JP6331514B2 - Slightly acidic solidification method for soil - Google Patents

Slightly acidic solidification method for soil Download PDF

Info

Publication number
JP6331514B2
JP6331514B2 JP2014049763A JP2014049763A JP6331514B2 JP 6331514 B2 JP6331514 B2 JP 6331514B2 JP 2014049763 A JP2014049763 A JP 2014049763A JP 2014049763 A JP2014049763 A JP 2014049763A JP 6331514 B2 JP6331514 B2 JP 6331514B2
Authority
JP
Japan
Prior art keywords
soil
solidification
solidified
solidifying
mixing ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014049763A
Other languages
Japanese (ja)
Other versions
JP2014210255A (en
Inventor
米田 修
修 米田
克則 有馬
克則 有馬
田坂 行雄
行雄 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2014049763A priority Critical patent/JP6331514B2/en
Publication of JP2014210255A publication Critical patent/JP2014210255A/en
Application granted granted Critical
Publication of JP6331514B2 publication Critical patent/JP6331514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Sludge (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Paleontology (AREA)

Description

本発明は、浚渫土や建設汚泥などの軟弱泥土の固化処理による安定化技術に関する。より詳しくは、固化処理土のpHを弱酸性に調整して固化処理する、軟弱土の固化処理方法に関する。   The present invention relates to a stabilization technique by solidifying soft mud such as dredged soil and construction sludge. More specifically, the present invention relates to a method for solidifying soft soil, in which the pH of the solidified soil is adjusted to weak acidity and solidified.

土木工事等により発生する建設汚泥や建設発生土ならびに港湾等の浚渫工事で発生する浚渫土砂等はセメント系固化材を用いて固化処理し安定化される例が多い。この場合、固化処理土のpHは11〜12程度の高いアルカリ性を示し、動/植物への影響が懸念され土としての再利用が制限される場合がある。   In many cases, construction sludge generated by civil engineering, construction generated soil, dredged sand generated by dredging work at harbors, etc. is solidified using cement-based solidifying material and stabilized. In this case, the pH of the solidified soil exhibits a high alkalinity of about 11 to 12, and there is a concern about the influence on animals / plants, and the reuse as soil may be limited.

例えば、固化処理土への直接の植栽や生活井、農地、湖沼、ため池など近くの施工ではアルカリ対策を求められることがある。この他、固化対象土がアンモニウム塩を含有する場合、アルカリ性になった固化処理土からアンモニアガスが発生する場合がある。また、固化対象土が酸性の強い土ではセメントのアルカリ成分が中和反応で消費され、十分な固化強度が得られない場合もある。   For example, alkali measures may be required for direct planting on solidified soil and construction near living wells, farmland, lakes, and ponds. In addition, when the soil to be solidified contains an ammonium salt, ammonia gas may be generated from the solidified soil that has become alkaline. Further, when the soil to be solidified is strongly acidic, the alkali component of the cement is consumed by the neutralization reaction, and sufficient solidification strength may not be obtained.

これらの課題を解決するため固化処理土が中性(排水基準:pH5.8〜8.6)、もしくは中性に近い、所謂、中性固化材が求められている。これまでの中性固化材は半水石膏を主成分とするタイプが主流であり、この系の固化材は固化強度が不十分な場合が多く、また反応性が高すぎて施工中にこわばり等が生じる場合があり、施工に支障をきたすこともあった。これに加えて、最近では六価クロムなどの有害物質が溶出しないことも求められている。
既述の通り、この種の固化材で半水石膏を主成分とする石膏系固化材があり、セメント、石膏双方を成分とし、両系の長所を活かそうとする中性固化材も幾つか提案されている。例えば、特許文献1および特許文献2には、半水石膏、セメントおよび石灰、高炉スラグ等の混合材よりなる固化材が開示され、特許文献3には石膏、ポルトランドセメントおよび硫酸アルミニウムより成る固化材が開示されている。
In order to solve these problems, a so-called neutral solidified material is required in which the solidified soil is neutral (drainage standard: pH 5.8 to 8.6) or close to neutrality. Until now, neutral solidified materials mainly consisted of hemihydrate gypsum, and this type of solidified material often has insufficient solidification strength, and is too reactive to stiffen during construction. May occur, which may hinder construction. In addition to this, it has recently been required that no harmful substances such as hexavalent chromium be eluted.
As already mentioned, there are gypsum-based solidification materials of this type that contain hemihydrate gypsum as the main component, and there are several neutral solidification materials that use both cement and gypsum as components and try to take advantage of the advantages of both systems. Proposed. For example, Patent Document 1 and Patent Document 2 disclose a solidified material made of a mixed material such as hemihydrate gypsum, cement and lime, blast furnace slag, and Patent Document 3 discloses a solidified material made of gypsum, Portland cement and aluminum sulfate. Is disclosed.

特許文献4には、無水または半水石膏、セメントおよび硫酸基を有する無機塩よりなる固化材が開示されている。さらに特許文献5および特許文献6には、半水石膏、アルミナセメント、またはアルミナセメントとポルトランドセメントの混合セメントと硫酸アルミニウムまたは硫酸鉄より成る固化材が開示されている。   Patent Document 4 discloses a solidified material composed of anhydrous or hemihydrate gypsum, cement, and an inorganic salt having a sulfate group. Further, Patent Documents 5 and 6 disclose a solidified material made of hemihydrate gypsum, alumina cement, or a mixed cement of alumina cement and Portland cement, and aluminum sulfate or iron sulfate.

特開平8−302346号公報JP-A-8-302346 特開平8−311446号公報JP-A-8-311446 特開平6−220451号公報JP-A-6-220451 特開平7−179854号公報JP-A-7-179854 特開平10−273660号公報JP-A-10-273660 特開平10−273663号公報Japanese Patent Laid-Open No. 10-273663

しかしながら、上記のセメントと半水石膏を主材とする固化材による固化処理方法では固化処理土の強度が比較的低く、また、その速硬性ゆえに、土との混合処理中に硬化反応が進行し、施工性が問題となる場合がある。   However, in the above-described solidification method using a solidification material mainly composed of cement and hemihydrate gypsum, the strength of the solidified soil is relatively low, and because of its rapid hardness, the curing reaction proceeds during the mixing with the soil. The workability may be a problem.

そこで、本発明は、軟弱土を固化処理する工法において、強度の高い改良土が得られることは勿論のこと、適当な時期に硬化することにより優れた施工性を示し、固化処理土が中性に近く環境負荷の小さい固化処理方法を提供することを目的とする。   Therefore, the present invention shows that, in the method of solidifying soft soil, improved soil with high strength can be obtained, as well as excellent workability when cured at an appropriate time, and the solidified soil is neutral. An object of the present invention is to provide a solidification processing method that has a low environmental impact.

本発明者らは、上記課題に関し鋭意検討した結果、硫酸アルミニウムとアルミナセメントとを、固化処理土のpHが弱酸性の条件下で、適切な割合で混合した固化処理方法が、従来の半水石膏系の中性固化材に比較して非常に高い固化強度が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies on the above problems, the present inventors have found that a solidification method in which aluminum sulfate and alumina cement are mixed at an appropriate ratio under a condition where the pH of the solidified soil is weakly acidic is a conventional half-water treatment. It has been found that a very high solidification strength can be obtained as compared with a gypsum-based neutral solidification material, and the present invention has been completed.

すなわち、本発明は、固化処理対象土の一部を採取した試料土と、アルミナセメント及び硫酸アルミニウムとを含む固化材とを混合し、pHが4.0を超え6.0以下の条件下で所定の強度が得られるように、前記固化処理対象土に対する前記固化材の混合割合を決定する混合割合決定工程と、前記固化処理対象土と前記固化材とを、前記混合割合で混合する固化処理工程と、を含む土の弱酸性固化処理方法に関する。この処理方法によれば、固化処理土のpH値が弱酸性領域であるため環境に優しく、また、利用用途の広い固化処理を行うことが可能となるとともに、ふっ素汚染土の不溶化が可能となる。   That is, the present invention mixes a sample soil obtained by sampling a part of the soil to be solidified with a solidified material containing alumina cement and aluminum sulfate, and has a pH of more than 4.0 and not more than 6.0. A mixing ratio determining step for determining a mixing ratio of the solidification material with respect to the solidification target soil so as to obtain a predetermined strength, and a solidification process in which the solidification target soil and the solidification material are mixed at the mixing ratio. And a weakly acidic solidification treatment method for soil including the process. According to this treatment method, since the pH value of the solidified soil is a weakly acidic region, it is environmentally friendly, and it is possible to perform a solidified treatment with a wide range of applications and insolubilization of fluorine-contaminated soil. .

本発明は、また、前記pHが、5.0〜6.0である、土の弱酸性固化処理方法に関する。pHをこの範囲とすることで、強度面やふっ素溶出抑制面の両者で十分な効果が得られる。   The present invention also relates to a weakly acidic solidification treatment method for soil, wherein the pH is 5.0 to 6.0. By setting the pH within this range, sufficient effects can be obtained both in terms of strength and fluorine elution suppression.

本発明は、また、前記固化材が、アルミナセメントを30〜80質量%及び無水硫酸アルミニウムを20〜70質量%含む、土の弱酸性固化処理方法に関する。固化材にこれら材料を使用することで、より一層、環境に優しく、また、利用用途の広い固化処理を行うことが可能となるとともに、ふっ素汚染土の不溶化が可能となる。   The present invention also relates to a weakly acidic solidification method for soil, wherein the solidifying material contains 30 to 80% by mass of alumina cement and 20 to 70% by mass of anhydrous aluminum sulfate. By using these materials for the solidifying material, it is possible to perform a solidification treatment that is more environmentally friendly and has a wide range of applications, and insolubilization of fluorine-contaminated soil.

本発明は、また、前記アルミナセメントが、アルミナ含有量が50〜70質量%である、土の弱酸性固化処理方法に関する。アルミナセメントのアルミナ含有量を上記範囲とすることで、高い固化強度が得られる。   The present invention also relates to a weakly acidic solidification method for soil, wherein the alumina cement has an alumina content of 50 to 70% by mass. By setting the alumina content of the alumina cement within the above range, high solidification strength can be obtained.

本発明によれば、固化処理土のpH値が弱酸性領域であるため環境に優しく、また、建設発生土利用技術マニュアルに規定されている、コーン指数が200kN/m以上の第4種改良土、コーン指数が400kN/m以上の第3種改良土さらにコーン指数800kN/m以上の第2種改良土に改良可能で、利用用途の広い固化処理を行うことが可能となるとともに、ふっ素汚染土の不溶化が可能となる。 According to the present invention, since the pH value of the solidified soil is in a weakly acidic region, it is environmentally friendly, and the fourth type improvement with a corn index of 200 kN / m 2 or more, which is specified in the Construction Soil Utilization Technical Manual. The soil can be improved to a third type improved soil having a corn index of 400 kN / m 2 or more and further to a second type improved soil having a corn index of 800 kN / m 2 or more. Fluorine contaminated soil can be insolubilized.

粘土を固化した固化処理土のpHとコーン指数の関係を示した図である。It is the figure which showed the relationship between the pH of the solidified soil which solidified clay, and the corn index. シルトを固化した固化処理土のpHとコーン指数の関係を示した図である。It is the figure which showed the relationship between the pH of the solidified soil which solidified silt, and the corn index. ふっ素模擬汚染土を固化した固化処理土のpHとふっ素溶出量の関係を示した図である。It is the figure which showed the relationship between the pH of the solidification processing soil which solidified the fluorine simulation contaminated soil, and a fluorine elution amount.

以下、本発明の好適な実施形態を以下に説明する。
本発明の土の弱酸性固化処理方法は、固化処理対象土の一部を採取した試料土と、アルミナセメント及び硫酸アルミニウムとを含む固化材とを混合し、pHが4.0を超え6.0以下の条件下で所定の強度が得られるように、前記固化処理対象土に対する前記固化材の混合割合を決定する混合割合決定工程を有する。
Hereinafter, preferred embodiments of the present invention will be described below.
In the method for weakly acidifying and solidifying soil according to the present invention, a sample soil obtained by sampling a part of the soil to be solidified and a solidified material containing alumina cement and aluminum sulfate are mixed, and the pH exceeds 4.0. A mixing ratio determining step of determining a mixing ratio of the solidified material to the solidification target soil so that a predetermined strength is obtained under a condition of 0 or less;

固化処理土のpHは、4.0を超え6.0以下が好ましく、より好ましくは、4.5〜6.0、更に好ましくは5.0〜6.0である。これらの範囲であれば、所定の強度を得ることが可能である。固化処理土のpHが、5.0〜6.0であれば、固化対象土がふっ素汚染土の場合、その固化処理土からのふっ素溶出量を土壌環境基準以下(0.8mg/L以下)とすることも可能である。pHが5.2〜5.8あれば、複数種の処理土に対し強度面で十分な効果が得られ、更に、ふっ素溶出抑制面でも十分な効果が得られる。   The pH of the solidified soil is more than 4.0 and preferably 6.0 or less, more preferably 4.5 to 6.0, and still more preferably 5.0 to 6.0. Within these ranges, a predetermined strength can be obtained. If the pH of the solidified soil is 5.0 to 6.0 and the soil to be solidified is fluorine-contaminated soil, the amount of fluorine elution from the solidified soil is below the soil environmental standard (0.8 mg / L or less) It is also possible. If the pH is 5.2 to 5.8, a sufficient effect is obtained in terms of strength with respect to a plurality of types of treated soil, and a sufficient effect is also obtained in terms of suppressing fluorine elution.

固化処理対象土は、細粒土として粘土、シルト、有機質土、火山灰質粘性土等が挙げられ、粗粒土として砂質土等が挙げられる。含水比は、細粒土の場合、20〜100%が好ましく、より好ましくは25〜80%、更に好ましくは30〜70%である。
粗粒土の場合、5〜40%が好ましく、より好ましくは8〜30%、更に好ましくは10〜25%である。ここで含水比とは、110±5℃の炉乾燥によって失われる土中水の質量の、土の炉乾燥質量に対する比を質量百分率で表した値を意味する。これらの範囲であれば、所定の強度を得ることが可能である。
The soil to be solidified includes clay, silt, organic soil, volcanic ash clay, etc. as fine-grained soil, and sandy soil, etc. as coarse-grained soil. In the case of fine-grained soil, the water content is preferably 20 to 100%, more preferably 25 to 80%, still more preferably 30 to 70%.
In the case of coarse-grained soil, 5 to 40% is preferable, more preferably 8 to 30%, and still more preferably 10 to 25%. Here, the water content means a value expressed as a mass percentage of the ratio of the mass of soil water lost by oven drying at 110 ± 5 ° C. to the oven drying mass of the soil. Within these ranges, a predetermined strength can be obtained.

上述した所定の強度は、材齢7日のコーン指数で600〜4000kN/mであることが好ましく、より好ましくは650〜3000kN/m、更に好ましくは680〜2500kN/mである。これらの強度であれば、建設発生土利用技術マニュアルに規定され、固化処理土を再利用するための所要強度(材齢7日のコーン指数200(第4種改良土)kN/m〜800(第2種改良土)kN/m以上)を満たすことが可能である。 Predetermined strength as described above is preferably 600~4000kN / m 2 in cone index at the age of 7 days, more preferably 650~3000kN / m 2, more preferably from 680~2500kN / m 2. If it is these strengths, it is prescribed in the construction generated soil use technical manual, and the required strength for reusing the solidified soil (cone index of 200 days of age 7 (type 4 improved soil) kN / m 2 to 800 (Type 2 improved soil) kN / m 2 or more).

アルミナセメントは、耐火用、建材用など、いくつかの種類があり、いずれも配合調整で使用可能であるが、施工性や固化強度面でアルミナ分50〜70質量%含有物を使用するのが好ましく、より好ましくは51〜60質量%、更に好ましくは52〜55質量%である。   There are several types of alumina cement, such as for fire resistance and for building materials, all of which can be used by blending adjustment. However, it is necessary to use an alumina content of 50 to 70% by mass in terms of workability and solidification strength. More preferably, it is 51-60 mass%, More preferably, it is 52-55 mass%.

アルミナ分が50質量%より少ない場合、同一強度を得るための固化材所要量が多くなる。また、アルミナ分が70質量%より多いと、処理コストが大幅に高くなる可能性がある。アルミナセメントは硫酸アルミニウムの中和剤として作用するだけでなく、硫酸アルミニウムとの反応により各種の水和物を生成し、強固に固化する。   When the alumina content is less than 50% by mass, the amount of solidified material required to obtain the same strength increases. Moreover, when there is more alumina content than 70 mass%, processing cost may become high significantly. Alumina cement not only acts as a neutralizing agent for aluminum sulfate, but also produces various hydrates by reaction with aluminum sulfate and solidifies firmly.

硫酸アルミニウムは、無水品の他にアルミナ分の少ない含水結晶18水塩の粉末品、アルミナ分8%の水溶液がある。無水品は粉末状で高い強度が得られるため好ましい材料である。その他のグレードも使用出来るが、いずれも、無水塩に比較して同一強度を得るための所要量が多くなる。   In addition to anhydrous products, aluminum sulfate includes powdered products of hydrated crystal 18 hydrate with a small amount of alumina and aqueous solutions containing 8% alumina. Anhydrous is a preferred material because it is powdery and provides high strength. Other grades can also be used, but all of them require a greater amount to obtain the same strength compared to anhydrous salts.

固化材は、アルミナセメントを30〜80質量%、好ましくは35〜60質量%、より好ましくは40〜50質量%、及び無水硫酸アルミニウムを20〜70質量%、好ましくは40〜65質量%、より好ましくは50〜60質量%、含む。これらの範囲であれば、上述したように適度な強度を得ることが可能で、また、処理土のpHも弱酸性のため環境に優しい。   The solidifying material is 30-80% by mass of alumina cement, preferably 35-60% by mass, more preferably 40-50% by mass, and 20-70% by mass of anhydrous aluminum sulfate, preferably 40-65% by mass. Preferably it contains 50-60 mass%. Within these ranges, an appropriate strength can be obtained as described above, and the pH of the treated soil is also weakly acidic, so it is environmentally friendly.

また、本発明の土の弱酸性固化処理方法は、固化処理対象土と固化材とを、混合割合決定工程で決定した割合で混合する固化処理工程を含む。
この混合割合は、固化処理対象土1mに対し固化材が50〜200kg/mであることが好ましく、より好ましくは70〜150kg/m、更に好ましくは90〜100kg/mである。50kg/mより少ないと土との混合が均一にできず、200kg/mより多いと処理コストが大幅に高くなる可能性がある。これらの範囲であれば、上述したように適度な強度を得ることが可能で、また、処理土のpHも弱酸性のため環境に優しい。
Moreover, the weak acid solidification processing method of the soil of this invention includes the solidification process process which mixes the solidification process target soil and the solidification material in the ratio determined by the mixing ratio determination process.
The mixing ratio is preferably solidified material to solidify processed soil 1 m 3 is 50 to 200 kg / m 3, more preferably 70~150kg / m 3, more preferably from 90~100kg / m 3. If it is less than 50 kg / m 3 , the mixing with the soil cannot be made uniform, and if it is more than 200 kg / m 3 , the processing cost may be significantly increased. Within these ranges, an appropriate strength can be obtained as described above, and the pH of the treated soil is also weakly acidic, so it is environmentally friendly.

固化処理対象土と固化材とを混合する場合、一般的な粉体混合装置が問題なく使用できる。すなわち、無水硫酸アルミニウムとアルミナセメント系の弱酸性固化材を調製するには、両材料とも一般的な粉体であることから、特別な機器、手段を必要とせず、高速ミキサー、ロッキングミキサー等、通常の粉体混合用の機器を使った粉体混合方法が適用できる。混合の際は、可能な限り土に余分な水を加えないことが好ましい。このためにも、粉末状態で混合するのが望ましい。軟弱土との混合にはプラント混合法やバックホウやスタビライザー等を用いる通常の方法が適用できる。   When mixing the soil to be solidified and the solidified material, a general powder mixing device can be used without any problem. That is, in order to prepare an anhydrous aluminum sulfate and an alumina cement-based weakly acidic solidified material, both materials are general powders, so there is no need for special equipment and means, such as a high-speed mixer, a rocking mixer, etc. A powder mixing method using a normal powder mixing device can be applied. When mixing, it is preferable not to add extra water to the soil as much as possible. For this purpose, it is desirable to mix in a powder state. For mixing with soft soil, a plant mixing method or a normal method using a backhoe or a stabilizer can be applied.

以下、実施例により本発明の内容を具体的に説明する。なお、本発明はこれらの例によって限定されるものではない。   Hereinafter, the contents of the present invention will be specifically described with reference to examples. Note that the present invention is not limited to these examples.

(1)固化材の調製
無水硫酸アルミニウム(大明化学(株)製)とアルミナセメント(旭ガラス(株)製1号)を用いた。無水硫酸アルミニウムの化学組成を表1、アルミナセメントの化学組成を表2に示す。無水硫酸アルミニウムのpHは、JIS Z 8802:2011「pH測定方法」、不溶分および鉄は、JIS K 1423−1970「硫酸アルミニウム」に示される方法で測定し、アルミナセメントの化学組成はJIS R 5202「セメントの化学分析方法」に従って測定した。これらの材料を、所定量計りとり、A4サイズのポリエチレン袋中で約3分間手混合して供試固化材を調製した。固化材の配合比は表4〜6に示す。
(1) Preparation of solidified material Anhydrous aluminum sulfate (Daimei Chemical Co., Ltd.) and alumina cement (Asahi Glass Co., Ltd. No. 1) were used. Table 1 shows the chemical composition of anhydrous aluminum sulfate, and Table 2 shows the chemical composition of alumina cement. The pH of anhydrous aluminum sulfate is measured by JIS Z 8802: 2011 “pH measurement method”, the insoluble matter and iron are measured by the method shown in JIS K 1423-1970 “Aluminum sulfate”, and the chemical composition of the alumina cement is JIS R 5202. It was measured according to “Chemical Chemical Analysis Method”. A predetermined amount of these materials were weighed and manually mixed in an A4 size polyethylene bag for about 3 minutes to prepare a test solidified material. The compounding ratio of the solidifying material is shown in Tables 4-6.

Figure 0006331514
Figure 0006331514

Figure 0006331514
Figure 0006331514

(2)試料土の調製
建設現場で採取した粘土(含水比38.0%、)およびシルト(含水比24.0%)を、粘土では含水比70%、シルトでは含水比30%になるように加水してソイルミキサーで3分間低速で混合して試料土を調製した。試料土の土質性状をJIS A 1202:2009「土粒子の密度試験方法」、JIS A 1204:2009「土の粒度試験方法」、JIS A 1205:2009「土の液性限界・塑性限界試験方法」に従って測定した。結果を表3に示す。
(2) Preparation of sample soil Clay (water content 38.0%) and silt (water content 24.0%) collected at the construction site so that the water content is 70% for clay and 30% for silt. And sample soil was prepared by mixing at low speed for 3 minutes with a soil mixer. JIS A 1202: 2009 “Soil particle density test method”, JIS A 1204: 2009 “Soil particle size test method”, JIS A 1205: 2009 “Soil liquid limit / plastic limit test method” Measured according to The results are shown in Table 3.

Figure 0006331514
Figure 0006331514

(3)模擬汚染土の調製
次に、固化処理土からのふっ素の溶出抑制効果を調べるために、予めふっ素を添加した模擬汚染土を調製した。模擬汚染土には、上記(2)のシルトを用いた。まず、含水比24.0%のシルトを自然乾燥により含水比11.2%に調整した。その後、含水比30%にするための必要な水にふっ化カリウム二水和物(和光純薬工業(株)製、試薬、和光1級)をシルトの乾土分1kg当たり1.35gとなる量を溶解した。この水溶液をシルトに添加してソイルミキサーで低速2.5分間練り混ぜた後、容器やパドルに付着した土を掻き落とし、さらに低速で2.5分間練り混ぜてふっ素模擬汚染土を調製した。その後、20℃の恒温室内で密封して7日間養生後、実験に供した。
(3) Preparation of simulated contaminated soil Next, in order to investigate the effect of suppressing elution of fluorine from the solidified soil, simulated contaminated soil to which fluorine was added in advance was prepared. The silt of (2) above was used as the simulated contaminated soil. First, silt having a water content of 24.0% was adjusted to a water content of 11.2% by natural drying. Thereafter, potassium fluoride dihydrate (manufactured by Wako Pure Chemical Industries, Ltd., reagent, Wako Grade 1) is added to the water necessary for a water content ratio of 30% to 1.35 g per kg of silt dry soil. The amount was dissolved. This aqueous solution was added to silt and kneaded at a low speed for 2.5 minutes with a soil mixer, and then the soil adhering to the container and paddle was scraped off and further kneaded at a low speed for 2.5 minutes to prepare a fluorine simulated contaminated soil. Then, it sealed in a 20 degreeC thermostatic chamber, and after 7-day curing, it used for experiment.

(4)固化処理
上記(1)で調製した固化材を(2)および(3)で調製した試料土に100kg/m添加した後、ホバート型ミキサーで3分間混合した。混合後の土を、φ10×12.5cmのモールドにタッピング法で充填し、20℃の恒温槽内で7日間密封養生した。
(4) Solidification treatment The solidification material prepared in (1) above was added to the sample soil prepared in (2) and (3) at 100 kg / m 3, and then mixed for 3 minutes with a Hobart mixer. The mixed soil was filled in a φ10 × 12.5 cm mold by a tapping method, and hermetically sealed for 7 days in a constant temperature bath at 20 ° C.

(5)コーン指数測定
上記(4)で得られた固化処理土の材齢7日のコーン指数をJIS A 1228:2009「締固めた土のコーン指数試験方法」に準拠して測定した。
(5) Cone index measurement The corn index at 7 days of age of the solidified soil obtained in the above (4) was measured in accordance with JIS A 1228: 2009 “Cone index test method for compacted soil”.

(6)pH測定
上記(4)で得られた成形前の固化処理土について、地盤工学会基準JGS−0211−2009「土懸濁液のpH試験方法」に則り、pHを測定した。
(6) pH measurement About the solidification processing soil before shaping | molding obtained by said (4), pH was measured according to Geotechnical Society standard JGS-0211-2009 "pH test method of soil suspension".

(7)ふっ素溶出量測定
上記(3)で調製した模擬汚染土および上記(4)で得られた固化処理土を材齢7日で解砕し、バットに広げて風乾(温度20℃、24時間)した後、2mmふるいを全通させた。その後、風乾試料を純水に固液比1:10で投入し、6時間振とうした。振とう後の液を0.45μmメンブレンフィルターを用いて減圧濾過し、得られた濾液のふっ素濃度をJIS K 0102「工業排水試験方法」に準拠して測定した。
(7) Measurement of fluorine elution amount The simulated contaminated soil prepared in (3) above and the solidified soil obtained in (4) above were crushed at a material age of 7 days, spread on a bat and air-dried (temperature 20 ° C., 24 Time), the 2 mm sieve was passed through. Thereafter, the air-dried sample was put into pure water at a solid-liquid ratio of 1:10 and shaken for 6 hours. The liquid after shaking was filtered under reduced pressure using a 0.45 μm membrane filter, and the fluorine concentration of the obtained filtrate was measured according to JIS K 0102 “Industrial Wastewater Test Method”.

(8)粘土の試験結果(実施例〜4、比較例1〜6)
粘土を固化処理した場合の試験結果を表4に、固化処理土のpHとコーン指数の関係を図1に示す(No.1〜9)。なお、比較のために、従来の半水石膏系固化材の場合(No.10)についても併せて示す。
図1に示すように、pHを4.0を超え6.0以下の弱酸性領域に調整することで、コーン指数が急激に増加し、本発明の範囲にある実施例〜4(No.〜5)では、固化処理土はいずれもコーン指数600kN/m以上の強度が得られている。その中でも、実施例2ではさらにコーン指数1200kN/m以上の強度が得られることがわかる。
これに対して、No.1、6、7の配合では固化強度が低い(比較例1〜3)。また、No.8、9の配合では、コーン指数600kN/m以上の強度が得られるが、pHが11を超過し、強アルカリ性であるため環境への影響上好ましくないことがわかる(比較例4、5)。
(8) Clay test results (Examples 2 to 4, Comparative Examples 1 to 6)
The test results when the clay is solidified are shown in Table 4, and the relationship between the pH of the solidified soil and the corn index is shown in Fig. 1 (Nos. 1 to 9). For comparison, the case of a conventional hemihydrate gypsum solidified material (No. 10) is also shown.
As shown in FIG. 1, by adjusting the pH to a weakly acidic region of more than 4.0 and not more than 6.0, the cone index increased rapidly, and Examples 2 to 4 (No. In 3 to 5), the solidified soil has a strength with a cone index of 600 kN / m 2 or more. Among them, in Example 2 , it can be seen that a strength of a cone index of 1200 kN / m 2 or more can be obtained.
In contrast, no. In the combination of 1, 6, and 7, the solidification strength is low (Comparative Examples 1 to 3). No. It can be seen that the strength of corn index 600 kN / m 2 or more is obtained with the blending of 8 and 9, but the pH exceeds 11 and is strongly alkaline, which is not preferable in terms of environmental impact (Comparative Examples 4 and 5). .

また、従来の半水石膏系の中性固化材(比較例6、No.10)と比較すると、本発明の処理方法に関わる固化材は、弱酸性とすることで高い固化強度が得られることがわかる。   In addition, when compared with the conventional hemihydrate gypsum-based neutral solidified material (Comparative Example 6, No. 10), the solidified material related to the treatment method of the present invention has a high solidified strength by being weakly acidic. I understand.

Figure 0006331514
Figure 0006331514

(9)シルトの試験結果(実施例〜10、比較例7〜8)
シルトを固化処理した場合の試験結果を表5に、固化処理土のpHとコーン指数の関係を図2に示す(No.11〜18)。
図2に示すように、pHを4.0を超え6.0以下の弱酸性領域に調整することで、コーン指数が急激に増加し、本発明の範囲にある実施例〜10(No.13〜16)では、固化処理土はいずれもコーン指数1200kN/m以上の強度が得られている。その中でも、実施例7、8ではさらにコーン指数2500kN/m以上の強度が得られることがわかる。
これに対して、No.17の配合では固化強度が低い(比較例7)。また、No.18の配合では、pHが11を超過し、強アルカリ性であるため環境への影響上好ましくないことがわかる(比較例8)。
(9) Silt test results (Examples 7 to 10, Comparative Examples 7 to 8)
Table 5 shows the test results when the silt was solidified, and Fig. 2 shows the relationship between the pH of the solidified soil and the corn index (Nos. 11 to 18).
As shown in FIG. 2, by adjusting the pH to a weakly acidic region exceeding 4.0 and not more than 6.0, the cone index increased rapidly, and Examples 7 to 10 (No. In 13 to 16), the solidified soil has a strength of a cone index of 1200 kN / m 2 or more. Among them, in Examples 7 and 8, it can be seen that a strength of a cone index of 2500 kN / m 2 or more can be obtained.
In contrast, no. In the composition of 17, the solidification strength is low (Comparative Example 7). No. It can be seen that the formulation of 18 is not preferable in view of environmental impact because the pH exceeds 11 and is strongly alkaline (Comparative Example 8).

Figure 0006331514
Figure 0006331514


以上のように試料土の種別が変わっても、固化処理土のpHが4.0を超え6.0以下の弱酸性領域に調整することで、コーン指数が急激に増加することがわかる。   As described above, it can be seen that, even if the type of the sample soil is changed, the corn index is rapidly increased by adjusting the pH of the solidified soil to a weakly acidic region exceeding 4.0 and not more than 6.0.

(10)模擬汚染土の試験結果(実施例11、比較例9〜10、参考例1)
ふっ素模擬汚染土を固化処理した場合の試験結果を表6に、固化処理土のpHとふっ素溶出量の関係を図3に示す(No.19〜21)。なお、参考までに、未処理土のpHとふっ素溶出量を併記した。
図3に示すように、pHを5.0〜6.0の弱酸性領域に調整することで、固化処理土からのふっ素溶出量が未処理土に比べて急激に低下し、本発明の範囲にある実施例11(No.20)では、固化処理土からのふっ素溶出量は、土壌環境基準の0.8mg/L以下に不溶化されていることがわかる。
これに対して、No.19の配合では固化処理土からのふっ素溶出量が、未処理土に比べて低くなるものの、土壌環境基準(0.8mg/L以下)を超過している。(比較例9)。また、No.21の配合では、固化処理土からのふっ素溶出量が未処理土に比べて低くなるものの、土壌環境基準(0.8mg/L以下)を超過し、さらに、pHが11近くに達して強アルカリ性であるため、環境への影響上好ましくないことがわかる(比較例10)。
(10) Test result of simulated contaminated soil (Example 11, Comparative Examples 9 to 10, Reference Example 1)
Table 6 shows the test results when the fluorine simulated contaminated soil was solidified, and Fig. 3 shows the relationship between the pH of the solidified soil and the fluorine elution amount (Nos. 19 to 21). For reference, the pH of the untreated soil and the fluorine elution amount are also shown.
As shown in FIG. 3, by adjusting the pH to a weakly acidic region of 5.0 to 6.0, the amount of fluorine elution from the solidified soil is drastically reduced compared to the untreated soil, and the scope of the present invention. In Example 11 (No. 20), the fluorine elution amount from the solidified soil is insolubilized to 0.8 mg / L or less of the soil environment standard.
In contrast, no. In the formulation of 19, the fluorine elution amount from the solidified soil is lower than that of the untreated soil, but exceeds the soil environmental standard (0.8 mg / L or less). (Comparative Example 9). No. In the formulation of No. 21, although the fluorine elution amount from the solidified soil was lower than that of the untreated soil, it exceeded the soil environmental standard (0.8 mg / L or less), and the pH reached nearly 11 and was strongly alkaline. Therefore, it can be seen that it is not preferable in view of the influence on the environment (Comparative Example 10).

Figure 0006331514
Figure 0006331514

以上、(8)〜(10)の結果を総合的に判断すると、pHが5.2〜5.8あれば、粘土やシルトといった複数種の処理土に対し強度面で十分な効果が得られ、更に、ふっ素溶出抑制面でも十分な効果が得られる。   As described above, when the results of (8) to (10) are comprehensively evaluated, if the pH is 5.2 to 5.8, a sufficient effect in terms of strength can be obtained with respect to a plurality of types of treated soils such as clay and silt. Furthermore, a sufficient effect can be obtained in terms of suppressing fluorine elution.

Claims (6)

固化処理対象土の一部を採取した試料土と、アルミナセメント及び硫酸アルミニウムとを含む固化材とを混合し、pHが5.0〜6.0で所定の強度が得られるように、前記固化処理対象土に対する前記固化材の混合割合を決定する混合割合決定工程と、
前記固化処理対象土と前記固化材とを、前記混合割合で混合する固化処理工程と、を含 み、
前記固化材は、アルミナセメントを30〜80質量%及び無水硫酸アルミニウムを20 〜70質量%含み、
前記固化処理対象土からのふっ素溶出量を0.8mg/L以下に不溶化することを特徴とする土の弱酸性固化処理方法。
  The sample soil from which a part of the soil to be solidified is collected and the solidified material containing alumina cement and aluminum sulfate are mixed, and the pH is5.0-6.0A mixing ratio determining step for determining a mixing ratio of the solidified material with respect to the solidification target soil so that a predetermined strength is obtained in
  A solidification treatment step of mixing the solidification target soil and the solidification material at the mixing ratio. See
  The solidifying material is 30-80% by mass of alumina cement and 20% of anhydrous aluminum sulfate. Containing ~ 70% by mass,
  Fluorine elution amount from the solidification target soil is insolubilized to 0.8 mg / L or lessA method of weakly acidifying and solidifying soil.
前記アルミナセメントは、アルミナ含有量が50〜70質量%である、請求項1記載の土の弱酸性固化処理方法。The alumina cement, alumina content is 50 to 70 wt%, weakly acidic solidification processing method according to claim 1 Symbol placing soil. 前記混合割合は、前記固化処理対象土1mに対し前記固化材が50〜200kg/mである、請求項1叉は2記載の土の弱酸性固化処理方法。The mixing ratio, the solidifying agent to the solidification target soil 1 m 3 is 50 to 200 kg / m 3, claim 1 or 2 Sat weakly acidic solidification method according. 前記固化処理対象土が細粒土であり、含水比が20〜100%である、請求項1〜の何れか1項記載の土の弱酸性固化処理方法。The method for weakly acidifying and solidifying soil according to any one of claims 1 to 3 , wherein the soil to be solidified is fine-grained soil and has a water content ratio of 20 to 100%. 前記細粒土は、粘土、シルト、有機質土及び火山灰質粘性土からなる群より選ばれる1種以上である、請求項4記載の土の弱酸性固化処理方法。
The fine soil, clay, silt, is at least one selected from the group consisting of organic soil and volcanic ash quality cohesive soil, weakly acidic solidification processing method according to claim 4 Symbol placing soil.
前記所定の強度が、材齢7日のコーン指数で600〜4000kN/mである、請求項1〜の何れか1項記載の土の弱酸性固化処理方法。The method for weakly acidifying and solidifying soil according to any one of claims 1 to 5 , wherein the predetermined strength is 600 to 4000 kN / m 2 in terms of a corn index of 7 days of age.
JP2014049763A 2013-04-04 2014-03-13 Slightly acidic solidification method for soil Active JP6331514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049763A JP6331514B2 (en) 2013-04-04 2014-03-13 Slightly acidic solidification method for soil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013078199 2013-04-04
JP2013078199 2013-04-04
JP2014049763A JP6331514B2 (en) 2013-04-04 2014-03-13 Slightly acidic solidification method for soil

Publications (2)

Publication Number Publication Date
JP2014210255A JP2014210255A (en) 2014-11-13
JP6331514B2 true JP6331514B2 (en) 2018-05-30

Family

ID=51930451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049763A Active JP6331514B2 (en) 2013-04-04 2014-03-13 Slightly acidic solidification method for soil

Country Status (1)

Country Link
JP (1) JP6331514B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865172B (en) * 2019-10-23 2022-12-23 长沙理工大学 Soil test method for determining emergency compaction construction parameters of soft plastic modified soil replacement foundation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273665A (en) * 1997-03-31 1998-10-13 Sumitomo Osaka Cement Co Ltd Ground improving material
JP5718562B2 (en) * 2009-10-30 2015-05-13 鹿島建設株式会社 Soil stabilization treatment material and soil stabilization treatment method using the same

Also Published As

Publication number Publication date
JP2014210255A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP6787142B2 (en) Heavy metal pollution control material and heavy metal pollution control method using the pollution control material
JP7067943B2 (en) Additives for soil granulation
JP5047745B2 (en) Ground improvement material
CN103289703A (en) Early-strength soil solidifying agent and manufacturing method and application for same
JP7073088B2 (en) Soil reforming method
JP2007222694A (en) Cement based treatment material for heavy metal-contaminated soil and solidification/insolubilization treatment method using it
JP2010207659A (en) Insolubilizing and solidifying material for heavy metal or the like containing calcined gypsum
JP5063863B2 (en) Treatment method of construction waste mud generated by bubble shield method
JP6323498B2 (en) Insolubilizer and insolubilization method
JP5790597B2 (en) Method for predicting strength of modified soil and method for producing modified soil using the same
JP6485513B1 (en) Heavy metal pollution control material and heavy metal pollution control method using the pollution control material
JP6261120B2 (en) Neutron shielding concrete and its manufacturing method
JP4663999B2 (en) Soil neutral solidification material and soil neutral solidification improvement method
JP6536102B2 (en) Solidification material for neutralization treatment residue of acid water, solidification treatment product of neutralization treatment residue of acid water, and solidification treatment method of neutralization treatment residue of acid water
EP2835359B1 (en) Uses of a material for insolubilizing specific toxic substances, method for insolubilizing specific toxic substances, and soil improvement method
JP6331514B2 (en) Slightly acidic solidification method for soil
JP6441086B2 (en) Effective use of coal ash
JP2020015850A (en) Manufacturing method of calcia-modified soil
JP2006225475A (en) Solidifier and method for improving solidification of soil by using the solidifier
KR101600747B1 (en) Composition for solidification of spoil or sludge, method for solidification of spoil or sludge using the same, and solid matter prepared therefrom
JP5718562B2 (en) Soil stabilization treatment material and soil stabilization treatment method using the same
JP4093808B2 (en) Soil solidifying agent
JP4462853B2 (en) Neutral solidifying material for hydrous soil, soil heavy metal elution control method and dehydration method using the same
JP4070982B2 (en) Neutral solidification material and neutral solidification treatment method
JP5077777B2 (en) Elution reduction material and elution reduction treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6331514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250