を下向きに掘削している下降時に注入しても良いし、撹拌軸10の上昇時に注入するようにしても良い。下降時と上昇時にともに注入するようにしても良い。また、前記撹拌軸10は、単軸でも2軸以上であっても良い。
A cement slurry liquid mainly composed of a cement-based improving material in a homogeneous cement slurry form in the
At the time of injecting the cement slurry liquid, the cement slurry liquid is pumped to the stirring
The cement slurry liquid from the
また、本発明の方法に用いられる改良体劣化低減材17の供給は、改良体劣化低減材17を液状に混合された改良体劣化低減材ミキシングタンク21から供給ポンプ23により混合槽4に投入混合されて撹拌される。
The improved body
改良体劣化低減材17は、重金属以外の金属塩を主体とした材料からなっており、前述の通り、混合槽4においてセメントスラリー状にして地盤14に注入することから、工場において液体状に製造し輸送のうえ混合槽4に投入する方法もある。しかし、製造時、輸送時、使用時に原材料が析出しない混合条件は、水1に対して改良体劣化低減材は0.25重量%以下であるため、改良体劣化低減材を液体状で扱うよりも、粉体状で製造し、輸送し、改良体劣化低減材を現地において液体状にし、セメント系改良材に付加混合する方がはるかに輸送コストを削減できる。改良体劣化低減材が粉体の場合の概略輸送コストは、それが液体状に比べて4分の1に抑えることができる。
The improved body
次に改良体劣化低減材を粉体状で製造、輸送し、改良体劣化低減材を現地において液体状にした上でセメント系改良材に付加混合する方法について記述する。
図−1において、紛体状で輸送されてきた改良体劣化低減材は投入口15より、ホッパー16に貯蔵され、貯蔵された改良体劣化低減材17は落下投入口18からミキシングタンク21に入れられる。改良体劣化低減材は、水に溶かして完全にスラリー化するには2、3分の時間を要し、一度に水に溶解しようとした場合には、団子状になる傾向があり、団子状になった改良体劣化低減材をさらに溶解するのには困難を極める。
従って、本発明では、改良体劣化低減材は落下投入口18より規定量ずつ徐々に混合層に投入されなければならない。その方法として、投入された改良体劣化低減材17をフィーダ19によりミキシングタンク21に満遍なく散布し、ポンプ24から供給される水25と一緒に、モータ22の回転により攪拌機構20により、ミキシングされる。
改良体劣化低減材17の各素材がミキシングにより充分に混合されるために、例えば次のような性状のものが用いられる。
素材名 粒子径μm 比重(密度) 水への溶解度%
炭酸ナトリウム 20〜200 1.0〜1.3 21.0(20℃)
塩化ナトリウム 150〜600 2.16 26.4(20℃)
炭酸カリウム 500〜1000 2.43 52.6(20℃)
塩化カリウム 5〜100 1.98 34.2(20℃)
塩化アンモニウム 30〜600 1.53 28.3(20℃)
改良体劣化低減材の粒子径は、1000μmより大きいと溶解に時間がかかり、また5μmより小さいと飛散しやすくなり、取り扱いが難しくなる。改良体劣化低減材は、炭酸ナトリウム、塩化ナトリウム、炭酸カリウム、塩化カリウム、塩化アンモニウムを少なくとも含む材料からなるが、これらの原料成分がすべて粉体であり、粉体状の粒子径が5μm〜1000μmであることを特徴とする。場合によっては、今後、安価な材料を探索していく場合に、粒子径が1〜10mm程度のフレーク状のものも対象になってくる可能性がある。
また、前記ミキシングタンク21により充分に混合された改良体劣化低減材17は供給ポンプ23により混合槽4に圧送され、こうして得られたセメントスラリー液を地盤に注入しつつ撹拌し、混合することを特徴とするセメント系混合処理改良体の劣化低減方法である。
Next, a method for producing and transporting the improved body deterioration reducing material in powder form, making the improved body deterioration reducing material in a liquid state on site, and adding and mixing it with the cement-based improving material will be described.
In FIG. 1, the improved body deterioration reducing material that has been transported in the form of powder is stored in the
Therefore, in the present invention, the improved body deterioration reducing material must be gradually fed into the mixed layer by a specified amount from the
In order for the raw materials of the improved body
Material name Particle diameter μm Specific gravity (density) Solubility in water%
Sodium carbonate 20-200 1.0-1.3 21.0 (20 ° C)
Sodium chloride 150-600 2.16 26.4 (20 ° C)
Potassium carbonate 500-1000 2.43 52.6 (20 ° C)
Potassium chloride 5-100 1.98 34.2 (20 ° C)
Ammonium chloride 30-600 1.53 28.3 (20 ° C)
When the particle size of the improved body deterioration reducing material is larger than 1000 μm, it takes time to dissolve, and when the particle size is smaller than 5 μm, it is likely to be scattered and difficult to handle. The improved body deterioration reducing material is made of a material containing at least sodium carbonate, sodium chloride, potassium carbonate, potassium chloride, and ammonium chloride. These raw material components are all powders, and the particle size of the powder is 5 μm to 1000 μm. It is characterized by being. Depending on the case, when searching for an inexpensive material in the future, a flaky material having a particle diameter of about 1 to 10 mm may be targeted.
Further, the improved body
以上のような混合処理工法において、ミキシングタンク21から改良体劣化低減材17が混合槽4に投入されて、セメント系改良材ホッパー1からのセメント系改良材と水供給部ホッパー2からの水とが一緒に撹拌混合される。
前記改良体劣化低減材17の添加量は、混合処理工法における改良対象土の性状に応じてセメント系改良材に対して0.3〜5重量%、好ましくは0.5〜3重量%の範囲内で設定する。
この改良体劣化低減材17のセメント系改良材への添加量は、添加効果を加味して適宜決められる。例えば、改良対象土が重金属類の含有量の多い性状を示す場合は、セメント系改良材に対する改良体劣化低減材の添加割合を多くし、含有量の少ない性状を示す場合は、セメント系改良材に対する改良体劣化低減材の添加割合を少なくする。
また、前述の通り、改良体の強度が改良体劣化を低減するために極めて重要であるが、この強度を得るためには、一般的に、改良対象土1m3あたりその地盤の性状によって、また、目標とする強度によってセメント系改良材の添加量が50〜300kg/m3とされている。一般的に、粘性土の場合には添加量は比較的に少なく平均的に80〜180kg/m3であり、砂質土の場合には150〜250kg/m3、有機質土の場合には200〜300kg/m3程度である。また、住宅地盤に用いられる柱状コラム工法の場合などは安全側に見て250〜300kg/m3を添加するのが一般的である。
従って、改良体劣化低減材17の添加割合をセメント系改良材の添加量が少ないときは多くし、多いときは少なくするなど、改良対象土に対するセメント系改良材の添加量に応じて、地盤に最適な改良体劣化低減材が添加されるように調整することが必要であり、このことにより、改良体の劣化を可及的に低減することができる。
In the mixing treatment method as described above, the improved body
The addition amount of the improved body
The amount of the improved body
In addition, as described above, the strength of the improved body is extremely important for reducing the deterioration of the improved body. In order to obtain this strength, generally, according to the property of the ground per 1 m 3 of the soil to be improved, Depending on the target strength, the addition amount of the cement-based improving material is 50 to 300 kg / m 3 . Generally, the addition amount in the case of cohesive soil is averagely 80~180kg / m 3 relatively small, in the case of sandy soils 150~250kg / m 3, in the case of
Therefore, depending on the amount of cementitious improvement material added to the soil to be improved, the addition rate of the improved body
この改良体劣化低減材の配合の一例は、次の通りである。
・炭酸ナトリウム20〜50重量%、具体的には平均27重量%
・塩化ナトリウム20〜50重量%、具体的には平均36重量%
・炭酸カリウム10〜40重量%、具体的には平均27重量%
・塩化カリウム40重量%以下
・塩化アンモニウム15%以下、具体的には平均6重量%
・その他0〜30重量%、具体的には平均4重量%
以上のような配合とした理由は前述しているとおりである。
An example of the blend of the improved body deterioration reducing material is as follows.
Sodium carbonate 20-50% by weight, specifically 27% on average
Sodium chloride 20-50% by weight, specifically 36% on average
-Potassium carbonate 10-40% by weight, specifically 27% on average
・ Potassium chloride 40% or less ・ Ammonium chloride 15% or less, specifically 6% on average
・ Others 0-30% by weight, specifically 4% by weight on average
The reason for the above composition is as described above.
次に、改良体劣化低減材17の性能に関する室内確認実験を行った。改良体劣化低減材17は、4倍希釈液として使用したもので、ここでの添加率は希釈液の添加率を示している。
図2(a)(b)は改良体劣化低減材を使用した改良体の一軸圧縮強さと材齢との関係を示す図である。
図2(a)から明らかなように、普通ポルトランドセメントの結果は、材齢28日では劣化低減材無添加に比べて、添加率2%、4%の一軸圧縮強さは、それぞれ1.36倍、1.66倍と伸びている。しかし、6%以上では1.5倍程度となっている。また、材齢180日および1年では、添加率2%の一軸圧縮強さは、無添加に比べて変わらないが、添加率4%以上では、改良体劣化低減材の添加効果が顕著に出て、一軸圧縮強さが増加し、無添加に比べて1.7倍程度となっている。
図2(b)から明らかなように、高炉セメントB種の結果は、材齢28日では改良体劣化低減材無添加に比べて、添加率2%、4%、6%の一軸圧縮強さはそれぞれ1.05倍、1.20倍、1.35倍と伸びている。ただし、6%と12%に有意な差はみられなかった。また、材齢180日および1年でも6%までは改良体劣化低減材の添加による強度増加がみられ、無添加に比べて1.5〜1.7倍の強度になっている。しかし、添加率12%では逆に6%を下回る結果を示している。
試験結果より、改良材として普通ポルトランドセメントおよび高炉セメントB種を用いた場合、改良体劣化低減材を添加することにより一軸圧縮強さは無添加に比べて増加することが判明した。また、その強度は、添加率に対応して増加するものの,添加率6%以上では頭打ちになる傾向がみられた。これは、改良体劣化低減材の添加率に適用範囲の存在することを示唆するものであり、最適な添加率としては、4%から6%程度、粉体に換算して1〜1.5重量%が推察された。
Next, an indoor confirmation experiment regarding the performance of the improved body
2 (a) and 2 (b) are diagrams showing the relationship between the uniaxial compressive strength of the improved body using the improved body deterioration reducing material and the material age.
As is clear from FIG. 2 (a), the results of ordinary Portland cement are as follows. The uniaxial compressive strength of the additive rate of 2% and 4% is 1.36 at the age of 28 days as compared with the case where the deterioration reducing material is not added. Double, 1.66 times. However, it is about 1.5 times at 6% or more. In addition, the uniaxial compressive strength of the addition rate of 2% at the material age of 180 days and 1 year does not change compared to the case of no addition. Thus, the uniaxial compressive strength is increased, and is about 1.7 times that of the additive-free.
As is clear from FIG. 2 (b), the results of the blast furnace cement type B show that the uniaxial compressive strength is 2%, 4%, and 6% at the age of 28 days compared to the case where the improved body deterioration reducing material is not added. Are 1.05 times, 1.20 times, and 1.35 times, respectively. However, there was no significant difference between 6% and 12%. Moreover, the strength increase by addition of the improved body deterioration reducing material is seen up to 6% even at a material age of 180 days and 1 year, and the strength is 1.5 to 1.7 times that of no addition. However, when the addition rate is 12%, the result is less than 6%.
From the test results, it was found that when normal Portland cement and blast furnace cement type B were used as the improvement material, the uniaxial compressive strength was increased by adding the improved body deterioration reducing material as compared with the case of no addition. Moreover, although the intensity | strength increased corresponding to an addition rate, the tendency which reached the peak was seen when the addition rate was 6% or more. This suggests that there is an applicable range in the addition rate of the improved body deterioration reducing material, and the optimum addition rate is about 4% to 6%, 1 to 1.5 in terms of powder. % By weight was estimated.
図3は、この発明の改良体劣化低減材を用いて、混合処理工法を施工した場合の、材齢7日における添加量とトータルクロム(T-Cr)および六価クロムの溶出量の関係を示す図である。
図3から明らかなように、改良体劣化低減材の添加によるトータルクロムと六価クロムの溶出量の変化は、セメント添加量100 kg/m3、200 kg/m3とも改良体劣化低減材の添加率の増加に呼応して溶出量の低下がみられた。改良体劣化低減材は、添加率2%でも効果があるといえるが、4%の方がより溶出量が少ない結果となった。
FIG. 3 shows the relationship between the added amount at the age of 7 days and the total chromium (T-Cr) and hexavalent chromium elution amount when the mixed treatment method is applied using the improved material deterioration reducing material of the present invention. FIG.
As can be seen from FIG. 3, the changes in the total chromium and hexavalent chromium elution amounts due to the addition of the improved body deterioration reducing material are the same for the cement added amount of 100 kg / m 3 and 200 kg / m 3 . A decrease in the amount of elution was observed in response to an increase in the addition rate. The improved body deterioration reducing material can be said to be effective even at an addition rate of 2%, but 4% resulted in a smaller amount of elution.
図4は、この発明の改良体劣化低減材を用いて、混合処理工法を施工した場合の、材齢180日における添加量と劣化量との関係を示す。実験は、試料は川崎港及び東京港粘性土を用い、セメントとしては普通ポルトランドセメント及び高炉セメントB種を用い、セメント添加量は、70kg/m3、改良体劣化低減材の添加量は、0、3、6%において実験をした。図4の結果から明らかなように、無添加に比べて、3%および6%の劣化低減材の効果は明確に出ている。 FIG. 4 shows the relationship between the amount of addition and the amount of deterioration at the age of 180 days when the mixed treatment method is applied using the improved body deterioration reducing material of the present invention. In the experiment, Kawasaki Port and Tokyo Port cohesive soil were used as samples, ordinary Portland cement and Blast Furnace Cement B were used as cement, the amount of cement added was 70 kg / m 3 , and the amount of improved body deterioration reducing material was 0. Experiments were performed at 3, 6%. As is clear from the results of FIG. 4, the effects of the 3% and 6% deterioration reducing materials are clearly seen compared to the case of no addition.
本発明は、地盤にセメント系改良材を注入混合してセメント系混合処理改良体を構築する混合処理工法に利用でき、改良体の劣化を低減することにより周辺地盤への重金属類による地盤の汚染を防止するなど、せまられている環境対応工法として優れた効果を奏する。 INDUSTRIAL APPLICABILITY The present invention can be used in a mixed processing method for constructing a cement-based mixed treatment improved body by injecting and mixing a cement-based improving material into the ground, and reducing the deterioration of the improved body to contaminate the ground with heavy metals on the surrounding ground. As an environmentally friendly construction method, it has excellent effects.
1…セメント系改良材ホッパー、2…水供給部ホッパー、3…添加剤ホッパー、4…混合槽、5…回転撹拌翼、6…アジデータ、7…グラウトポンプ、8…圧送管、9…混合処理機、10…撹拌軸、11…撹拌翼、12…掘削翼、13…吐出孔、14…地盤、15…投入口、16…ホッパー、17…改良体劣化低減材、18…落下投入口、19…フィーダ、20…撹拌機構、21…ミキシングタンク、22…モータ、23…供給ポンプ、24…水ポンプ、25…水、26…改良体、31…地盤、33…改良体周辺劣化部。
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007277062A JP4473300B2 (en) | 2007-10-25 | 2007-10-25 | Deterioration reducing method and deterioration reducing material of cement-based mixed treatment improved body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007277062A JP4473300B2 (en) | 2007-10-25 | 2007-10-25 | Deterioration reducing method and deterioration reducing material of cement-based mixed treatment improved body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009102925A true JP2009102925A (en) | 2009-05-14 |
JP4473300B2 JP4473300B2 (en) | 2010-06-02 |
Family
ID=40704881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007277062A Active JP4473300B2 (en) | 2007-10-25 | 2007-10-25 | Deterioration reducing method and deterioration reducing material of cement-based mixed treatment improved body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4473300B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04293597A (en) * | 1991-03-20 | 1992-10-19 | Tokio Saitou | Solidifying agent of mixed system of organic matter-containing inorganic matter and cement |
JPH09208280A (en) * | 1996-02-07 | 1997-08-12 | Kunihiro Fukai | Cement hydration accelerator |
JP2000160548A (en) * | 1998-11-25 | 2000-06-13 | Tone Geo Tech Co Ltd | Solidifying material injection control method in mechanically agitating deep layer mixing processing work |
JP2001303056A (en) * | 2000-04-21 | 2001-10-31 | Nippon Eco Technology:Kk | Soil texture and soil conditioner |
JP2006143976A (en) * | 2004-11-25 | 2006-06-08 | Toshio Fukuda | Method and apparatus for reduction of leaching out of heavy metals in improved matter |
-
2007
- 2007-10-25 JP JP2007277062A patent/JP4473300B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04293597A (en) * | 1991-03-20 | 1992-10-19 | Tokio Saitou | Solidifying agent of mixed system of organic matter-containing inorganic matter and cement |
JPH09208280A (en) * | 1996-02-07 | 1997-08-12 | Kunihiro Fukai | Cement hydration accelerator |
JP2000160548A (en) * | 1998-11-25 | 2000-06-13 | Tone Geo Tech Co Ltd | Solidifying material injection control method in mechanically agitating deep layer mixing processing work |
JP2001303056A (en) * | 2000-04-21 | 2001-10-31 | Nippon Eco Technology:Kk | Soil texture and soil conditioner |
JP2006143976A (en) * | 2004-11-25 | 2006-06-08 | Toshio Fukuda | Method and apparatus for reduction of leaching out of heavy metals in improved matter |
Also Published As
Publication number | Publication date |
---|---|
JP4473300B2 (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5399573B2 (en) | Cement-based deep-mixing additive and method for constructing improved cement-based deep-mixing treatment using this additive | |
CN104876500B (en) | A kind of self-compaction powder concrete and preparation method and application for ocean engineering | |
JP6693770B2 (en) | Ground improvement material and ground improvement method using the same | |
CN107162549A (en) | The curing agent and application method of heavy metal pollution site remediation based on entringite | |
KR100884285B1 (en) | The soil stabilization for which this for super-high-pressure injection and this were used with hardening agent for soft soil stabilization | |
KR102454865B1 (en) | Eco-friendly grout material composition for water-impermeable reinforcement of ground using inorganic accelerator and zero-cement biner | |
KR100940802B1 (en) | The deep mixing method of soil stabilization for which a hardener for weak soil stabilization, this mix processor and this were used | |
JP6529821B2 (en) | Powder stabilization agent for ground stabilization, ground stabilization material, and ground stabilization method using the same | |
KR101051968B1 (en) | Deep soil mixing method using eco-friendly soil grouting material | |
KR100940811B1 (en) | The ground stabilization for which foundation improved material and this were used | |
CN116143468B (en) | Premixed fluid state solidified salty soil and preparation method thereof | |
JP6682920B2 (en) | Manufacturing method of artificial stone | |
JP4473300B2 (en) | Deterioration reducing method and deterioration reducing material of cement-based mixed treatment improved body | |
JP2007204941A (en) | Carbonated ground improvement construction method | |
JPH04221116A (en) | Grouting engineering method | |
JP3698714B1 (en) | Method and apparatus for reducing elution of heavy metals in improved body | |
CN103539389B (en) | Seawater mixes the preparation method of pulp-water earth | |
JP3952834B2 (en) | Alkaline mud treatment method and alkaline mud modifier | |
JP7265498B2 (en) | Ground improvement method | |
JP4212315B2 (en) | Soil consolidation method and concrete frame processing method | |
JP2002121552A (en) | Solidifier for water-containing soil and process for solidifying water-containing soil using this | |
JP6497990B2 (en) | Liquid admixture for ground stabilization, ground stabilization material, and ground stabilization method using the same | |
JP2006150341A (en) | Method for improving/solidifying soil | |
JP2015101830A (en) | Sand arrestation soil cement method utilizing organic soil as construction material | |
JP6776391B2 (en) | Ground improvement materials, cement milk, and ground improvement methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4473300 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |