JP7073088B2 - Soil reforming method - Google Patents

Soil reforming method Download PDF

Info

Publication number
JP7073088B2
JP7073088B2 JP2017242839A JP2017242839A JP7073088B2 JP 7073088 B2 JP7073088 B2 JP 7073088B2 JP 2017242839 A JP2017242839 A JP 2017242839A JP 2017242839 A JP2017242839 A JP 2017242839A JP 7073088 B2 JP7073088 B2 JP 7073088B2
Authority
JP
Japan
Prior art keywords
soil
additive
sieve
granulation
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242839A
Other languages
Japanese (ja)
Other versions
JP2018100409A (en
Inventor
祐介 松山
喜彦 森
彰徳 杉山
康秀 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2018100409A publication Critical patent/JP2018100409A/en
Application granted granted Critical
Publication of JP7073088B2 publication Critical patent/JP7073088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、土壌造粒用添加材に関する。 The present invention relates to an additive for soil granulation.

建設汚泥や軟弱土壌等の高含水土壌について、運搬や再利用等を行う際の取り扱いを容易にする目的で、固化材を用いて土壌の固化処理を行う場合がある。
土壌に用いられる固化材として、例えば、特許文献1には、(A)合成水溶性高分子と天然水溶性高分子との混合物が0.2~10重量部、(B)無機物粉末および/または有機物粉末が0.2~20重量部、および(C)無機系固化剤が10~200重量部、からなる残土固化処理剤が記載されている。
また、特許文献2には、(A)水性高分子が0.2~10.0重量部、(B)アルカリ金属イオンを含有する塩類が0.2~20.0重量部、および、(C)セメントが10~200重量部、からなる残土改良剤が記載されている。該残土改良材によれば、高強度かつ砂状に残土を改良することができる。
For highly hydrous soil such as construction sludge and soft soil, soil may be solidified using a solidifying material for the purpose of facilitating handling when transporting or reusing.
As a solidifying material used for soil, for example, Patent Document 1 states that (A) a mixture of a synthetic water-soluble polymer and a natural water-soluble polymer is 0.2 to 10 parts by weight, (B) an inorganic powder and / or A residual soil solidification treatment agent comprising 0.2 to 20 parts by weight of an organic powder and 10 to 200 parts by weight of (C) an inorganic solidifying agent is described.
Further, in Patent Document 2, (A) an aqueous polymer is 0.2 to 10.0 parts by weight, (B) salts containing alkali metal ions are 0.2 to 20.0 parts by weight, and (C). ) A residual soil improving agent consisting of 10 to 200 parts by weight of cement is described. According to the residual soil improving material, the residual soil can be improved in a high-strength and sandy manner.

特開平8-333571号公報Japanese Unexamined Patent Publication No. 8-333571 特開平8-333573号公報Japanese Unexamined Patent Publication No. 8-333573

東日本大震災により大量に発生した津波堆積物や、田畑および山林の除染作業により表層を剥ぎ取った除去土壌には、草木、岩石、廃材等の廃棄物が含まれている。津波堆積物や除去土壌等を盛土等として有効利用する場合、腐植による沈下を避けるために、上記廃棄物を篩等で選別する必要がある。しかし、津波堆積物や除去土壌には多くの水分が含まれることから、津波堆積物等に含まれている土壌が団粒化し、篩等を用いて選別することは困難である。また、固化材を用いて土壌を固化した場合、固化した土壌が塊状となり、該土壌から草木、岩石等の不要な廃棄物を選別することが困難となったり、再利用を行う前に、塊状の土壌を再度粉砕しなければならないことがある。
そこで、本発明の目的は、土壌の強度(例えば、コーン指数)を向上することができ、かつ、固化処理後の土壌が塊状となりにくく、篩等を用いて、該土壌から草木、岩石等の不要な廃棄物を選別することが容易となり、さらには、土壌のpHを、例えば、排水基準値である5.8~8.6の範囲内に収めるなど、中性に近づけることができる土壌造粒用添加材を提供することである。
The tsunami deposits generated by the Great East Japan Earthquake and the soil removed by decontaminating fields and forests contain waste such as vegetation, rocks, and waste materials. When effectively using tsunami deposits and removed soil as embankments, it is necessary to sort the above wastes with a sieve or the like in order to avoid subsidence due to humus. However, since the tsunami deposits and the removed soil contain a large amount of water, the soil contained in the tsunami deposits and the like is aggregated and it is difficult to sort them using a sieve or the like. In addition, when the soil is solidified using a solidifying material, the solidified soil becomes lumpy, which makes it difficult to sort out unnecessary waste such as vegetation and rocks from the soil, or lumpy before reuse. Soil may need to be crushed again.
Therefore, an object of the present invention is that the strength of the soil (for example, corn index) can be improved, and the soil after the solidification treatment is less likely to be lumpy, and the soil can be vegetated, rocks, etc. using a sieve or the like. It becomes easier to sort out unnecessary waste, and the pH of the soil can be brought closer to neutral, for example, within the range of 5.8 to 8.6, which is the wastewater standard value. The purpose is to provide an additive for grains.

本発明者は、上記課題を解決するために鋭意検討した結果、無機粉末100質量部、および増粘用材料0.01~50質量部を含む土壌造粒用添加材によれば、上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]~[11]を提供するものである。
[1] 無機粉末100質量部、および増粘用材料0.01~50質量部を含むことを特徴とする土壌造粒用添加材。
[2] 上記無機粉末は、ブレーン比表面積が1500cm /g以上で、かつ、炭酸カルシウム粉末、半水石膏、無水石膏、ベントナイト、ゼオライト、珪石粉末、石炭灰、頁岩粉末、セピオライト、活性炭、活性白土、珪藻土、およびドロマイトの中から選ばれる1種以上である前記[1]に記載の土壌造粒用添加材。
[3] 上記増粘用材料が、天然材料に由来する増粘多糖類、セルロース系増粘剤、ポリアクリル系増粘剤、および、ポリエチレン系増粘剤の中から選ばれる1種以上である前記[1]又は[2]に記載の土壌造粒用添加材。
[4] 上記増粘用材料は、水溶液中の濃度が1質量%になる量で水に溶解させた時点から1時間経過した時点における水溶液(20℃)の粘度が500mPa・s以上になるものである前記[1]~[3]のいずれかに記載の土壌造粒用添加材。
[5] 強度促進剤として、酸化マグネシウム、高炉スラグ微粉末、生石灰、消石灰、普通ポルトランドセメント、早強ポルトランドセメント、およびセメント系固化材の中から選ばれる1種以上を0.5~80質量部含む前記[1]~[4]のいずれかに記載の土壌造粒用添加材。
[6] pH調整剤として、硫酸アルミニウム、硫酸第一鉄、みょうばん、塩化第一鉄、塩化第二鉄、クエン酸もしくはその塩、およびグルコン酸もしくはその塩の中から選ばれる1種以上を0.5~50質量部含む前記[1]~[5]のいずれかに記載の土壌造粒用添加材。
As a result of diligent studies to solve the above problems, the present inventor has achieved the above object according to the soil granulation additive containing 100 parts by mass of the inorganic powder and 0.01 to 50 parts by mass of the thickening material. We have found that this can be achieved and completed the present invention.
That is, the present invention provides the following [1] to [ 11 ].
[1] An additive for soil granulation, which comprises 100 parts by mass of an inorganic powder and 0.01 to 50 parts by mass of a thickening material.
[2] The above-mentioned inorganic powder has a brain specific surface area of 1500 cm 2 / g or more, and has calcium carbonate powder, hemihydrate gypsum, anhydrous gypsum, bentonite, zeolite, silicate powder, coal ash, shale powder, sepiolite, activated carbon, and the like. The additive for soil granulation according to the above [1], which is one or more selected from activated gypsum, diatomaceous soil, and dolomite.
[3] The thickening material is one or more selected from thickening polysaccharides derived from natural materials, cellulosic thickeners, polyacrylic thickeners, and polyethylene thickeners. The additive for soil granulation according to the above [1] or [2].
[4] The thickening material has a viscosity of 500 mPa · s or more at an aqueous solution (20 ° C.) 1 hour after being dissolved in water at a concentration of 1% by mass in the aqueous solution. The additive for soil granulation according to any one of the above [1] to [3].
[5] 0.5 to 80 parts by mass of one or more selected from magnesium oxide, blast furnace slag fine powder, quicklime, slaked lime, ordinary Portland cement, early-strength Portland cement, and cement-based solidifying material as strength accelerators. The additive for soil granulation according to any one of the above [1] to [4].
[6] As a pH adjuster, 0 is one or more selected from aluminum sulfate, ferrous sulfate, myoban, ferrous chloride, ferric chloride, citric acid or a salt thereof, and gluconic acid or a salt thereof. . The additive for soil granulation according to any one of the above [1] to [5], which contains 5 to 50 parts by mass.

[7] 前記[1]~[6]のいずれかに記載の土壌造粒用添加材を、処理対象物である土壌に添加して混合し、上記土壌が造粒されてなる改質された土壌を得る添加材添加工程、
を含むことを特徴とする土壌改質方法。
[8] 上記添加材添加工程の前に、土壌を、目開き寸法が20~60mmの篩を用いて、篩分けし、上記篩を通過した細粒分を、上記添加材添加工程における処理対象物である土壌として用いる前処理工程、を含む前記[7]に記載の土壌改質方法。
[9] 上記添加材添加工程において、上記土壌の単位体積当たりの上記土壌造粒用添加材の添加量が、10~300kg/mである前記[7]又は[8]に記載の土壌改質方法。
[10] 上記改質された土壌は、固化した後に、溶出検液のpHが8.6以下であり、かつ、コーン指数が200kN/m以上のものである前記[7]~[9]のいずれかに記載の土壌改質方法。
[11] 上記添加材添加工程の後に、上記改質された土壌を、目開き寸法が20~60mmの篩を用いて、篩分けして、上記篩を通過する細粒分の割合を算出する篩分け工程、および、上記篩分け工程で得た細粒分の割合の適否を評価して、上記土壌造粒用添加材中の増粘用材料の割合を調整する添加材組成調整工程、を含む前記[7]~[10]のいずれかに記載の土壌改質方法。
[7] The soil granulation additive according to any one of [1] to [6] is added to the soil to be treated and mixed, and the soil is granulated and modified. Additive addition process to obtain soil,
A soil reforming method characterized by containing.
[8] Before the additive addition step, the soil is sieved using a sieve having an opening size of 20 to 60 mm, and the fine particles that have passed through the sieve are treated in the additive addition step. The soil reforming method according to the above [7], which comprises a pretreatment step of using the soil as a material.
[9] The soil modification according to the above [7] or [8], wherein in the additive addition step, the amount of the soil granulation additive added per unit volume of the soil is 10 to 300 kg / m 3 . Quality method.
[10] The modified soil has a pH of 8.6 or less in the elution test solution and a cone index of 200 kN / m 2 or more after solidification. [7] to [9] The soil reforming method according to any one of.
[11] After the additive addition step, the modified soil is sieved using a sieve having an opening size of 20 to 60 mm, and the ratio of fine particles passing through the sieve is calculated. The sieving step and the additive composition adjusting step of evaluating the suitability of the ratio of the fine particles obtained in the sieving step and adjusting the ratio of the thickening material in the soil granulation additive. The soil reforming method according to any one of the above [7] to [10].

本発明の土壌造粒用添加材によれば、土壌の強度(例えば、コーン指数)を向上することができ、かつ、固化処理後の土壌が塊状となりにくく、篩等を用いて、該土壌から草木、岩石等の不要な廃棄物を選別することが容易となり、さらには、土壌のpHを、例えば、排水基準値である5.8~8.6の範囲内に収めるなど、中性に近づけることができる。 According to the additive for soil granulation of the present invention, the strength of the soil (for example, corn index) can be improved, and the soil after the solidification treatment is less likely to become lumpy, so that the soil can be removed from the soil by using a sieve or the like. It becomes easier to sort out unnecessary waste such as vegetation and rocks, and further, the pH of the soil is kept close to neutral, for example, within the range of 5.8 to 8.6, which is the wastewater standard value. be able to.

本発明の土壌造粒用添加材は、無機粉末100質量部、および増粘用材料0.01~50質量部を含むものである。
本発明で用いられる無機粉末としては、例えば、炭酸カルシウム粉末、半水石膏、無水石膏、ベントナイト、ゼオライト、珪石粉末、石炭灰、頁岩粉末、セピオライト、活性炭、活性白土、珪藻土、およびドロマイト等が挙げられる。中でも、改質された土壌のコーン指数をより大きくする観点からは、半水石膏が好適である。また、改質された土壌を、特定の目開きの篩を用いて篩分けを行った場合における、篩を通過する細粒分の割合(以下、「細粒分通過率」ともいう。)をより大きくする観点(換言すると、改質された土壌が塊状になりにくくなる観点)からは、炭酸カルシウム粉末が好適である。
無機粉末は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明の土壌造粒用添加材は、無機粉末を含むことで、改質された土壌のコーン指数を増大させることができる。
なお、本明細書において、「無機粉末」には、後述する強度促進剤(普通ポルトランドセメント等)は含まれないものとする。
The additive for soil granulation of the present invention contains 100 parts by mass of an inorganic powder and 0.01 to 50 parts by mass of a thickening material.
Examples of the inorganic powder used in the present invention include calcium carbonate powder, hemihydrate gypsum, anhydrous gypsum, bentonite, zeolite, silica stone powder, coal ash, shale powder, sepiolite, activated carbon, activated clay, diatomaceous earth, and dolomite. Be done. Above all, hemihydrate gypsum is preferable from the viewpoint of increasing the cone index of the modified soil. In addition, the ratio of fine particles that pass through the sieve (hereinafter, also referred to as "fine particle passage rate") when the reformed soil is sieved using a sieve with a specific opening. Calcium carbonate powder is suitable from the viewpoint of making it larger (in other words, from the viewpoint that the reformed soil is less likely to be agglomerated).
One kind of inorganic powder may be used alone, or two or more kinds may be used in combination.
The soil granulation additive of the present invention can increase the corn index of the modified soil by containing the inorganic powder.
In addition, in this specification, "inorganic powder" does not include a strength accelerator (ordinary Portland cement, etc.) described later.

本発明で用いられる無機粉末の中でも、炭酸カルシウム粉末、半水石膏、無水石膏、ベントナイト、ゼオライト、珪石粉末、石炭灰、活性炭、活性白土、珪藻土、およびドロマイト等の、多孔質ではない無機粉末のブレーン比表面積は、改質された土壌のコーン指数をより大きくする観点から、好ましくは1500cm/g以上、より好ましくは2000cm/g以上、さらに好ましくは3000cm/g以上、さらに好ましくは3400cm/g以上、さらに好ましくは4000cm/g以上、特に好ましくは7000cm/g以上である。
該ブレーン比表面積の上限は、特に限定されないが、容易に入手できる観点から、通常、15000cm/g以下である。
また、本発明で用いられる無機粉末の中でも、頁岩粉末、セピオライト、および活性炭等の、多孔質である無機粉末のBET比表面積は、改質された土壌のコーン指数をより大きくする観点から、好ましくは5m/g以上、より好ましくは10m/g以上、さらに好ましくは50m/g以上、特に好ましくは100m/g以上である。
該BET比表面積の上限は、特に限定されないが、容易に入手できる観点から、通常、2000m/g以下である。
Among the inorganic powders used in the present invention, non-porous inorganic powders such as calcium carbonate powder, hemihydrate gypsum, anhydrous gypsum, bentonite, zeolite, silicate powder, coal ash, activated carbon, activated white clay, diatomaceous clay, and dolomite. The brain specific surface area is preferably 1500 cm 2 / g or more, more preferably 2000 cm 2 / g or more, still more preferably 3000 cm 2 / g or more, still more preferably 3400 cm, from the viewpoint of increasing the cone index of the modified soil. It is 2 / g or more, more preferably 4000 cm 2 / g or more, and particularly preferably 7000 cm 2 / g or more.
The upper limit of the specific surface area of the brain is not particularly limited, but is usually 15000 cm 2 / g or less from the viewpoint of being easily available.
Further, among the inorganic powders used in the present invention, the BET specific surface area of the porous inorganic powder such as slab rock powder, sepiolite, and activated carbon is preferable from the viewpoint of increasing the cone index of the modified soil. Is 5 m 2 / g or more, more preferably 10 m 2 / g or more, still more preferably 50 m 2 / g or more, and particularly preferably 100 m 2 / g or more.
The upper limit of the BET specific surface area is not particularly limited, but is usually 2000 m 2 / g or less from the viewpoint of being easily available.

本発明で用いられる増粘用材料としては、天然材料に由来する増粘多糖類、セルロース系増粘剤、ポリアクリル系増粘剤、ポリエチレン系増粘剤等が挙げられる。
中でも、改質された土壌のコーン指数及び細粒分通過率をより大きくする観点から、天然材料に由来する増粘多糖類、および、セルロース系増粘剤が好適である。
天然材料に由来する増粘多糖類としては、例えば、グアガム、キサンタンガム、デュータンガム、ウェランガム、カラギナン、ローカストビーンガム、タラガム、ペクチン、ジェランガム、アルギン酸塩(例えば、アルギン酸ナトリウム)およびこれらの誘導体(例えば、カチオン化グアガム)等が挙げられる。中でも、入手が容易であり、改質された土壌のコーン指数をより大きくする観点から、グアガムが好ましい。
セルロース系増粘剤としては、例えば、セルロース、メチルセルロース及びこれらの誘導体(例えば、カルボキシメチルセルロース)等が挙げられる。
ポリアクリル系増粘剤としては、ポリアクリルアミド、ポリアクリル酸エステル、ポリアクリル酸塩(例えば、ポリアクリル酸ナトリウム)等が挙げられる。
ポリエチレン系増粘剤としては、ポリオキシエチレンポリオキシプロピレングリコール等が挙げられる。
増粘用材料は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the thickening material used in the present invention include thickening polysaccharides derived from natural materials, cellulosic thickeners, polyacrylic thickeners, polyethylene thickeners and the like.
Among them, thickening polysaccharides derived from natural materials and cellulosic thickeners are preferable from the viewpoint of increasing the corn index and the fine particle passage rate of the modified soil.
Thickening polysaccharides derived from natural materials include, for example, guar gum, xanthan gum, deutan gum, welan gum, carrageenan, locust bean gum, tara gum, pectin, gellan gum, alginate (eg, sodium alginate) and derivatives thereof (eg, cations). Locust bean gum) and the like. Of these, guar gum is preferred from the standpoint of being easily available and increasing the corn index of the modified soil.
Examples of the cellulosic thickener include cellulose, methyl cellulose and derivatives thereof (for example, carboxymethyl cellulose).
Examples of the polyacrylic thickener include polyacrylamide, polyacrylic acid ester, polyacrylic acid salt (for example, sodium polyacrylate) and the like.
Examples of the polyethylene-based thickener include polyoxyethylene polyoxypropylene glycol and the like.
One type of thickening material may be used alone, or two or more types may be used in combination.

増粘用材料を、水溶液中の濃度が1質量%になる量で水に溶解させた時点から1時間経過した時点における水溶液(20℃)の粘度は、好ましくは500mPa・s以上、より好ましくは1500mPa・s以上、さらに好ましくは2000mPa・s以上、さらに好ましくは2800mPa・s以上、特に好ましくは3000mPa・s以上である。該粘度が500mPa・s以上であれば、改質された土壌のコーン指数をより大きくすることができる。 The viscosity of the aqueous solution (20 ° C.) at the time when 1 hour has passed from the time when the thickening material was dissolved in water at a concentration of 1% by mass in the aqueous solution is preferably 500 mPa · s or more, more preferably. It is 1500 mPa · s or more, more preferably 2000 mPa · s or more, further preferably 2800 mPa · s or more, and particularly preferably 3000 mPa · s or more. When the viscosity is 500 mPa · s or more, the cone index of the modified soil can be further increased.

本発明の土壌造粒用添加材において、無機粉末100質量部に対する増粘用材料の量は、0.01~50質量部、好ましくは0.05~40質量部、より好ましくは0.1~30質量部、さらに好ましくは0.5~20質量部、特に好ましくは1.0~10質量部である。該量が0.01質量部未満であると、改質された土壌のコーン指数が小さくなる。また、改質された土壌の細粒分通過率が小さくなる(換言すると、改質された土壌が塊状になりやすくなる。)。該量が50質量部を超えると、必要以上に固化の程度が大きくなる一方で、増粘用材料の量が過大となることから、増粘用材料のコストが増え、処理コストが過度に大きくなる。 In the additive material for soil granulation of the present invention, the amount of the thickening material with respect to 100 parts by mass of the inorganic powder is 0.01 to 50 parts by mass, preferably 0.05 to 40 parts by mass, and more preferably 0.1 to 100 parts by mass. It is 30 parts by mass, more preferably 0.5 to 20 parts by mass, and particularly preferably 1.0 to 10 parts by mass. When the amount is less than 0.01 parts by mass, the corn index of the modified soil becomes small. In addition, the fine particle passage rate of the reformed soil becomes smaller (in other words, the reformed soil tends to become agglomerates). When the amount exceeds 50 parts by mass, the degree of solidification becomes larger than necessary, but the amount of the thickening material becomes excessive, so that the cost of the thickening material increases and the processing cost becomes excessively large. Become.

本発明の土壌造粒用添加材は、改質された土壌のコーン指数をより大きくし、かつ、改質された土壌の細粒分通過率をより大きくする目的で、強度促進剤を含むことができる。
強度促進剤としては、例えば、酸化マグネシウム、高炉スラグ微粉末、生石灰、消石灰、普通ポルトランドセメント、早強ポルトランドセメント、およびセメント系固化材等が挙げられる。強度促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ここで、セメント系固化材とは、セメントを母材として各種の有効成分を添加したものをいう。セメント系固化材の例としては、セメントに、生石灰、消石灰、高炉スラグ微粉末、フライアッシュ、石灰石微粉末、無水石膏、二水石膏、およびシリカフューム等の中から選ばれる1種以上を加えてなるもの等が挙げられる。
無機粉末100質量部に対する強度促進剤の量は、好ましくは0.5~100質量部、より好ましくは1~80質量部、さらに好ましくは2~70質量部、特に好ましくは3~60質量部である。該量が0.5質量部以上であれば、改質された土壌のコーン指数および細粒分通過率をより大きくすることができる。該量が100質量部以下であれば、処理コストが過度に大きくなることを防ぐことができる。
The additive for soil granulation of the present invention contains a strength accelerator for the purpose of increasing the cone index of the modified soil and increasing the fine particle passage rate of the modified soil. Can be done.
Examples of the strength accelerator include magnesium oxide, blast furnace slag fine powder, quicklime, slaked lime, ordinary Portland cement, early-strength Portland cement, and cement-based solidifying materials. As the strength accelerator, one type may be used alone, or two or more types may be used in combination.
Here, the cement-based solidifying material refers to a material in which cement is used as a base material and various active ingredients are added. As an example of a cement-based solidifying material, one or more selected from fresh lime, slaked lime, blast furnace slag fine powder, fly ash, limestone fine powder, anhydrous gypsum, dihydrate gypsum, silica fume and the like are added to cement. Things etc. can be mentioned.
The amount of the strength accelerator with respect to 100 parts by mass of the inorganic powder is preferably 0.5 to 100 parts by mass, more preferably 1 to 80 parts by mass, still more preferably 2 to 70 parts by mass, and particularly preferably 3 to 60 parts by mass. be. When the amount is 0.5 parts by mass or more, the corn index and the fine particle passage rate of the modified soil can be further increased. When the amount is 100 parts by mass or less, it is possible to prevent the processing cost from becoming excessively large.

本発明の土壌造粒用添加材は、改質された土壌の溶出検液のpHを、排出基準値である5.8~8.6を満たすものとする目的で、pH調整剤を含むことができる。改質された土壌の溶出検液のpHが上記数値範囲内であれば、改質された土壌の用途が制限されることがない。
pH調整剤としては、例えば、硫酸アルミニウム、硫酸第一鉄、みょうばん、塩化第一鉄、塩化第二鉄、クエン酸もしくはその塩、およびグルコン酸もしくはその塩等が挙げられる。pH調整剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
無機粉末100質量部に対するpH調整剤の量は、改質された土壌の溶出検液のpHを、排出基準値である5.8~8.6を満たすようにする観点から、好ましくは0.5~50質量部、より好ましくは1~40質量部、特に好ましくは2~30質量部である。
The additive for soil granulation of the present invention contains a pH adjuster for the purpose of satisfying the pH of the elution test solution of the modified soil to meet the emission standard values of 5.8 to 8.6. Can be done. As long as the pH of the elution test solution of the reformed soil is within the above numerical range, the use of the reformed soil is not limited.
Examples of the pH adjuster include aluminum sulfate, ferrous sulfate, myoban, ferrous chloride, ferric chloride, citric acid or a salt thereof, and gluconic acid or a salt thereof. One type of pH regulator may be used alone, or two or more types may be used in combination.
The amount of the pH adjuster with respect to 100 parts by mass of the inorganic powder is preferably 0. It is 5 to 50 parts by mass, more preferably 1 to 40 parts by mass, and particularly preferably 2 to 30 parts by mass.

本発明の土壌改質方法は、上述した土壌造粒用添加材を、処理対象物である土壌に添加して混合し、上記土壌が造粒されてなる改質された土壌を得る添加材添加工程、を含むものである。なお、本明細書における造粒とは、処理対象物である土壌に、上述した土壌造粒用添加材(もしくは土壌造粒用添加材を含むスラリー溶液)を添加して混合すること(具体的には、ミキサーの種々の形状の羽根が回転すること等)によって、処理対象物である土壌と土壌造粒用添加材が、混合、せん断、転動され、圧密作用が起こることで、土壌中の間隙水の吸水や増粘が起こったり、土粒子と土粒子の架橋形成が進行することで、微小粒(粒度0.1mm以上)が生成することと定義する。
処理対象物である土壌としては、例えば、以下のものが挙げられる。
(a)建設汚泥
(b)軟弱土壌
(c)掘削土
(d)地盤工学会規準「JGS 0051-2009(地盤材料の工学的分類方法)」における、岩石質材料;石分まじり土質材料;細粒分まじり礫、細粒分まじり砂等の粗粒土;シルト、粘土等の細粒土;有機質粘土等の有機質土
In the soil reforming method of the present invention, the above-mentioned additive for soil granulation is added to the soil to be treated and mixed to obtain a modified soil obtained by granulating the above-mentioned soil. It includes steps. In addition, granulation in the present specification is to add and mix the above-mentioned soil granulation additive (or a slurry solution containing a soil granulation additive) to the soil to be treated (specifically). In the soil, the soil to be treated and the additive for soil granulation are mixed, sheared, and rolled by the rotation of the blades of various shapes of the mixer, etc., and the compaction action occurs in the soil. It is defined as the formation of fine particles (particle size of 0.1 mm or more) due to the absorption and thickening of the pore water and the progress of the formation of a bridge between the soil particles.
Examples of the soil to be treated include the following.
(A) Construction sludge (b) Soft soil (c) Excavated soil (d) Rocky material; Stone-mixed soil material; Fine in "JGS 0051-2009 (Engineering classification method of ground material)" of the Geotechnical Society Standards Coarse-grained soil such as gravel and fine-grained sand; fine-grained soil such as silt and clay; organic soil such as organic clay

添加材添加工程において、上記土壌の単位体積当たりの土壌造粒用添加材の添加量は、好ましくは10~300kg/m、より好ましくは15~200kg/m、特に好ましくは20~150kg/mである。該添加量が10kg/m以上であると、改質された土壌のコーン指数をより大きくすることができる。該添加量が300kg/m以下であると、処理コストの過度な増大を避けることができる。
土壌造粒用添加材を、処理対象物である土壌に添加して混合する方法は、特に限定されるものではなく、処理対象物である土壌に上述した無機粉末、増粘用材料等の各成分を同時に添加して混合してもよく、あるいは、別々に添加して混合してもよい。また、予め調製した土壌造粒用添加材を、処理対象物である土壌に添加して混合してもよい。
In the additive addition step, the amount of the soil granulation additive added per unit volume of the soil is preferably 10 to 300 kg / m 3 , more preferably 15 to 200 kg / m 3 , and particularly preferably 20 to 150 kg / m 3. It is m3 . When the addition amount is 10 kg / m 3 or more, the corn index of the modified soil can be further increased. When the addition amount is 300 kg / m 3 or less, an excessive increase in processing cost can be avoided.
The method of adding and mixing the soil granulation additive to the soil to be treated is not particularly limited, and the above-mentioned inorganic powder, thickening material, etc. are added to the soil to be treated. The components may be added at the same time and mixed, or they may be added separately and mixed. Further, a soil granulation additive prepared in advance may be added to the soil to be treated and mixed.

本発明の土壌改質方法は、添加材添加工程の前に、土壌を、目開き寸法が20~60mmである篩を用いて、篩分けし、篩を通過した細粒分を、添加材添加工程における処理対象物である土壌として用いる前処理工程を含むことができる。前処理工程を行うことで、土壌から、ある程度以上の大きさを有する草木、岩石等の不要な廃棄物を予め除去することで、作業の効率化を図ることができる。
上記篩の目開き寸法は、処理の対象となる土壌の性状に応じて、適宜定めればよい。
In the soil reforming method of the present invention, before the additive addition step, the soil is sieved using a sieve having an opening size of 20 to 60 mm, and the fine particles that have passed through the sieve are added as an additive. It can include a pretreatment step used as soil which is a treatment target in the step. By performing the pretreatment step, unnecessary waste such as plants and rocks having a certain size or more can be removed from the soil in advance, so that the work efficiency can be improved.
The opening size of the sieve may be appropriately determined according to the properties of the soil to be treated.

本発明の土壌改質方法は、添加材添加工程の後に、改質された土壌を、目開き寸法が20~60mmの篩を用いて、篩分けして、篩を通過する細粒分の割合を算出する篩分け工程、および、篩分け工程で得た細粒分の割合の適否を評価して、土壌造粒用添加材中の増粘用材料の割合を調整する添加材組成調整工程を含むことができる。
篩分け工程、および、添加材組成調整工程を行うことで、添加材添加工程で得られた、土壌が造粒されてなる改質された土壌を、運搬や再利用等を行うのに最適な形態(粒度)にすることができる。
より具体的には、添加材添加工程の後に、改質された土壌を、目開き寸法が特定の数値(例えば、20mm)である篩を用いて、篩分けして、篩を通過する細粒分の割合(細粒分通過率)を算出し、得られた細粒分通過率が特定の数値(例えば、50質量%未満)であれば、土壌造粒用添加材中の増粘用材料の割合を調整(例えば、大きく)することで、土壌が造粒されてなる改質された土壌の形態(粒度)を調整することができる。
なお、上記篩の目開き寸法や、細粒分通過率は、改質された土壌の運搬方法や再利用の用途に応じて、適宜定めればよい。
In the soil reforming method of the present invention, after the additive addition step, the reformed soil is sieved using a sieve having an opening size of 20 to 60 mm, and the ratio of fine particles passing through the sieve. A sieving step for calculating the Can include.
Optimal for transporting and reusing the modified soil obtained by granulating the soil obtained in the additive addition step by performing the sieving step and the additive composition adjusting step. It can be in the form (grain size).
More specifically, after the additive addition step, the modified soil is sieved using a sieve having a specific opening size (for example, 20 mm) and fine particles passed through the sieve. If the minute ratio (fine particle passage rate) is calculated and the obtained fine particle passage rate is a specific value (for example, less than 50% by mass), the thickening material in the soil granulation additive By adjusting (for example, increasing) the ratio of the above, the morphology (particle size) of the modified soil formed by granulating the soil can be adjusted.
The opening size of the sieve and the passage rate of fine particles may be appropriately determined according to the method of transporting the reformed soil and the purpose of reuse.

改質された土壌の、固化した後の溶出検液のpHは、好ましくは8.6以下、より好ましくは5.8~8.6(排出基準値)である。該pHが8.6以下であれば、土壌が高アルカリ性になって、周囲の環境に悪影響を与えることを防ぐことができる。
なお、上記溶出検液のpHは、「JGS 0211-2009(土懸濁液のpH試験方法)」に準拠して、測定することができる。
The pH of the elution test solution of the reformed soil after solidification is preferably 8.6 or less, more preferably 5.8 to 8.6 (emission standard value). When the pH is 8.6 or less, it is possible to prevent the soil from becoming highly alkaline and adversely affecting the surrounding environment.
The pH of the elution test solution can be measured in accordance with "JGS 0211-2009 (pH test method for soil suspension)".

改質された土壌の、固化した後のコーン指数は、好ましくは200kN/m以上、より好ましくは250kN/m以上、さらに好ましくは300kN/m以上、さらに好ましくは350kN/m以上、特に好ましくは400kN/m以上である。
コーン指数が200kN/m以上である改質された土壌は、十分な強度を有することから、盛土用材料や埋立用材料として好適に使用できる。また、この場合、固化処理後の土壌の運搬が容易となる。
なお、コーン指数は、「JIS A 1228:2009(締固めた土のコーン指数試験方法)」に準拠して測定し、試験材齢は処理対象物である土壌と、土壌造粒用添加剤の混合の終了時から24時間経過後の時点における値とした。
The corn index of the reformed soil after solidification is preferably 200 kN / m 2 or more, more preferably 250 kN / m 2 or more, still more preferably 300 kN / m 2 or more, still more preferably 350 kN / m 2 or more. Particularly preferably, it is 400 kN / m 2 or more.
The modified soil having a cone index of 200 kN / m 2 or more has sufficient strength and can be suitably used as a material for embankment or landfill. Further, in this case, the soil after the solidification treatment can be easily transported.
The corn index is measured in accordance with "JIS A 1228: 2009 (Corn index test method for compacted soil)", and the test material age is the soil to be treated and the soil granulation additive. The value was taken as the time point 24 hours after the end of mixing.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)土壌A;粘性土(埼玉県東松山市産)と砂質土(茨城県笠間市産)との混合土、湿潤密度:1.81g/cm、自然含水比(自然状態における土の含水量):35.6%
(2)土壌B;粘性土(埼玉県東吉川市産)、湿潤密度:1.50g/cm、自然含水比(自然状態における土の含水量):73.6%
(3)無機粉末(多孔質ではないもの:13種類);各種類の詳細は表1に示す。
(4)頁岩粉末(前記(3)以外の、多孔質である無機粉末);北海道幌延産の頁岩を乾式ボールミルで165分間粉砕したもの:BET比表面積112m/g
(5)増粘用材料(全10種類);各種類の詳細は表2に示す。
(6)強度促進剤(全5種類);各種類の詳細は表1に示す。
(7)硫酸アルミニウム;大明化学工業社製、粉末硫酸アルミニウム
(8)硫酸第一鉄;富士チタン工業社製、硫酸第一鉄1水塩
(9)クエン酸;扶桑化学工業社製
(10)グルコン酸ナトリウム;扶桑化学工業社製
なお、無機粉末および強度促進剤のブレーン比表面積は、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して測定した値である。
また、増粘用材料の粘度は、増粘用材料を水溶液中の濃度が1質量%になる量で水に溶解させた時点から1時間経過した時点における水溶液(20℃)の粘度を、ブルックフィールド社製「B型粘度計(HBF)」を用いて測定した値である。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[Material used]
(1) Soil A; mixed soil of cohesive soil (produced in Higashimatsuyama City, Saitama Prefecture) and sandy soil (produced in Kasama City, Ibaraki Prefecture), wet density: 1.81 g / cm 3 , natural moisture content (natural soil content) Water content): 35.6%
(2) Soil B; Cohesive soil (produced in Higashiyoshikawa City, Saitama Prefecture), wet density: 1.50 g / cm 3 , natural moisture content (soil moisture content in the natural state): 73.6%
(3) Inorganic powder (non-porous: 13 types); details of each type are shown in Table 1.
(4) Shale powder (porous inorganic powder other than (3) above); shale produced in Horonobe, Hokkaido, crushed for 165 minutes with a dry ball mill: BET specific surface area 112 m 2 / g
(5) Thickening material (10 types in total); Details of each type are shown in Table 2.
(6) Strength accelerator (5 types in total); Details of each type are shown in Table 1.
(7) Aluminum sulfate; manufactured by Daimei Chemical Industry Co., Ltd., powdered aluminum sulfate (8) ferrous sulfate; manufactured by Fuji Titanium Industry Co., Ltd., ferrous sulfate monohydrate (9) citric acid; manufactured by Fuso Chemical Industry Co., Ltd. (10) Sodium gluconate; manufactured by Fuso Chemical Industry Co., Ltd. The brain specific surface area of the inorganic powder and the strength accelerator is a value measured in accordance with "JIS R 5201: 2015 (physical test method for cement)".
The viscosity of the thickening material is the viscosity of the aqueous solution (20 ° C.) when 1 hour has passed from the time when the thickening material was dissolved in water at a concentration of 1% by mass in the aqueous solution. It is a value measured using "B type viscometer (HBF)" manufactured by Field Co., Ltd.

Figure 0007073088000001
Figure 0007073088000001

Figure 0007073088000002
Figure 0007073088000002

[実施例1~35]
上記土壌Aを、目開き寸法が9.5mである篩を用いて、篩分けをした後、該篩を通過した試料に、表3、4に示す種類及び量の材料(無機粉末、増粘用材料、強度促進剤、pH調整剤)からなる土壌造粒用添加材を、表3、4に示す添加量で添加した後、30リットルのホバート社製のミキサーを用いて5分間混合した。なお、各材料は同時に土壌に添加した。
次いで、土壌造粒用添加材を土壌Aに添加し混合してなる混合物(以下、単に「混合物」という。)を、目開き寸法が9.5mmである篩を用いて篩分けした後、該篩を通過した試料を、目開き寸法が4.75mmである篩を用いて篩分けして、目開き寸法が9.5mmである篩を通過する細粒分の質量割合(以下、「9.5mm篩通過率」と示す。)、及び、目開き寸法が4.75mmである篩を通過する細粒分の質量割合(以下、「4.75mm篩通過率」と示す。)を算出した。篩通過率の値が大きいほど、混合物が粒径の小さい粒子で構成されており、塊状となっている部分が少ないことを意味している。
なお、実際の現場で使用される目開き寸法が20~60mmである篩に代えて、実施例1~35および比較例1~4では、本発明の効果をより明確にする目的で、目開き寸法が9.5mmである篩、および、目開き寸法が4.75mmである篩を使用した。
また、混合物について、「JIS A 1228:2009(締固めた土のコーン指数試験方法)」に準拠して供試体を作製し、作製直後および材齢1日におけるコーン指数を測定した。
さらに、コーン指数を測定した後(材齢1日後)の混合物を用いて、「JGS 0211-2009(土懸濁液のpH試験方法)」に準拠して、土壌の溶出検液のpHを測定した。
結果を表3、4に示す。
[Examples 1 to 35]
The soil A is sieved using a sieve having an opening size of 9.5 m, and then the sample passed through the sieve is subjected to the types and amounts of materials (inorganic powder, thickening) shown in Tables 3 and 4. An additive for soil granulation consisting of a material, a strength accelerator, and a pH adjuster) was added in the amount shown in Tables 3 and 4, and then mixed for 5 minutes using a 30-liter Hobart mixer. Each material was added to the soil at the same time.
Next, a mixture obtained by adding and mixing an additive for soil granulation to soil A (hereinafter, simply referred to as “mixture”) is sieved using a sieve having an opening size of 9.5 mm, and then the mixture is used. The sample that has passed through the sieve is sieved using a sieve having an opening size of 4.75 mm, and the mass ratio of the fine particles passing through the sieve having an opening size of 9.5 mm (hereinafter, “9. The mass ratio of the fine particles passing through the sieve having an opening size of 4.75 mm (hereinafter referred to as “4.75 mm sieve passage rate”) was calculated. The larger the value of the sieve passing rate, the smaller the mixture is composed of particles having a small particle size, and the smaller the lumpy portion is.
In addition, instead of the sieve having the opening size of 20 to 60 mm used in the actual field, in Examples 1 to 35 and Comparative Examples 1 to 4, the opening is for the purpose of clarifying the effect of the present invention. A sieve having a size of 9.5 mm and a sieve having an opening size of 4.75 mm were used.
For the mixture, a specimen was prepared in accordance with "JIS A 1228: 2009 (Corn index test method for compacted soil)", and the cone index was measured immediately after preparation and at the age of 1 day.
Furthermore, the pH of the elution test solution of the soil was measured in accordance with "JGS 0211-2009 (pH test method for soil suspension)" using the mixture after measuring the corn index (1 day after the age of the material). bottom.
The results are shown in Tables 3 and 4.

Figure 0007073088000003
Figure 0007073088000003

Figure 0007073088000004
Figure 0007073088000004

[比較例1]
上記土壌Aについて、実施例1と同様にして、9.5mm篩通過率および4.75mm篩通過率を算出し、コーン指数、pHを測定した。
[比較例2~4]
土壌造粒用添加材の代わりに、表5に示す種類および量の無機粉末を添加する以外は実施例1と同様にして混合物を得た。該混合物について、実施例1と同様にして、9.5mm篩通過率および4.75mm篩通過率を算出し、コーン指数およびpHを測定した。
結果を表5に示す。
[Comparative Example 1]
For the soil A, the 9.5 mm sieve passing rate and the 4.75 mm sieve passing rate were calculated in the same manner as in Example 1, and the cone index and pH were measured.
[Comparative Examples 2 to 4]
A mixture was obtained in the same manner as in Example 1 except that the inorganic powders of the types and amounts shown in Table 5 were added instead of the additives for soil granulation. For the mixture, a 9.5 mm sieve pass rate and a 4.75 mm sieve pass rate were calculated in the same manner as in Example 1, and the cone index and pH were measured.
The results are shown in Table 5.

Figure 0007073088000005
Figure 0007073088000005

表3~4から、本発明の土壌造粒用添加材を含む混合物(実施例1~35)は、コーン指数が大きく(混合直後:205kN/m以上、材齢1日:210kN/m以上)、また、篩通過率が大きく(9.5mm篩通過率:22~100%、4.75mm篩通過率:5~80%)、さらには、土壌の溶出検液のpH(6.1~8.1)が、排出基準値である5.8~8.6の範囲内であることがわかる。
一方、比較例1(土壌造粒用添加材を使用していないもの)は、コーン指数が小さく(混合直後:135kN/m、材齢1日:132N/m)、また、篩通過率が小さい(9.5mm篩通過率:0%、4.75mm篩通過率:0%)ことがわかる。
比較例2~4の混合物(増粘用材料、強度促進剤、およびpH調整剤を含まないもの)は、コーン指数が小さく(混合直後:151~164kN/m、材齢1日:151~183N/m)、また、篩通過率が小さい(9.5mm篩通過率:14~15%、4.75mm篩通過率:2~3%)ことがわかる。
From Tables 3 to 4, the mixture containing the additive for soil granulation of the present invention (Examples 1 to 35) has a large cone index (immediately after mixing: 205 kN / m 2 or more, age 1 day: 210 kN / m 2 ). (Above), the sieving rate is large (9.5 mm sieving rate: 22 to 100%, 4.75 mm sieving rate: 5 to 80%), and the pH of the soil elution test solution (6.1). It can be seen that ~ 8.1) is within the range of 5.8 to 8.6, which is the emission standard value.
On the other hand, Comparative Example 1 (without using the additive for soil granulation) had a small cone index (immediately after mixing: 135 kN / m 2 , material age 1 day: 132 N / m 2 ), and a sieve passing rate. Is small (9.5 mm sieve passage rate: 0%, 4.75 mm sieve passage rate: 0%).
The mixture of Comparative Examples 2 to 4 (without the thickening material, the strength accelerator, and the pH adjuster) had a small cone index (immediately after mixing: 151 to 164 kN / m 2 , age 1 day: 151 to 15). It can be seen that 183 N / m 2 ) and the sieve passing rate are small (9.5 mm sieve passing rate: 14 to 15%, 4.75 mm sieve passing rate: 2 to 3%).

[実施例36~46]
上記土壌Bを、目開き寸法が9.5mである篩を用いて、篩分けをした後、該篩を通過した試料に、表6に示す種類及び量の材料(無機粉末、増粘用材料、強度促進剤)からなる土壌造粒用添加材を、表6に示す添加量で添加した後、30リットルのホバート社製のミキサーを用いて低速で60秒間混練した後、ミキサーの内壁面に付着した混合物を掻き落とし、さらに、低速で60秒間混練した。なお、各材料は同時に土壌に添加した。
次いで、土壌造粒用添加材を土壌に添加し混合してなる混合物(以下、単に「混合物」という。)を、目開き寸法が9.5mmである篩を用いて篩分けして、目開き寸法が9.5mmである篩を通過する細粒分の質量割合(以下、「9.5mm篩通過率」と示す。)を算出した。
なお、実際の現場で使用される目開き寸法が20~60mmである篩に代えて、実施例36~46では、本発明の効果をより明確にする目的で、目開き寸法が9.5mmである篩を使用した。
また、混合物について、「JIS A 1228:2009(締固めた土のコーン指数試験方法)」に準拠して供試体を作製した後、20℃の恒温室内で、密封養生を行い、材齢7日におけるコーン指数を測定した。
さらに、コーン指数を測定した後(材齢7日後)の混合物を用いて、「JGS 0211-2009(土懸濁液のpH試験方法)」に準拠して、土壌の溶出検液のpHを測定した。
結果を表6に示す。
[Examples 36 to 46]
The soil B is sieved using a sieve having an opening size of 9.5 m, and then the sample passed through the sieve is subjected to the types and amounts of materials (inorganic powder, thickening material) shown in Table 6. (Strength accelerator), added in the amount shown in Table 6, kneaded at low speed for 60 seconds using a 30 liter Hobart mixer, and then applied to the inner wall surface of the mixer. The adhering mixture was scraped off and further kneaded at low speed for 60 seconds. Each material was added to the soil at the same time.
Next, a mixture obtained by adding and mixing an additive for soil granulation to the soil (hereinafter, simply referred to as "mixture") is sieved using a sieve having an opening size of 9.5 mm to open the openings. The mass ratio of the fine particles passing through the sieve having a size of 9.5 mm (hereinafter referred to as "9.5 mm sieve passing rate") was calculated.
In addition, instead of the sieve having the opening size of 20 to 60 mm used in the actual field, in Examples 36 to 46, the opening size is 9.5 mm for the purpose of clarifying the effect of the present invention. A sieve was used.
For the mixture, a specimen was prepared in accordance with "JIS A 1228: 2009 (Corn index test method for compacted soil)", and then sealed and cured in a constant temperature room at 20 ° C., and the material age was 7 days. The cone index in was measured.
Furthermore, using the mixture after measuring the corn index (after 7 days of age), the pH of the soil elution test solution was measured in accordance with "JGS 0211-2009 (pH test method for soil suspension)". bottom.
The results are shown in Table 6.

Figure 0007073088000006
Figure 0007073088000006

表6から、本発明の土壌造粒用添加材を含む混合物(実施例36~46)は、材齢7日におけるコーン指数が大きく(318~653kN/m)、また、篩通過率が大きく(9.5mm篩通過率:46~87%)、さらには、土壌の溶出検液のpH(7.3~7.9)が、排出基準値である5.8~8.6の範囲内であることがわかる。 From Table 6, the mixture containing the additive for soil granulation of the present invention (Examples 36 to 46) has a large cone index (318 to 653 kN / m 2 ) at 7 days of age and a large sieve passing rate. (9.5 mm sieve passing rate: 46 to 87%), and further, the pH (7.3 to 7.9) of the soil elution test solution is within the range of the discharge standard value of 5.8 to 8.6. It can be seen that it is.

Claims (6)

土壌造粒用添加材を、処理対象物である土壌に添加して混合し、上記土壌が造粒されてなる改質された土壌を得る添加材添加工程、を含む土壌改質方法であって、
上記土壌造粒用添加材は、無機粉末100質量部、および増粘用材料7.0~11.0質量部を含み、かつ、軽焼マグネシア及びその部分水和物を含まない土壌造粒用添加材であり、
上記無機粉末は、ブレーン比表面積が1500cm/g以上で、かつ、炭酸カルシウム粉末、無水石膏珪石粉末、石炭灰およびドロマイトの中から選ばれる1種以上と、BET比表面積が5m/g以上頁岩粉末いずれか一方または両方からなるものであり、
上記増粘用材料は、グアガムであり、
上記添加材添加工程の前に、土壌を、目開き寸法が20~60mmの篩を用いて、篩分けし、上記篩を通過した細粒分を、上記添加材添加工程における上記処理対象物である土壌として用いる前処理工程、を含むことを特徴とする土壌改質方法。
A soil reforming method comprising an additive addition step of adding and mixing an additive for soil granulation to the soil to be treated to obtain a modified soil obtained by granulating the soil. ,
The soil granulation additive contains 100 parts by mass of an inorganic powder and 7.0 to 11.0 parts by mass of a thickening material , and does not contain light-baked magnesia and its partial hydrate. It is an additive material for
The inorganic powder has a brain specific surface area of 1500 cm 2 / g or more, and has a BET specific surface area of 5 m 2 / g and one or more selected from calcium carbonate powder, anhydrous gypsum , dolomite powder, coal ash , and dolomite. It consists of one or both of g or more dolomite powder.
The thickening material is guar gum .
Before the additive addition step, the soil is sieved using a sieve having an opening size of 20 to 60 mm, and the fine particles that have passed through the sieve are used as the treatment target in the additive addition step. A soil reforming method comprising a pretreatment step, which is used as a certain soil.
上記増粘用材料は、水溶液中の濃度が1質量%になる量で水に溶解させた時点から1時間経過した時点における水溶液(20℃)の粘度が500mPa・s以上になるものである請求項1に記載の土壌改質方法。 The thickening material is claimed to have a viscosity of 500 mPa · s or more at an aqueous solution (20 ° C.) 1 hour after being dissolved in water at a concentration of 1% by mass in the aqueous solution. Item 1. The soil reforming method according to Item 1. 上記土壌造粒用添加材は、pH調整剤として、硫酸アルミニウム、硫酸第一鉄、みょうばん、塩化第一鉄、塩化第二鉄、クエン酸もしくはその塩、およびグルコン酸もしくはその塩の中から選ばれる1種以上を0.5~50質量部含む請求項1又は2に記載の土壌改質方法。 The above-mentioned additive for soil granulation is selected from aluminum sulfate, ferrous sulfate, myoban, ferrous chloride, ferric chloride, citric acid or a salt thereof, and gluconic acid or a salt thereof as a pH adjuster. The soil reforming method according to claim 1 or 2 , which comprises 0.5 to 50 parts by mass of one or more of the above. 上記添加材添加工程において、上記処理対象物である土壌の単位体積当たりの上記土壌造粒用添加材の添加量が、10~300kg/mである請求項1~のいずれか1項に記載の土壌改質方法。 In any one of claims 1 to 3 , the addition amount of the soil granulation additive is 10 to 300 kg / m 3 per unit volume of the soil to be treated in the additive addition step. The described soil reforming method. 上記改質された土壌は、固化した後に、溶出検液のpHが8.6以下であり、かつ、コーン指数が200kN/m以上のものである請求項1~のいずれか1項に記載の土壌改質方法。 According to any one of claims 1 to 4 , the modified soil has a pH of 8.6 or less and a cone index of 200 kN / m 2 or more after solidification. The described soil reforming method. 上記添加材添加工程の後に、上記改質された土壌を、目開き寸法が20~60mmの篩を用いて、篩分けして、上記篩を通過する細粒分の割合を算出する篩分け工程、および、上記篩分け工程で得た細粒分の割合の適否を評価して、上記土壌造粒用添加材中の増粘用材料の割合を調整する添加材組成調整工程、を含む請求項1~のいずれか1項に記載の土壌改質方法。 After the additive addition step, the modified soil is sieved using a sieve having an opening size of 20 to 60 mm, and a sieving step of calculating the ratio of fine particles passing through the sieve. , And an additive composition adjusting step of evaluating the suitability of the ratio of the fine particles obtained in the sieving step and adjusting the ratio of the thickening material in the soil granulation additive. The soil reforming method according to any one of 1 to 5 .
JP2017242839A 2016-12-19 2017-12-19 Soil reforming method Active JP7073088B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016245062 2016-12-19
JP2016245062 2016-12-19

Publications (2)

Publication Number Publication Date
JP2018100409A JP2018100409A (en) 2018-06-28
JP7073088B2 true JP7073088B2 (en) 2022-05-23

Family

ID=62715142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242839A Active JP7073088B2 (en) 2016-12-19 2017-12-19 Soil reforming method

Country Status (1)

Country Link
JP (1) JP7073088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380017B1 (en) 2009-09-18 2014-04-02 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Half-metallic antiferromagnetic substance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079325A (en) * 2019-04-12 2019-08-02 中节能大地环境修复有限公司 It is a kind of for arsenic, the composite drug and restorative procedure of nickel combined contamination soil
WO2022176977A1 (en) * 2021-02-22 2022-08-25 花王株式会社 Site improvement method
CN113861996A (en) * 2021-10-20 2021-12-31 四川农业大学 Compound soil conditioner for calcareous purple soil and application method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182044A (en) 1999-12-28 2001-07-03 Asahi Organic Chem Ind Co Ltd Muddy soil solidifying material and muddy soil solidifying method
JP2001329564A (en) 2000-05-25 2001-11-30 Mitsubishi Heavy Ind Ltd Soil improving method and device
JP2001329563A (en) 2000-05-25 2001-11-30 Mitsubishi Heavy Ind Ltd Soil improving method and device
JP2003225640A (en) 2001-11-30 2003-08-12 Matsuda Giken Kogyo Kk Solidifying and insolubilizing agent for contaminated soil
JP2004244625A (en) 2003-01-24 2004-09-02 Nippon Shokubai Co Ltd Agent for treating wet soil and method for granulating wet soil
JP2005154522A (en) 2003-11-21 2005-06-16 Nippon Shokubai Co Ltd Method of granulation of water-containing soil and granular soil
JP2005218959A (en) 2004-02-05 2005-08-18 Kurita Water Ind Ltd High moisture content mud treatment method, high moisture content mud treating agent, and method for making granulated soil from high moisture content mud
JP2015183043A (en) 2014-03-20 2015-10-22 太平洋セメント株式会社 Soil modifying material and method for modifying soil
JP2016014097A (en) 2014-07-01 2016-01-28 株式会社 山辰鉱産 Production method of backfill, backfill and backfill production system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549129B2 (en) * 1995-06-06 2004-08-04 住友精化株式会社 Residual soil improver and method for improving residual soil
JP3496851B2 (en) * 1995-06-06 2004-02-16 住友精化株式会社 Residual soil solidifying agent and method for solidifying residual soil
JPH09157647A (en) * 1995-12-13 1997-06-17 Ekuseno Yamamizu:Kk Pozzolanic reaction, pozzolanic reaction product and soil improvement utilizing pozzolanic reaction
JP3167942B2 (en) * 1996-09-10 2001-05-21 小牧工業株式会社 Mixing machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182044A (en) 1999-12-28 2001-07-03 Asahi Organic Chem Ind Co Ltd Muddy soil solidifying material and muddy soil solidifying method
JP2001329564A (en) 2000-05-25 2001-11-30 Mitsubishi Heavy Ind Ltd Soil improving method and device
JP2001329563A (en) 2000-05-25 2001-11-30 Mitsubishi Heavy Ind Ltd Soil improving method and device
JP2003225640A (en) 2001-11-30 2003-08-12 Matsuda Giken Kogyo Kk Solidifying and insolubilizing agent for contaminated soil
JP2004244625A (en) 2003-01-24 2004-09-02 Nippon Shokubai Co Ltd Agent for treating wet soil and method for granulating wet soil
JP2005154522A (en) 2003-11-21 2005-06-16 Nippon Shokubai Co Ltd Method of granulation of water-containing soil and granular soil
JP2005218959A (en) 2004-02-05 2005-08-18 Kurita Water Ind Ltd High moisture content mud treatment method, high moisture content mud treating agent, and method for making granulated soil from high moisture content mud
JP2015183043A (en) 2014-03-20 2015-10-22 太平洋セメント株式会社 Soil modifying material and method for modifying soil
JP2016014097A (en) 2014-07-01 2016-01-28 株式会社 山辰鉱産 Production method of backfill, backfill and backfill production system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380017B1 (en) 2009-09-18 2014-04-02 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Half-metallic antiferromagnetic substance

Also Published As

Publication number Publication date
JP2018100409A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP7073088B2 (en) Soil reforming method
JP7067943B2 (en) Additives for soil granulation
US4443260A (en) Method for strengthening soft soil
JP5047745B2 (en) Ground improvement material
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP2015183043A (en) Soil modifying material and method for modifying soil
JP6355946B2 (en) Selenium insolubilizing material for soil and method for insolubilizing selenium in soil
JP7422071B2 (en) Heavy metal insolubilization solidification material and method for improving contaminated soil
JP7059039B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP6261120B2 (en) Neutron shielding concrete and its manufacturing method
JP2005272546A (en) Soil neutralizing and solidifying material, and improved method for neutralizing and solidifying soil
JP2023033045A (en) Method for producing fluorine insolubilization agent and bentonite dehydration cake
JP4748608B2 (en) Soil-solidifying agent and soil-solidifying method
JP6441086B2 (en) Effective use of coal ash
CN108298854A (en) Sludge solidification/stabilisation curing agent and its preparation method and application
JP2007162444A (en) Method of processing soil
JP6937199B2 (en) Solidification treatment method of organic soil
JP2002060751A (en) Hexavalent chromium elution-reducing agent and cement composition by using the same
JP6204099B2 (en) Ground improvement method
JP6331514B2 (en) Slightly acidic solidification method for soil
JP3772552B2 (en) Solidified material for heavy metal contaminated soil and method for producing the same
CN110052489A (en) A kind for the treatment of agent and preparation method for manganese mud heavy metal pollution
JP4174818B2 (en) Granulated soil
JP7105595B2 (en) Method for producing additive material for soil granulation and method for modifying soil
JP2009051914A (en) Soil-solidifying material, and method for solidifying soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150