JP4564647B2 - Soil solidifying agent - Google Patents

Soil solidifying agent Download PDF

Info

Publication number
JP4564647B2
JP4564647B2 JP2000363433A JP2000363433A JP4564647B2 JP 4564647 B2 JP4564647 B2 JP 4564647B2 JP 2000363433 A JP2000363433 A JP 2000363433A JP 2000363433 A JP2000363433 A JP 2000363433A JP 4564647 B2 JP4564647 B2 JP 4564647B2
Authority
JP
Japan
Prior art keywords
soil
solidifying agent
inorganic porous
acid
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000363433A
Other languages
Japanese (ja)
Other versions
JP2002167582A (en
Inventor
勝一 國松
豊 松田
Original Assignee
松田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松田技研工業株式会社 filed Critical 松田技研工業株式会社
Priority to JP2000363433A priority Critical patent/JP4564647B2/en
Publication of JP2002167582A publication Critical patent/JP2002167582A/en
Application granted granted Critical
Publication of JP4564647B2 publication Critical patent/JP4564647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばシールド工法、地中連続壁工法、浚渫工法、表層および深層地盤改良工法等の建設現場からの発生土のような土壌を固化させるために使用される土壌固化剤に関するものである。
【0002】
【従来の技術】
土壌固化剤用酸性剤として、塩化第二鉄水溶液が使用されている。
【0003】
【発明が解決しようとする課題】
酸化マグネシウムと塩化第二鉄水溶液とを予め混合してから土壌に混合しようとすると、酸化マグネシウムに塩化第二鉄水溶液を添加した時点で急激な硬化反応が起り、土壌と均一に混合することが困難となる。
そこで酸化マグネシウムと塩化第二鉄水溶液とを別々に土壌に混合しなければならないが、この場合には混合作業が二回必要となり、非常に手間がかかる。
【0004】
更に塩化第二鉄水溶液は腐蝕性があり、機器には耐腐蝕性材料を使用した高価なものが必要となる。
【0005】
粉末の塩化第二鉄を使用すれば、機器の腐蝕はある程度防止出来るが、塩化第二鉄は非常に潮解性が高く、空気中の水分を吸収して直ちに潮解することから、取扱いが非常に困難となる。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するために、酸化マグネシウムと、塩化第二鉄水溶液吸着無機多孔質体とからなる土壌固化剤を提供するものである。
【0007】
更に本発明は、酸化マグネシウムと、第二塩化鉄水溶液吸着無機多孔質体と、液状酸性剤吸着無機多孔質体とからなることを特徴とする土壌固化剤を提供するものである。
【0008】
【発明の実施の形態】
【0009】
本発明の土壌固化剤は、酸化マグネシウムと、塩化第二鉄水溶液が吸着された無機多孔質体とからなり、該土壌固化剤を使用する際は、該酸化マグネシウムと該無機多孔質体とを混合した状態で土壌に添加混合され、土壌を硬化させる。
【0010】
本発明に使用される酸化マグネシウムには、低温焼成品と高温焼成品とがあるが、反応性の点からみて低温焼成品(軽焼マグネシア)の使用が望ましい。また本発明ではドロマイトのような酸化マグネシウムを含むものも使用出来る。
【0011】
本発明で使用される塩化第二鉄水溶液は、通常40〜47°Beの比重であり、無機多孔質体に吸着させて塩化第二鉄水溶液吸着無機多孔質体として土壌固化剤に使用される。
【0012】
本発明で使用される無機多孔質体としては、例えば、シリカヒューム、ベントナイト、白土類、タルク、ケイソウ土、ゼオライト、セピオライト、フライアッシュ、焼却炭、活性炭、パーライト、バミューライト等がある。
なお無機多孔質体の平均粒径は5〜15μmである。
【0013】
上記無機多孔質体に吸着される塩化第二鉄水溶液の添加量は、通常、無機多孔質体100重量部に対して30〜150重量部である。
【0014】
本発明では、上記酸化マグネシウムおよび塩化第二鉄水溶液吸着無機多孔質体と共に、処理土のpHを低くするための酸性剤を無機多孔質体に吸着させた液状酸性剤吸着多孔質体を使用する土壌固化剤であってもよい。
【0015】
本発明で使用される酸性剤は液状であり、例えば、塩酸、硫酸、硝酸、リン酸、酢酸等の酸性剤である。
【0016】
酸性剤が吸着される無機多孔質体は、上記無機多孔質体と同様であり、該酸性剤は無機多孔質体100重量部に対して通常30〜150重量部吸着される。
【0017】
本発明の土壌固化剤は、酸化マグネシウムと塩化第二鉄水溶液を吸着させた無機多孔質体と土壌との固化反応によって土壌が固化せしめられるが、上記した酸性剤を土壌固化剤の成分とした場合にあっては、該酸性剤によって土壌のpHを酸性側、望ましくはpH5〜9、更に望ましくはpH5. 8〜8. 6に調節して酸化マグネシウムと塩化第二鉄と土壌との固化反応が促進される。
【0018】
本発明の土壌固化剤の上記した成分の添加比率は、酸化マグネシウム100重量部に対して、塩化第二鉄水溶液吸着無機多孔質体は10〜100重量部添加される。
なお液状酸性剤吸着無機多孔質体については、土壌のpHに応じて添加量が調節されることは言うまでもない。
【0019】
また所望により、上記した土壌固化剤の成分に加えて、他の成分を加えてもよい。例えば、他の成分として処理土が水分を多量に含有する場合には、所望により上記した土壌固化剤の成分に加えて、有機高分子凝集剤および/または吸水剤を加えてもよい。該有機高分子凝集剤としては、例えばポリアクリル酸ナトリウム、ポリアクリルアミド、アクリル酸ナトリウム−アクリルアミド共重合体、ポリエチレンオキサイドの合成高分子凝集剤、グアガム、キサンタンガム、アルギン酸等の天然高分子業種剤等があり、該吸水剤としては、例えば、下水焼却灰、木炭、シリカゲル等がある。有機高分子凝集剤および/または吸水剤は、上記土壌を凝縮して水を排除、あるいは土壌中の水を吸収し、望ましい固さの土壌固化物が得られる。
【0020】
また、土壌のpHを酸性側にするために粉末状の酸性剤を土壌固化剤の成分として加えてもよく、粉末状の酸性剤としては、例えば粉末硫酸、ホウ酸等の粉末状の無機酸あるいは蓚酸、クエン酸、リンゴ酸、ベンゼンスルホン酸等の粉末状の有機酸、硫酸アンモニウム、ベンゼンスルホン酸アンモニウム等の強酸と弱塩基との粉末状の塩、塩化第二鉄、硫酸第一鉄、硫酸アルミニウム、ポリ塩化アルミニウム等の粉末状の酸性塩等が使用される。
【0021】
なお土壌固化剤の成分として、上記した成分以外に、所望なれば炭酸カルシウム、無水石膏、半水石膏、タルク、未焼ドロマイト、ケイ石粉等の充填剤が添加されてもよい。
【0022】
本発明の土壌固化剤は土壌に添加する前に全成分を混合し、その後土壌に添加されてもよいし、また各成分を個々に土壌に添加されてもよく、場合によっては成分のうち2種以上を予め混合しておいて土壌に添加されてもよい。
【0023】
本発明の土壌固化剤の土壌に対する添加量は、土質、含水量等によって調節される。一般に土質を多く含んでいる粘性の大きな土壌の場合には添加量は多くし、また土質が少なく粘性の小さな土壌の場合には、添加量は少なくてよい。また含水量については、含水比100%以下の土壌の場合、本発明の土壌固化剤は土壌1m3 あたり30〜100kg程度添加され、含水比100〜200%の土壌の場合には、本発明の土壌固化剤は1m3 当り50〜200kg程度添加される。
【0024】
以下、本発明を実施例によって説明する。
〔実施例1〕
試料土壌*11000ccに対し、酸化マグネシウム10重量部、無機多孔質体10重量部に対して塩化第二鉄水溶液(40°Be)6重量部を吸着させた無機多孔質体(シリカヒューム)を6重量部、粉末状酸性剤(粉末硫酸)0. 3重量部の混合物からなる土壌固化剤100gを添加し混練機で混練し、モールドに充填して1時間後に水中養生して1日、2日、5日、7日後の一軸圧縮強度(kgf/cm2 )と27日後のpH値*2を測定した。結果を表1に示す。
試料土壌*1:カオリン粘土*31000gを水500ccに添加混合して調製した。該試料土壌の含土率66.3重量%である。
カオリン粘土*3:含土率99. 5重量%、比重2. 66、シルト分(粒径5〜75μm)62. 1%、粘土分(粒径5μm以下)37. 9%である。
pH値*2:27日間水中養生した試料100g採取し、蒸留水500ccを添加混合し、24時間放置後、浸漬水のpH値を測定した(以下実施例および比較例において同様)。
【0025】
〔実施例2〕
試料土壌(実施例1と同様)1000ccに対し、酸化マグネシウム10重量部、無機多孔質体10重量部に対して塩化第二鉄水溶液(40°Be)6重量部を吸着させた無機多孔質体(シリカヒューム)を6重量部、該無機多孔質体10重量部に対してリン酸水溶液(75重量%)を5重量部を吸着させた酸性剤1重量部の混合物からなる土壌固化剤100gを添加し混練機で混練し、モールドに充填して1時間後に水中養生して1日、2日、5日、7日後の一軸圧縮強度(kgf/cm2 )と27日後のpH値をガラス電極法で測定した。結果を表1に示す。
【0026】
〔比較例〕
上記実施例と比較するために、試料土壌(実施例1と同様)1000ccに対し、酸化マグネシウム6重量部、シリカヒューム1重量部、塩化第二鉄水溶液(40°Be)3重量部、粉末状酸性剤(粉末硫酸)0. 3重量部の混合物からなる土壌固化剤100gを添加し混練機で混練し、モールドに充填して1時間後に水中養生して1日、2日、5日、7日後の一軸圧縮強度(kgf/cm2 )と27日後のpH値をガラス電極法で測定した。結果を表1に示す。
【0027】
【表1】

Figure 0004564647
【0028】
表1に示される実施例1、実施例2および比較例の結果からわかるように、塩化第二鉄水溶液を無機多孔質体に吸着させた状態で使用しても、十分土壌を固化できる。またpH値も同様に制御できる。
【0029】
〔実施例3〕
東京都内の土圧シールド現場より発生した関東ローム由来の泥土*43000ccに対し、実施例1の土壌固化剤300gを添加し混練機で混練し、モールドに充填して1時間後に水中養生して1日、2日、7日、9日後の一軸圧縮強度(kg/cm2 )と9日後のpH値を測定した。結果を表2に示す。
関東ローム由来の泥土*4:含土率45. 8重量%、砂分(粒径2mm〜75μm)51. 1%、シルト分(粒径5〜75μm)23. 5%、粘土分(粒径5μm以下)25. 4%、含水比118. 3%である。
【0030】
【表2】
Figure 0004564647
【0031】
本実施例の結果より、本発明の土壌固化剤は現場から発生する土壌を十分固化させることが出来ることがわかる。
【0032】
【発明の効果】
塩化第二鉄水溶液を無機多孔質体に吸着させることで、予め他の土壌固化剤の成分とを混ぜ合わせることができ土壌の固化作業を軽減され、また局所的に急激な発熱反応を発生させることなく土壌を固化させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soil solidifying agent used for solidifying soil such as generated soil from construction sites such as shield method, underground continuous wall method, dredging method, surface layer and deep ground improvement method. .
[0002]
[Prior art]
A ferric chloride aqueous solution is used as an acid agent for the soil solidifying agent.
[0003]
[Problems to be solved by the invention]
When mixing magnesium oxide and ferric chloride aqueous solution in advance and then trying to mix with soil, a rapid hardening reaction occurs when ferric chloride aqueous solution is added to magnesium oxide, and it may be mixed with soil uniformly. It becomes difficult.
Therefore, the magnesium oxide and the ferric chloride aqueous solution must be separately mixed with the soil, but in this case, the mixing operation is required twice, which is very troublesome.
[0004]
Further, the aqueous ferric chloride solution is corrosive, and the equipment needs to be expensive using a corrosion-resistant material.
[0005]
If powdered ferric chloride is used, the corrosion of the equipment can be prevented to some extent, but ferric chloride is highly deliquescent and absorbs moisture in the air and immediately deliquesces, so handling is very It becomes difficult.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a soil solidifying agent comprising magnesium oxide and an aqueous ferric chloride-adsorbing inorganic porous material.
[0007]
Furthermore, the present invention provides a soil solidifying agent characterized by comprising magnesium oxide, an aqueous ferric chloride-adsorbing inorganic porous material, and a liquid acidic agent-adsorbing inorganic porous material.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
[0009]
The soil solidifying agent of the present invention comprises magnesium oxide and an inorganic porous material to which an aqueous ferric chloride solution is adsorbed. When the soil solidifying agent is used, the magnesium oxide and the inorganic porous material are combined. In the mixed state, it is added to the soil and mixed to harden the soil.
[0010]
The magnesium oxide used in the present invention includes a low-temperature fired product and a high-temperature fired product, and it is desirable to use a low-temperature fired product (light-fired magnesia) from the viewpoint of reactivity. In the present invention, those containing magnesium oxide such as dolomite can also be used.
[0011]
The ferric chloride aqueous solution used in the present invention usually has a specific gravity of 40 to 47 ° Be, and is adsorbed on an inorganic porous material and used as a ferric chloride aqueous solution adsorbing inorganic porous material in a soil solidifying agent. .
[0012]
Examples of the inorganic porous material used in the present invention include silica fume, bentonite, clay, talc, diatomaceous earth, zeolite, sepiolite, fly ash, incinerated coal, activated carbon, perlite, and bamulite.
The average particle size of the inorganic porous body is 5 to 15 μm.
[0013]
The addition amount of the ferric chloride aqueous solution adsorbed on the inorganic porous body is usually 30 to 150 parts by weight with respect to 100 parts by weight of the inorganic porous body.
[0014]
In the present invention, together with the magnesium oxide and the aqueous ferric chloride solution adsorbing inorganic porous material, a liquid acid agent adsorbing porous material in which an acid agent for lowering the pH of the treated soil is adsorbed on the inorganic porous material is used. It may be a soil solidifying agent.
[0015]
The acid agent used in the present invention is in a liquid state, for example, an acid agent such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and acetic acid.
[0016]
The inorganic porous body to which the acid agent is adsorbed is the same as the inorganic porous body, and the acid agent is usually adsorbed in an amount of 30 to 150 parts by weight with respect to 100 parts by weight of the inorganic porous body.
[0017]
In the soil solidifying agent of the present invention, the soil is solidified by the solidification reaction between the inorganic porous material adsorbing magnesium oxide and ferric chloride aqueous solution and the soil, but the above-mentioned acid agent is used as a component of the soil solidifying agent. In some cases, the pH of the soil is adjusted to the acidic side, preferably pH 5 to 9, more preferably pH 5.8 to 8.6 by the acid agent, and the solidification reaction of magnesium oxide, ferric chloride and soil. Is promoted.
[0018]
The addition ratio of the above-described components of the soil solidifying agent of the present invention is 10 to 100 parts by weight of the ferric chloride aqueous solution-adsorbing inorganic porous material with respect to 100 parts by weight of magnesium oxide.
Needless to say, the addition amount of the liquid acidic agent-adsorbing inorganic porous material is adjusted according to the pH of the soil.
[0019]
If desired, other components may be added in addition to the above-mentioned components of the soil solidifying agent. For example, when the treated soil contains a large amount of water as another component, an organic polymer flocculant and / or a water absorbing agent may be added in addition to the above-described component of the soil solidifying agent as desired. Examples of the organic polymer flocculant include sodium polyacrylate, polyacrylamide, sodium acrylate-acrylamide copolymer, synthetic polymer flocculant of polyethylene oxide, natural polymer industry agents such as guar gum, xanthan gum, and alginic acid. Examples of the water absorbing agent include sewage incineration ash, charcoal, and silica gel. The organic polymer flocculant and / or water-absorbing agent condenses the soil to exclude water, or absorbs water in the soil, and a soil solidified product having a desired hardness can be obtained.
[0020]
In order to make the pH of the soil acidic, a powdered acid agent may be added as a component of the soil solidifying agent. Examples of the powdered acid agent include powdered inorganic acids such as powdered sulfuric acid and boric acid. Or powdered organic acid such as oxalic acid, citric acid, malic acid, benzenesulfonic acid, powdered salt of strong acid and weak base such as ammonium sulfate, ammonium benzenesulfonate, ferric chloride, ferrous sulfate, sulfuric acid Powdered acid salts such as aluminum and polyaluminum chloride are used.
[0021]
In addition to the above-described components, fillers such as calcium carbonate, anhydrous gypsum, hemihydrate gypsum, talc, unbaked dolomite, and quartzite powder may be added as a component of the soil solidifying agent.
[0022]
The soil solidifying agent of the present invention may be added to the soil after mixing all the components before adding to the soil, or each component may be added individually to the soil. More than seeds may be mixed in advance and added to the soil.
[0023]
The amount of the soil solidifying agent of the present invention added to the soil is adjusted depending on the soil quality, water content and the like. In general, the amount of addition is large in the case of highly viscous soil containing a large amount of soil, and the amount of addition may be small in the case of soil with little soil and low viscosity. Regarding the water content, in the case of soil with a water content ratio of 100% or less, the soil solidifying agent of the present invention is added in an amount of about 30 to 100 kg per 1 m 3 of soil, and in the case of soil with a water content ratio of 100 to 200%, About 50 to 200 kg of soil solidifying agent is added per 1 m 3 .
[0024]
Hereinafter, the present invention will be described by way of examples.
[Example 1]
An inorganic porous material (silica fume) in which 10 parts by weight of magnesium oxide and 10 parts by weight of an inorganic porous material are adsorbed with 6 parts by weight of a ferric chloride aqueous solution (40 ° Be) per 1000 cc of sample soil * 1 6 parts by weight, powdered acid agent (powdered sulfuric acid) 0.3 part by weight of a soil solidifying agent 100 g was added, kneaded with a kneader, filled in the mold and cured in water one hour later. The uniaxial compressive strength (kgf / cm 2 ) after 5 days and 7 days, and the pH value * 2 after 27 days were measured. The results are shown in Table 1.
Sample soil * 1 : prepared by adding 1000 g of kaolin clay * 3 to 500 cc of water. The soil content of the sample soil is 66.3% by weight.
Kaolin clay * 3 : Soil content 99.5% by weight, specific gravity 2.66, silt content (particle size 5 to 75 μm) 62.1%, clay content (particle size 5 μm or less) 37.9%.
pH value * 2 : 100 g of a sample cured in water for 27 days was collected, 500 cc of distilled water was added and mixed, and after standing for 24 hours, the pH value of immersion water was measured (the same applies to Examples and Comparative Examples below).
[0025]
[Example 2]
Inorganic porous material in which 10 parts by weight of magnesium oxide and 10 parts by weight of inorganic porous material are adsorbed with 6 parts by weight of ferric chloride aqueous solution (40 ° Be) per 1000 cc of sample soil (same as Example 1) 100 g of a soil solidifying agent comprising a mixture of 1 part by weight of an acid agent in which 6 parts by weight of (silica fume) and 5 parts by weight of an aqueous phosphoric acid solution (75% by weight) are adsorbed to 10 parts by weight of the inorganic porous material. Add, knead in a kneader, fill in mold, and cure in water 1 hour later. Uniaxial compressive strength (kgf / cm 2 ) after 1 day, 2 days, 5 days, 7 days and pH value after 27 days Measured by the method. The results are shown in Table 1.
[0026]
[Comparative Example]
In order to compare with the above Examples, 6 parts by weight of magnesium oxide, 1 part by weight of silica fume, 3 parts by weight of aqueous ferric chloride solution (40 ° Be), 1000 cc per 1000 cc of sample soil (same as Example 1) 100 g of a soil solidifying agent consisting of a mixture of 0.3 part by weight of an acid agent (powdered sulfuric acid), kneaded with a kneader, filled in a mold and cured in water 1 hour, 2 days, 5 days, 7 days The uniaxial compressive strength (kgf / cm 2 ) after the day and the pH value after 27 days were measured by the glass electrode method. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0004564647
[0028]
As can be seen from the results of Example 1, Example 2 and Comparative Example shown in Table 1, the soil can be sufficiently solidified even when the aqueous ferric chloride solution is used adsorbed on the inorganic porous material. The pH value can be controlled in the same manner.
[0029]
Example 3
To mud * 4 3000cc derived generated from earth pressure shield site Tokyo Kanto loam, kneaded with adding kneader soil solidifying agent 300g of Example 1, and cured in water after 1 hour was filled in a mold The uniaxial compressive strength (kg / cm 2 ) after 1, 2, 7, and 9 days and the pH value after 9 days were measured. The results are shown in Table 2.
Mud soil derived from Kanto Loam * 4 : Soil content 45.8% by weight, sand content (particle size 2mm to 75μm) 51.1%, silt content (particle size 5 to 75μm) 23.5%, clay content (particle size) (5 μm or less) 25.4%, water content 118.3%.
[0030]
[Table 2]
Figure 0004564647
[0031]
From the results of this Example, it can be seen that the soil solidifying agent of the present invention can sufficiently solidify the soil generated from the field.
[0032]
【The invention's effect】
By adsorbing the ferric chloride aqueous solution to the inorganic porous material, it is possible to mix with the components of other soil solidifying agents in advance, reducing the solidification work of the soil, and generating a local rapid exothermic reaction The soil can be solidified without any problems.

Claims (2)

酸化マグネシウムと、塩化第二鉄水溶液吸着無機多孔質体とからなることを特徴とする土壌固化剤A soil solidifying agent comprising magnesium oxide and an inorganic porous material adsorbed with ferric chloride aqueous solution 酸化マグネシウムと、第二塩化鉄水溶液吸着無機多孔質体と、液状酸性剤吸着無機多孔質体とからなることを特徴とする土壌固化剤A soil-solidifying agent comprising magnesium oxide, an aqueous ferric chloride-adsorbing inorganic porous material, and a liquid acid agent-adsorbing inorganic porous material
JP2000363433A 2000-11-29 2000-11-29 Soil solidifying agent Expired - Lifetime JP4564647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363433A JP4564647B2 (en) 2000-11-29 2000-11-29 Soil solidifying agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363433A JP4564647B2 (en) 2000-11-29 2000-11-29 Soil solidifying agent

Publications (2)

Publication Number Publication Date
JP2002167582A JP2002167582A (en) 2002-06-11
JP4564647B2 true JP4564647B2 (en) 2010-10-20

Family

ID=18834549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363433A Expired - Lifetime JP4564647B2 (en) 2000-11-29 2000-11-29 Soil solidifying agent

Country Status (1)

Country Link
JP (1) JP4564647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024719A1 (en) * 2022-07-27 2024-02-01 宇部マテリアルズ株式会社 Alkali agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562929B2 (en) * 2001-02-14 2010-10-13 独立行政法人農業・食品産業技術総合研究機構 Cement composition
JP5724100B2 (en) * 2011-03-02 2015-05-27 独立行政法人農業環境技術研究所 Control method of vegetation
JP6539625B2 (en) * 2016-09-16 2019-07-03 鹿島建設株式会社 Soil modifier
JP6363281B1 (en) * 2017-08-31 2018-07-25 テクニカ合同株式会社 One-pack type neutral solidifying agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139258A (en) * 1976-05-18 1977-11-21 Toyo Soda Mfg Co Ltd Modifying method of biological sludge
JPH0263591A (en) * 1988-07-19 1990-03-02 Lopat Ind Inc Composition for sealing chromium, arsenic and other harmful metals in waste
JPH04203013A (en) * 1990-11-30 1992-07-23 Yoshinobu Shimabukuro Preventing work for run-off surface soil by rain water
JPH07155366A (en) * 1993-12-06 1995-06-20 Japan Tobacco Inc Deodorant
JPH0971777A (en) * 1995-09-06 1997-03-18 Kokudo Sogo Kensetsu Kk Process for neutralizing solidified soil resulting from solidification of sludge and soft soil
JPH1150051A (en) * 1997-08-05 1999-02-23 Kureatera:Kk Granular soil alkali adjusting material
JP2000239660A (en) * 1999-02-17 2000-09-05 Tousei Sangyo Kk Soil-solidifying agent
JP2002206090A (en) * 2000-11-09 2002-07-26 Matsuda Giken Kogyo Kk Neutral soil-solidifying agent and method of improving ground and the like, and means for preventing elution of heavy metal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139258A (en) * 1976-05-18 1977-11-21 Toyo Soda Mfg Co Ltd Modifying method of biological sludge
JPH0263591A (en) * 1988-07-19 1990-03-02 Lopat Ind Inc Composition for sealing chromium, arsenic and other harmful metals in waste
JPH04203013A (en) * 1990-11-30 1992-07-23 Yoshinobu Shimabukuro Preventing work for run-off surface soil by rain water
JPH07155366A (en) * 1993-12-06 1995-06-20 Japan Tobacco Inc Deodorant
JPH0971777A (en) * 1995-09-06 1997-03-18 Kokudo Sogo Kensetsu Kk Process for neutralizing solidified soil resulting from solidification of sludge and soft soil
JPH1150051A (en) * 1997-08-05 1999-02-23 Kureatera:Kk Granular soil alkali adjusting material
JP2000239660A (en) * 1999-02-17 2000-09-05 Tousei Sangyo Kk Soil-solidifying agent
JP2002206090A (en) * 2000-11-09 2002-07-26 Matsuda Giken Kogyo Kk Neutral soil-solidifying agent and method of improving ground and the like, and means for preventing elution of heavy metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024719A1 (en) * 2022-07-27 2024-02-01 宇部マテリアルズ株式会社 Alkali agent

Also Published As

Publication number Publication date
JP2002167582A (en) 2002-06-11

Similar Documents

Publication Publication Date Title
JP3479715B2 (en) Soil solidifying agent
WO2002064527A1 (en) Cement composition
CN105217925A (en) Solidifying agent of a kind of sludge in-situ solidification and stabilization and its preparation method and application
JPH0819406B2 (en) Soft grout composition
JP4588512B2 (en) Soil-improving injection material and method for insolubilizing soil contaminants using the injection material
JP2008255193A (en) Soil hardener
JP4564647B2 (en) Soil solidifying agent
CN102320709A (en) Slurry curing agent
JP5063863B2 (en) Treatment method of construction waste mud generated by bubble shield method
JP5246177B2 (en) Soil-improving injection material and method for insolubilizing soil contaminants using the injection material
KR0134253B1 (en) Curing method of industrial waste and soil mixture
JP2505295B2 (en) Injection products for watertightening and / or compacting soil and construction materials and their use
KR20000049749A (en) A solidifying agent composition of which chief ingredient is low exothermic cement and a preparing method thereof
JP4093808B2 (en) Soil solidifying agent
JP2002128550A (en) Alkali-based curing agent and water resistant and heat resistant solidified body and its use
JP2003064361A (en) Soil hardener
CA1280584C (en) Compositions and method for neutralization and solidification of hazardous acid spills
JP2002121552A (en) Solidifier for water-containing soil and process for solidifying water-containing soil using this
JP2006219547A (en) Soil-solidifying material
JPH0415038B2 (en)
JP2002249774A (en) Soil solidification agent
JP2006225475A (en) Solidifier and method for improving solidification of soil by using the solidifier
JP3463505B2 (en) Solidifying material for wet soil and method for improving solidification of wet soil
JPH10273670A (en) Solidifying material for hydrous soil and modification of hydrous soil using the same
JP6331514B2 (en) Slightly acidic solidification method for soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160806

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4564647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term