JP6808373B2 - How to handle excavation scraps - Google Patents

How to handle excavation scraps Download PDF

Info

Publication number
JP6808373B2
JP6808373B2 JP2016123940A JP2016123940A JP6808373B2 JP 6808373 B2 JP6808373 B2 JP 6808373B2 JP 2016123940 A JP2016123940 A JP 2016123940A JP 2016123940 A JP2016123940 A JP 2016123940A JP 6808373 B2 JP6808373 B2 JP 6808373B2
Authority
JP
Japan
Prior art keywords
excavation
scrap
particle size
surface water
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016123940A
Other languages
Japanese (ja)
Other versions
JP2017225935A (en
Inventor
優作 天本
優作 天本
松山 祐介
祐介 松山
彰徳 杉山
彰徳 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016123940A priority Critical patent/JP6808373B2/en
Publication of JP2017225935A publication Critical patent/JP2017225935A/en
Application granted granted Critical
Publication of JP6808373B2 publication Critical patent/JP6808373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、掘削ずりの処理方法に関する。 The present invention relates to a method for treating excavation scraps.

近年、工場、事業所、産業廃棄物処理場の跡地などにおいて、土壌が鉛、6価クロム、ヒ素等の重金属類やフッ素等(以下、「重金属類等」ともいう。)で汚染されていることが、しばしば報告されている。
汚染土壌中の重金属類等を不溶化して、これら重金属類等が土壌から溶出するのを抑制するための技術が種々提案されている。
例えば、特許文献1に、酸化マグネシウムを含んで成ることを特徴とする重金属溶出抑制固化材が提案されている。
In recent years, soil has been contaminated with heavy metals such as lead, hexavalent chromium, and arsenic, fluorine, etc. (hereinafter, also referred to as "heavy metals, etc.") at the sites of factories, business establishments, and industrial waste treatment plants. That is often reported.
Various techniques have been proposed for insolubilizing heavy metals and the like in contaminated soil and suppressing the elution of these heavy metals and the like from the soil.
For example, Patent Document 1 proposes a heavy metal elution suppressing solidifying material characterized by containing magnesium oxide.

また、特許文献2に、以下の条件(a)〜(c)をすべて満たすマグネシウム系材料からなる粉末、を含むことを特徴とする不溶化材が提案されている。
(a)炭酸マグネシウムを主成分とする鉱物を650〜1,000℃で焼成して得た酸化マグネシウムと炭酸マグネシウムとを含む焼成物を、当該焼成物の一部が水酸化マグネシウムになるように水和したものであること
(b)カルシウムの酸化物換算の含有量が3.0質量%以下であること
(c)1,000℃における強熱減量率が6〜30質量%であること
また、特許文献3に、土壌に対してpH11以上の強アルカリ域とならない状態で使用される特定有害物質の不溶化材であって、非晶質アルミニウム化合物又はその誘導体を主成分とすることを特徴とする特定有害物質の不溶化材が提案されている。
Further, Patent Document 2 proposes an insolubilizing material containing a powder made of a magnesium-based material that satisfies all of the following conditions (a) to (c).
(A) A fired product containing magnesium oxide and magnesium carbonate obtained by firing a mineral containing magnesium carbonate as a main component at 650 to 1,000 ° C. so that a part of the fired product becomes magnesium hydroxide. It must be hydrated (b) The oxide-equivalent content of calcium must be 3.0% by mass or less (c) The ignition loss rate at 1,000 ° C. must be 6 to 30% by mass. , Patent Document 3 is characterized in that it is an insolubilizing material for a specific harmful substance used in a state where the pH does not become a strong alkaline region of 11 or more with respect to soil, and the main component is an amorphous aluminum compound or a derivative thereof. Insolubilizing materials for specific harmful substances have been proposed.

特開2003−117532号公報Japanese Unexamined Patent Publication No. 2003-117532 特開2010−131517号公報JP-A-2010-131517 特開2013−227554号公報Japanese Unexamined Patent Publication No. 2013-227554

土木工事で発生する掘削ずりの中には、重金属類等を高い含有率で含むものがある。この場合、掘削ずりに含まれている重金属類等を不溶化して、重金属類等の漏出および拡散を抑制することが望まれている。
本発明の目的は、掘削ずりが重金属類等を含む場合に、掘削ずりに含まれている重金属類等を、簡易にかつ十分に不溶化するための処理方法を提供することである。
Some excavation scraps generated in civil engineering work contain heavy metals and the like at a high content rate. In this case, it is desired to insolubilize the heavy metals and the like contained in the excavation scrap to suppress the leakage and diffusion of the heavy metals and the like.
An object of the present invention is to provide a treatment method for easily and sufficiently insolubilizing heavy metals and the like contained in the excavation scrap when the excavation scrap contains heavy metals and the like.

本発明者は、上記課題を解決するために鋭意検討した結果、掘削ずりまたは掘削ずり破砕物(以下、「掘削ずり等」ともいう。)に、水性の液体(例えば、水)を供給して、当該掘削ずり等を構成する粒体の表面水率を増大させた後、当該掘削ずり等に、酸化マグネシウム含有物質からなる不溶化材を添加した場合、掘削ずり等の単位体積当たりの不溶化材の付着量が増大し、水性の液体(例えば、水)を供給しない場合に比べて、重金属類等の不溶化の程度を高めることができることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventor supplies an aqueous liquid (for example, water) to excavation scraps or excavated scrap crushed materials (hereinafter, also referred to as “excavation scraps, etc.”). , After increasing the surface water content of the granules constituting the excavation shear, etc., when an insolubilizing material made of a magnesium oxide-containing substance is added to the excavation shear, etc., the insolubilizing material per unit volume of the excavation shear, etc. The present invention has been completed by finding that the amount of adhesion is increased and the degree of insolubilization of heavy metals and the like can be increased as compared with the case where an aqueous liquid (for example, water) is not supplied.

すなわち、本発明は、以下の[1]〜[4]を提供するものである。
[1] 掘削ずり、または、該掘削ずりを破砕してなる掘削ずり破砕物からなる処理対象物に、水性の液体を供給して、上記処理対象物を構成する粒体の表面水率を増大させる液体供給工程と、上記水性の液体を供給した後の上記処理対象物に、酸化マグネシウム含有物質からなる不溶化材を添加して、上記処理対象物に含まれている有害物質を不溶化する不溶化工程、を含むことを特徴とする掘削ずりの処理方法。
[2] 上記液体供給工程において、上記表面水率が0.01〜3%になるように、上記水性の液体の供給量を調整する、上記[1]に記載の掘削ずりの処理方法。
[3] 上記液体供給工程における上記水性の液体の供給が、吹き付け、滴下、または、結露を生じさせる雰囲気の形成によるものである、上記[1]又は[2]に記載の掘削ずりの処理方法。
[4] 上記処理対象物を構成する粒体は、40mm以下の粒度を有する粒体を、50質量%以上の割合で含むものである、上記[1]〜[3]のいずれかに記載の掘削ずりの処理方法。
That is, the present invention provides the following [1] to [4].
[1] An aqueous liquid is supplied to an excavation scrap or a treatment target composed of a crushed excavation scrap obtained by crushing the excavation scrap to increase the surface water content of the granules constituting the treatment target. A liquid supply step for insolubilizing a harmful substance contained in the treatment target by adding an insolubilizing material made of a magnesium oxide-containing substance to the treatment target after supplying the aqueous liquid. A method of treating excavated shavings, which comprises.
[2] The method for treating excavation scraps according to the above [1], wherein the supply amount of the aqueous liquid is adjusted so that the surface water ratio becomes 0.01 to 3% in the liquid supply step.
[3] The method for treating excavation scraps according to the above [1] or [2], wherein the supply of the aqueous liquid in the liquid supply step is due to the formation of an atmosphere that causes spraying, dropping, or dew condensation. ..
[4] The excavation scrap according to any one of [1] to [3] above, wherein the granules constituting the object to be treated contain granules having a particle size of 40 mm or less in a proportion of 50% by mass or more. Processing method.

本発明によれば、処理対象物(掘削ずりまたは掘削ずり破砕物)に、水性の液体を供給して、処理対象物(掘削ずり等)を構成する粒体の表面水率を増大させているので、処理対象物(掘削ずり等)の単位体積当たりの不溶化材の付着量が増大し、処理対象物(掘削ずり等)に含まれている重金属類等の不溶化の程度を高めることができ、重金属類等を十分に不溶化することができる。
また、本発明によれば、水性の液体(例えば、水)の供給という簡易な操作を行なうだけでよいので、処理対象物(掘削ずり等)に含まれている重金属類等を、簡易に不溶化することができる。
According to the present invention, an aqueous liquid is supplied to the object to be treated (excavation scrap or crushed excavation scrap) to increase the surface water content of the particles constituting the object to be treated (excavation scrap, etc.). Therefore, the amount of insolubilized material adhered per unit volume of the object to be treated (excavation scrap, etc.) is increased, and the degree of insolubilization of heavy metals, etc. contained in the object to be treated (excavation scrap, etc.) can be increased. Heavy metals and the like can be sufficiently insolubilized.
Further, according to the present invention, since it is only necessary to perform a simple operation of supplying an aqueous liquid (for example, water), heavy metals and the like contained in the object to be treated (excavation scraps, etc.) are easily insolubilized. can do.

本発明の掘削ずりの処理方法は、掘削ずり、または、該掘削ずりを破砕してなる掘削ずり破砕物からなる処理対象物に、水性の液体(例えば、水)を供給して、上記処理対象物を構成する粒体の表面水率を増大させる液体供給工程と、上記水性の液体を供給した後の上記処理対象物に、酸化マグネシウム含有物質(例えば、軽焼マグネシアまたはその部分水和物)からなる不溶化材を添加して、上記処理対象物に含まれている有害物質を不溶化する不溶化工程、を含む。
以下、各工程を詳しく説明する。
In the method for treating excavation shavings of the present invention, an aqueous liquid (for example, water) is supplied to a treatment object composed of the digging shavings or a crushed digging shavings formed by crushing the digging shavings, and the treatment target is described above. A magnesium oxide-containing substance (for example, light-baked magnesia or a partial hydrate thereof) is added to the liquid supply step for increasing the surface water content of the granules constituting the product and the treatment target after the water-based liquid is supplied. Includes an insolubilization step of adding an insolubilizing material comprising the above to insolubilize harmful substances contained in the object to be treated.
Hereinafter, each step will be described in detail.

[A.液体供給工程]
本工程は、掘削ずりまたは掘削ずり破砕物からなる処理対象物に、水性の液体を供給して、処理対象物を構成する粒体の表面水率を増大させる工程である。
本明細書中、「掘削ずり」とは、土木工事における掘削で採掘された岩石または土壌をいう。ここで、「土木工事」とは、トンネル工事、開坑工事、探鉱作業等を包含するものである。
本発明において処理対象となる掘削ずりは、主に、自然由来の重金属類等が含まれる掘削ずりである。日本国内には、ヒ素や鉛等を含む岩石や土壌が広く分布しており、土木工事で生じる掘削ずりからの有害な重金属類等の漏出および拡散を未然に防ぐことが要請されている。そこで、本発明では、このような自然由来の重金属類等が含まれる掘削ずりを、主な処理対象物としている。
[A. Liquid supply process]
This step is a step of supplying an aqueous liquid to a processing object composed of excavated scrap or excavated scrap crushed material to increase the surface water content of the granules constituting the processing object.
In the present specification, "excavation shaving" refers to rock or soil mined by excavation in civil engineering work. Here, "civil engineering work" includes tunnel work, mine opening work, exploration work, and the like.
The excavation scrap to be treated in the present invention is mainly a drilling scrap containing naturally derived heavy metals and the like. Rocks and soil containing arsenic and lead are widely distributed in Japan, and it is required to prevent the leakage and diffusion of harmful heavy metals from excavation scraps caused by civil engineering work. Therefore, in the present invention, the excavation scrap containing such naturally-derived heavy metals and the like is the main object to be treated.

本発明において不溶化の対象となる重金属類等としては、例えば、土壌汚染対策法(平成15年)に規定されている第二種特定有害物質が挙げられ、具体的には、カドミウム及びその化合物、六価クロム化合物、水銀及びその化合物、セレン及びその化合物、鉛及びその化合物、ひ素及びその化合物、ふっ素及びその化合物、および、ほう素及びその化合物が挙げられる。 Examples of heavy metals and the like to be insolubilized in the present invention include Class 2 Specified Hazardous Substances specified in the Soil Contamination Countermeasures Law (2003), specifically, cadmium and its compounds. Examples thereof include hexavalent chromium compounds, mercury and its compounds, selenium and its compounds, lead and its compounds, arsenic and its compounds, fluorine and its compounds, and boron and its compounds.

本発明の処理対象物(掘削ずりまたは掘削ずり破砕物)を構成する粒体は、好ましくは、40mm以下の粒度を有する粒体を、50質量%以上(好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上)の割合で含むものであり、より好ましくは、30mm以下の粒度を有する粒体を、50質量%以上(好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上)の割合で含むものであり、特に好ましくは、25mm以下の粒度を有する粒体を、50質量%以上(好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上)の割合で含むものである。 The particles constituting the object to be treated (excavation scrap or crushed excavated scrap) of the present invention preferably contain particles having a particle size of 40 mm or less in an amount of 50% by mass or more (preferably 60% by mass or more, more preferably 60% by mass or more). It is contained in a proportion of 70% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more), and more preferably 50% by mass or more (preferably) particles having a particle size of 30 mm or less. It is contained in a proportion of 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, particularly preferably 90% by mass or more), and particularly preferably a granule having a particle size of 25 mm or less. , 50% by mass or more (preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, particularly preferably 90% by mass or more).

本明細書中、「粒度」とは、該粒度を有する粒体が通過しうる、ふるいの最小の目開き寸法に相当する値(例えば、目開き寸法が20mm以上であれば、通過しうる場合、粒度は20mmである。)をいう。
処理対象物が上述の好ましい粒度分布を有することによって、処理対象物(掘削ずり等)の単位体積当たりの不溶化材の付着量が、より増大し、重金属類等の不溶化の程度を、より高めることができる。
なお、処理対象物が上述の好ましい粒度分布を有するためには、通常、掘削ずりを破砕する必要がある。
In the present specification, the "particle size" is a value corresponding to the minimum opening size of the sieve through which particles having the particle size can pass (for example, if the opening size is 20 mm or more, it can pass through). , The particle size is 20 mm.).
When the object to be treated has the above-mentioned preferable particle size distribution, the amount of the insolubilizing material adhered per unit volume of the object to be treated (excavation scrap, etc.) is further increased, and the degree of insolubilization of heavy metals and the like is further increased. Can be done.
In order for the object to be treated to have the above-mentioned preferable particle size distribution, it is usually necessary to crush the excavation scrap.

本発明の処理対象物が掘削ずり破砕物である場合、処理対象物を構成する粒体は、破砕に要する手間の軽減等の観点からは、好ましくは、2mm以上の粒度を有する粒体を、5質量%以上の割合で含むものであり、より好ましくは、2mm以上の粒度を有する粒体を、10質量%以上の割合で含むものであり、特に好ましくは、2mm以上の粒度を有する粒体を、20質量%以上の割合で含むものである。
本発明の好ましい実施形態の一例として、破砕前の掘削ずりが、40mmを超える粒度を有する粒体を、50質量%を超える割合で含むものであり、かつ、破砕後の掘削ずりが、上述の好ましい粒度分布(例えば、40mm以下の粒度を有する粒体を、50質量%以上の割合で含むこと)を有するものであり、この破砕後の掘削ずりに、水性の液体を供給することが挙げられる。
When the object to be treated of the present invention is an excavated crushed material, the particles constituting the object to be processed are preferably particles having a particle size of 2 mm or more from the viewpoint of reducing the labor required for crushing. It is contained in a proportion of 5% by mass or more, more preferably a particle having a particle size of 2 mm or more is contained in a proportion of 10% by mass or more, and particularly preferably a particle having a particle size of 2 mm or more. Is contained in a proportion of 20% by mass or more.
As an example of a preferred embodiment of the present invention, the excavation shear before crushing contains granules having a particle size of more than 40 mm in a proportion of more than 50% by mass, and the excavation shear after crushing is described above. It has a preferable particle size distribution (for example, it contains particles having a particle size of 40 mm or less in a proportion of 50% by mass or more), and an aqueous liquid may be supplied to the excavation scrap after crushing. ..

本発明において、水性の液体としては、水、または、水を溶媒として含む液体を用いることができる。
水を溶媒として含む液体の例としては、各種の混和剤(例えば、消泡剤)と、水の混合物等が挙げられる。
処理対象物への水性の液体の供給方法の例としては、吹き付け(例えば、噴霧機を用いた噴霧)や、滴下(例えば、液体流通路であるチューブを用いた滴下)や、結露を生じさせる雰囲気の形成(例えば、水蒸気を供給するなどして、相対湿度を例えば90%以上に増大させた後に、気温を低下させること)等が挙げられる。
In the present invention, as the aqueous liquid, water or a liquid containing water as a solvent can be used.
Examples of liquids containing water as a solvent include various admixtures (for example, antifoaming agents) and mixtures of water.
Examples of methods for supplying an aqueous liquid to an object to be treated include spraying (for example, spraying using a sprayer), dropping (for example, dropping using a tube which is a liquid flow path), and causing dew condensation. Examples include the formation of an atmosphere (for example, increasing the relative humidity to 90% or more by supplying water vapor and then lowering the air temperature).

本発明において、水性の液体の供給後の処理対象物を構成する粒体の表面水率は、好ましくは0.01〜3%、より好ましくは0.01〜2%、さらに好ましくは0.01〜1%、さらに好ましくは0.05〜0.8%、さらに好ましくは0.1〜0.6%、特に好ましくは0.2〜0.4%である。該値が0.01%以上であると、処理対象物に含まれている重金属類等の不溶化の程度を、より高めることができる。該値が3%以下であると、所望の表面水率を得るための水性の液体の供給に、過度の手間や時間を要せず、本発明の処理方法をより効率的に行うことができる。なお、該値が3%を超えても、重金属類等の不溶化の程度が頭打ちとなる傾向がある。
本発明において、表面水率とは、「JIS A 1111:2007」(細骨材の表面水率試験方法」に準拠して算出される値をいう。
In the present invention, the surface water content of the granules constituting the object to be treated after the supply of the aqueous liquid is preferably 0.01 to 3%, more preferably 0.01 to 2%, still more preferably 0.01. It is ~ 1%, more preferably 0.05 to 0.8%, still more preferably 0.1 to 0.6%, and particularly preferably 0.2 to 0.4%. When the value is 0.01% or more, the degree of insolubilization of heavy metals and the like contained in the object to be treated can be further increased. When the value is 3% or less, the treatment method of the present invention can be carried out more efficiently without requiring excessive labor and time for supplying an aqueous liquid for obtaining a desired surface water content. .. Even if the value exceeds 3%, the degree of insolubilization of heavy metals and the like tends to reach a plateau.
In the present invention, the surface water content means a value calculated in accordance with "JIS A 1111: 2007" (Surface water content test method for fine aggregate).

[B.不溶化工程]
本工程は、液体供給工程で得られた処理対象物(水性の液体を供給した後の、掘削ずりまたは掘削ずり破砕物)に、酸化マグネシウム含有物質からなる不溶化材を添加して、上記処理対象物に含まれている有害物質を不溶化する工程である。
酸化マグネシウム含有物質の一例としては、軽焼マグネシアまたはその部分水和物が挙げられる。
軽焼マグネシアは、炭酸マグネシウムと水酸化マグネシウムのいずれか一方または両方を含む固形原料を、好ましくは650〜1,200℃の温度で焼成することによって得ることができる。
ここで、固形原料の例としては、マグネサイト、ドロマイト等の鉱物の塊状物または粉粒状物や、マグネシウム塩を含む海水等に、炭酸アルカリ化合物(例えば、炭酸ナトリウム)を加えることで得られる塊状物または粉粒状物等が挙げられる。
焼成温度(加熱温度)は、好ましくは650〜1,200℃、より好ましくは750〜1,100℃、特に好ましくは800〜1,000℃である。該温度が600℃以上であると、軽焼マグネシアの生成の効率が向上する点で好ましい。該温度が1,300℃以下であると、重金属類等の不溶化の効果が向上する点で好ましい。
焼成時間(加熱時間)は、固形原料の仕込み量や粒度等によって異なるが、通常、30分間〜5時間である。
[B. Insolubilization process]
In this step, an insolubilizing material made of a magnesium oxide-containing substance is added to the object to be treated (excavation scrap or crushed excavated scrap after supplying an aqueous liquid) obtained in the liquid supply step, and the object to be treated is described above. This is the process of insolubilizing harmful substances contained in substances.
An example of a magnesium oxide-containing substance is light-baked magnesia or a partial hydrate thereof.
Lightly calcined magnesia can be obtained by calcining a solid raw material containing either or both of magnesium carbonate and magnesium hydroxide, preferably at a temperature of 650 to 1,200 ° C.
Here, as an example of the solid raw material, a lump or powder of minerals such as dolomite and dolomite, a lump obtained by adding an alkali carbonate compound (for example, sodium carbonate) to seawater containing a magnesium salt or the like. Examples include substances or powders and granules.
The firing temperature (heating temperature) is preferably 650 to 1,200 ° C., more preferably 750 to 1,100 ° C., and particularly preferably 800 to 1,000 ° C. When the temperature is 600 ° C. or higher, the efficiency of producing light-baked magnesia is improved, which is preferable. When the temperature is 1,300 ° C. or lower, the effect of insolubilizing heavy metals and the like is improved, which is preferable.
The firing time (heating time) varies depending on the amount of solid raw material charged, the particle size, and the like, but is usually 30 minutes to 5 hours.

軽焼マグネシアの部分水和物は、軽焼マグネシアを粉砕した後、当該粉砕物に水を添加して撹拌し混合するか、または、当該粉砕物を相対湿度80%以上の雰囲気下に1週間以上保持して、軽焼マグネシアを部分的に水和させることによって得ることができる。
軽焼マグネシアまたはその部分水和物中の酸化マグネシウム(MgO)の含有率は、重金属類等の不溶化の効果を高める観点から、好ましくは65質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上、特に好ましくは85質量%以上である。
軽焼マグネシアまたはその部分水和物のブレーン比表面積は、重金属類等の不溶化の効果を高める観点から、好ましくは4,000〜20,000cm/g、より好ましくは4,500〜10,000cm/g、特に好ましくは5,000〜7,000cm/gである。
For the partial hydrate of light-baked magnesia, water is added to the crushed product after crushing the light-baked magnesia, and the mixture is stirred or mixed, or the crushed product is mixed in an atmosphere having a relative humidity of 80% or more for one week. It can be obtained by retaining the above and partially hydrating the lightly baked magnesia.
The content of magnesium oxide (MgO) in the lightly baked magnesia or its partial hydrate is preferably 65% by mass or more, more preferably 75% by mass or more, still more preferably, from the viewpoint of enhancing the effect of insolubilizing heavy metals and the like. Is 80% by mass or more, particularly preferably 85% by mass or more.
The specific surface area of the brain of light-baked magnesia or its partial hydrate is preferably 4,000 to 20,000 cm 2 / g, more preferably 4,500 to 10,000 cm from the viewpoint of enhancing the effect of insolubilizing heavy metals and the like. It is 2 / g, particularly preferably 5,000 to 7,000 cm 2 / g.

処理対象物(掘削ずりまたは掘削ずり破砕物)1m当たりの不溶化材(酸化マグネシウム含有物質;典型的には、軽焼マグネシアまたはその部分水和物)の添加量は、処理対象物に含まれている重金属類等の種類および含有率等によっても異なるが、好ましくは20〜300kg、より好ましくは25〜200kg、特に好ましくは30〜150kgである。該量が20kg以上であれば、重金属類等の不溶化の効果をより高めることができる。該量が300kg以下であれば、不溶化材を多量に用いることによる処理コストの増大を防ぐことができる。 Processing object (drilling shear or excavated shear crushed) insoluble material per 1 m 3 (magnesium oxide-containing material; typically, light burned magnesia or partial hydrate thereof) amount of is included in the processing object Although it varies depending on the type and content of heavy metals and the like, it is preferably 20 to 300 kg, more preferably 25 to 200 kg, and particularly preferably 30 to 150 kg. When the amount is 20 kg or more, the effect of insolubilizing heavy metals and the like can be further enhanced. When the amount is 300 kg or less, it is possible to prevent an increase in processing cost due to the use of a large amount of insolubilizing material.

不溶化材の添加および混合の方法としては、処理対象物(掘削ずりまたは掘削ずり破砕物)に不溶化材を粉体のまま添加し、混合するドライ添加、または、不溶化材に水を加えてスラリーを得た後、該スラリーを処理対象物(掘削ずりまたは掘削ずり破砕物)に添加して混合するスラリー添加を採用することができる。スラリー添加の場合、水/不溶化材の質量比は、好ましくは0.6〜1.5、より好ましくは0.8〜1.2である。 As a method of adding and mixing the insolubilizing material, the insolubilizing material is added as a powder to the object to be treated (excavation scrap or crushed excavated scrap) and mixed by dry addition, or water is added to the insolubilizing material to form a slurry. After obtaining the slurry, it is possible to adopt the slurry addition in which the slurry is added to the object to be treated (excavation scrap or crushed excavation scrap) and mixed. In the case of slurry addition, the mass ratio of water / insolubilizer is preferably 0.6 to 1.5, more preferably 0.8 to 1.2.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[1.使用材料]
(1)不溶化材:マグネサイト(炭酸マグネシウムの含有率:93質量%)を、1,000℃で焼成した後、得られた軽焼マグネシアを粉砕したもの(酸化マグネシウムの含有率:85質量%以上;ブレーン比表面積:6,120cm/g)
(2)掘削ずり:以下の通過質量百分率を有する掘削ずり(頁岩と砂岩の混在岩;密度:2.8g/cm;鉱物の種類:石英、イライト、バトラライト等)
0.1mm以下:9%
1mm以下:23%
2mm以下:32%
5mm以下:43%
10mm以下:51%
20mm以下:75%
30mm以下:82%
40mm以下:84%
50mm以下:96%
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[1. Materials used]
(1) Insolubilizer: Magnesite (magnesium carbonate content: 93% by mass) was calcined at 1,000 ° C., and the obtained lightly calcined magnesia was crushed (magnesium oxide content: 85% by mass). Above; Brain specific surface area: 6,120 cm 2 / g)
(2) Excavation shear: Excavation shear having the following mass percentage of passage (mixed rock of shale and sandstone; density: 2.8 g / cm 3 ; mineral type: quartz, illite, butlerite, etc.)
0.1 mm or less: 9%
1 mm or less: 23%
2 mm or less: 32%
5 mm or less: 43%
10 mm or less: 51%
20 mm or less: 75%
30 mm or less: 82%
40 mm or less: 84%
50 mm or less: 96%

[2.掘削ずりの分画]
上記(2)の掘削ずりを、粒度の大きさに応じて、複数の粒度区分に分画した。
複数の粒度区分は、以下のとおりである。
(イ)平均粒度10mm(20mm以下の粒度を有するもの)
(ロ)平均粒度25mm(20mmを超え、30mm以下の粒度を有するもの)
(ハ)平均粒度38mm(30mmを超え、45mm以下の粒度を有するもの)
(ニ)平均粒度61mm(45mmを超え、76mm以下の粒度を有するもの)
[2. Fraction of excavation]
The excavation scrap of (2) above was fractionated into a plurality of particle size categories according to the size of the particle size.
The plurality of particle size classifications are as follows.
(B) Average particle size 10 mm (having a particle size of 20 mm or less)
(B) Average particle size 25 mm (having a particle size of more than 20 mm and 30 mm or less)
(C) Average particle size 38 mm (having a particle size of more than 30 mm and 45 mm or less)
(D) Average particle size 61 mm (having a particle size exceeding 45 mm and 76 mm or less)

[3.掘削ずりの表面水率の調整]
上記「2.掘削ずりの分画」で得た複数の粒度区分(イ)〜(ニ)の各々について、以下の3つの表面水率を有するものを調製した。
(a)掘削ずりA:表面水率が0.4%のもの
(b)掘削ずりB:表面水率が0.2%のもの
(c)掘削ずりC:表面水率が0%のもの(表乾状態のもの)
掘削ずりA〜Cは、「JIS A 1110−2006」(粗骨材の密度及び吸水率試験)に準拠して、以下のように調製した。
まず、掘削ずりの複数の粒度区分(イ)〜(ニ)の各々について、十分に水洗し、掘削ずりを構成する粒体の表面に付着している微粒分を除去した後、20℃の水中で24時間吸水させた。
吸水後の掘削ずりを水から取り出して、水を切った後、吸水性の布で粒体の表面の水膜を拭い去り、掘削ずりC(表乾状態;表面水率:0%)を調製した。
得られた掘削ずりCの一部について、霧吹きを用いて水を吹き付け、掘削ずりB(表面水率:0.2%)を調製した。
さらに、得られた掘削ずりB(表面水率:0.2%)の一部について、霧吹きを用いて水を吹き付け、掘削ずりA(表面水率:0.4%)を調製した。
[3. Adjustment of surface water content of excavation scrap]
For each of the plurality of particle size categories (a) to (d) obtained in the above "2. Fractionation of excavation scrap", those having the following three surface water ratios were prepared.
(A) Excavation slab A: Surface water content of 0.4% (b) Excavation slab B: Surface water content of 0.2% (c) Excavation slab C: Surface water content of 0% ( Surface dry state)
The excavation scraps A to C were prepared as follows in accordance with "JIS A 1110-2006" (rough aggregate density and water absorption test).
First, each of the plurality of particle size categories (a) to (d) of the excavation shear is thoroughly washed with water to remove fine particles adhering to the surface of the granules constituting the excavation shear, and then in water at 20 ° C. Was allowed to absorb water for 24 hours.
After removing the excavation scrap after water absorption from the water and draining the water, wipe off the water film on the surface of the granules with a water-absorbing cloth to prepare excavation scrap C (surface dry state; surface water content: 0%). did.
Water was sprayed on a part of the obtained excavation shear C using a mist to prepare excavation shear B (surface water ratio: 0.2%).
Further, a part of the obtained excavation shear B (surface water content: 0.2%) was sprayed with water using a mist to prepare excavation shear A (surface water ratio: 0.4%).

[4.掘削ずりの複数の粒度区分の各々における、表面水率と、不溶化材の付着量の関係]
掘削ずりの複数の粒度区分(イ)〜(ニ)の各々について、3つの異なる表面水率(0.4%、0.2%、0%;掘削ずりA〜C)の各場合について、不溶化材の付着量を測定した。
具体的には、不溶化材を付着させる対象となる試料(掘削ずり)に、十分な量の不溶化材を添加して混合した後、試料(掘削ずり)を構成する粒体の表面に、不溶化材からなる凝集物が残らないように、目開き寸法が2mmであるふるいを用いて、試料(掘削ずり)に余分に付着した不溶化材(凝集物)を落とし、その後、不溶化材が付着している試料(掘削ずり)の質量を測定した。この質量から、不溶化材が付着する前の試料(掘削ずり)の質量を差し引くことによって、付着した不溶化材の質量を算出した。また、この不溶化材の質量を、不溶化材が付着する前の試料(掘削ずり)の体積で除することによって、不溶化材が付着する前の試料(掘削ずり)の単位体積(1m)当たりの不溶化材の付着量(kg)を算出した。
結果は、以下のとおりである。
[4. Relationship between surface water content and the amount of insolubilizer adhered in each of the multiple particle size categories of excavation scrap]
Insolubilization for each of the three different surface water ratios (0.4%, 0.2%, 0%; excavation shears A to C) for each of the plurality of particle size categories (a) to (d) of the drilling shears. The amount of material adhered was measured.
Specifically, a sufficient amount of the insolubilizing material is added to and mixed with the sample (excavation scrap) to which the insolubilizing material is to be attached, and then the insolubilizing material is applied to the surface of the particles constituting the sample (excavation scrap). An insolubilizer (aggregate) excessively attached to the sample (excavation scrap) is removed using a sieve having an opening size of 2 mm so that no agglomerate consisting of the agglomerate remains, and then the insolubilizer is attached. The mass of the sample (excavation scrap) was measured. The mass of the adhered insolubilizer was calculated by subtracting the mass of the sample (excavation scrap) before the insolubilizer adhered from this mass. Further, by dividing the mass of this insolubilizing material by the volume of the sample (excavation scrap) before the insolubilizing material adheres, the unit volume (1 m 3 ) of the sample (excavation scrap) before the insolubilizing material adheres is divided. The adhesion amount (kg) of the insolubilizing material was calculated.
The results are as follows.

(イ)平均粒度10mm(20mm以下の粒度を有するもの)の場合
掘削ずりA(表面水率:0.4%)に対する不溶化材の付着量:16kg/m
掘削ずりB(表面水率:0.2%)に対する不溶化材の付着量:15kg/m
掘削ずりC(表面水率:0%)に対する不溶化材の付着量:8kg/m
(ロ)平均粒度25mm(20mmを超え、30mm以下の粒度を有するもの)の場合
掘削ずりA(表面水率:0.4%)に対する不溶化材の付着量:13kg/m
掘削ずりB(表面水率:0.2%)に対する不溶化材の付着量:11kg/m
掘削ずりC(表面水率:0%)に対する不溶化材の付着量:5kg/m
(ハ)平均粒度38mm(30mmを超え、45mm以下の粒度を有するもの)の場合
掘削ずりA(表面水率:0.4%)に対する不溶化材の付着量:9kg/m
掘削ずりB(表面水率:0.2%)に対する不溶化材の付着量:8kg/m
掘削ずりC(表面水率:0%)に対する不溶化材の付着量:4kg/m
(ニ)平均粒度61mm(45mmを超え、76mm以下の粒度を有するもの)の場合
掘削ずりA(表面水率:0.4%)に対する不溶化材の付着量:9kg/m
掘削ずりB(表面水率:0.2%)に対する不溶化材の付着量:7kg/m
掘削ずりC(表面水率:0%)に対する不溶化材の付着量:3kg/m
(B) In the case of an average particle size of 10 mm (having a particle size of 20 mm or less) Adhesion amount of insolubilizer to excavation scrap A (surface water content: 0.4%): 16 kg / m 3
Adhesion amount of insolubilizer to excavation scrap B (surface water content: 0.2%): 15 kg / m 3
Adhesion amount of insolubilizer to excavation scrap C (surface water content: 0%): 8 kg / m 3
(B) In the case of an average particle size of 25 mm (having a particle size of more than 20 mm and 30 mm or less) Adhesion amount of insolubilizer to excavation scrap A (surface water content: 0.4%): 13 kg / m 3
Adhesion amount of insolubilizer to excavation scrap B (surface water content: 0.2%): 11 kg / m 3
Adhesion amount of insolubilizer to excavation scrap C (surface water content: 0%): 5 kg / m 3
(C) In the case of an average particle size of 38 mm (having a particle size of more than 30 mm and 45 mm or less) Adhesion amount of insolubilizer to excavation scrap A (surface water content: 0.4%): 9 kg / m 3
Adhesion amount of insolubilizer to excavation scrap B (surface water content: 0.2%): 8 kg / m 3
Adhesion amount of insolubilizer to excavation scrap C (surface water content: 0%): 4 kg / m 3
(D) In the case of an average particle size of 61 mm (having a particle size of more than 45 mm and a particle size of 76 mm or less) Adhesion amount of insolubilizer to excavation scrap A (surface water content: 0.4%): 9 kg / m 3
Adhesion amount of insolubilizer to excavation scrap B (surface water content: 0.2%): 7 kg / m 3
Adhesion amount of insolubilizer to excavation scrap C (surface water content: 0%): 3 kg / m 3

以上の結果から、以下のことがわかる。
表面水率が0%の場合(掘削ずりC)に比べて、表面水率が0.4%、0.2%の各場合(掘削ずりA、B)のほうが、不溶化材の付着量が大きかった。
表面水率が0.4%の場合(掘削ずりA)と、表面水率が0.2%の場合(掘削ずりB)とでは、不溶化材の付着量に大きな差は見られなかった。
表面水率が0.4%、0.2%、0%のいずれの場合(掘削ずりA〜C)であっても、粒度が小さいほど、不溶化材の付着量が大きいという傾向が見られた。
表面水率が0.4%、0.2%の各場合(掘削ずりA、B)においては、平均粒度38mm(最大粒度:45mm)から平均粒度25mm(最大粒度:30mm)に粒度が小さくなると、不溶化材の付着量が8〜9kg/mから11〜13kg/mに大幅に増大しているのに対し、表面水率が0%の場合(掘削ずりC)においては、平均粒度38mm(最大粒度:45mm)から平均粒度25mm(最大粒度:30mm)に粒度が小さくなっても、不溶化材の付着量が4kg/mから5kg/mに若干増大するだけであった。
不溶化材の付着量を増大させて、不溶化の効果を高めるためには、特定の表面水率(例えば、0.2〜0.4%)を有し、かつ、平均粒度25mm以下(最大粒度30mm以下)の粒体の割合を大きくすることが、効果的であることがわかる。
From the above results, the following can be seen.
Compared to the case where the surface water content is 0% (excavation shear C), the amount of insolubilizing material adhered is larger when the surface water ratio is 0.4% and 0.2% (excavation shears A and B). It was.
There was no significant difference in the amount of insolubilized material adhered between the case where the surface water content was 0.4% (excavation shear A) and the case where the surface water ratio was 0.2% (excavation shear B).
Regardless of whether the surface water content is 0.4%, 0.2%, or 0% (excavation scraps A to C), the smaller the particle size, the larger the amount of insolubilizing material attached. ..
When the surface water content is 0.4% and 0.2% (excavation shears A and B), the particle size is reduced from an average particle size of 38 mm (maximum particle size: 45 mm) to an average particle size of 25 mm (maximum particle size: 30 mm). The amount of insolubilized material adhered has increased significantly from 8 to 9 kg / m 3 to 11 to 13 kg / m 3 , whereas when the surface water content is 0% (excavation scrap C), the average particle size is 38 mm. Even if the particle size was reduced from (maximum particle size: 45 mm) to an average particle size of 25 mm (maximum particle size: 30 mm), the amount of the insolubilizing material adhered was only slightly increased from 4 kg / m 3 to 5 kg / m 3 .
In order to increase the adhesion amount of the insolubilizing material and enhance the insolubilizing effect, it has a specific surface water content (for example, 0.2 to 0.4%) and an average particle size of 25 mm or less (maximum particle size 30 mm). It can be seen that it is effective to increase the proportion of particles in the following).

Claims (3)

掘削ずり、または、該掘削ずりを破砕してなる掘削ずり破砕物からなる処理対象物に、水性の液体を供給して、上記処理対象物を構成する粒体の表面水率を増大させる液体供給工程と、
上記水性の液体を供給した後の上記処理対象物に、酸化マグネシウム含有物質からなる不溶化材を添加して、上記処理対象物に含まれている有害物質を不溶化する不溶化工程、を含む掘削ずりの処理方法であって、
上記処理対象物を構成する粒体は、30mm以下の粒度を有する粒体を、50質量%以上の割合で含むものであり、
上記液体供給工程において、上記表面水率が0.1〜3%になるように、上記水性の液体の供給量を調整することを特徴とする掘削ずりの処理方法。
A liquid supply that increases the surface water content of the granules constituting the excavation target by supplying an aqueous liquid to the excavation scrap or the treatment target composed of the excavation scrap crushed material obtained by crushing the excavation scrap. Process and
Excavation shavings including an insolubilization step of adding an insolubilizing material made of a magnesium oxide-containing substance to the treatment target after supplying the aqueous liquid to insolubilize the harmful substances contained in the treatment target. It ’s a processing method,
The granules constituting the object to be treated contain granules having a particle size of 30 mm or less in a proportion of 50% by mass or more.
A method for treating excavation scrap, which comprises adjusting the supply amount of the aqueous liquid so that the surface water ratio becomes 0.1 to 3% in the liquid supply step .
上記液体供給工程における上記水性の液体の供給が、吹き付け、滴下、または、結露を生じさせる雰囲気の形成によるものである請求項に記載の掘削ずりの処理方法。 The method for treating excavation scraps according to claim 1 , wherein the supply of the aqueous liquid in the liquid supply step is due to the formation of an atmosphere that causes spraying, dropping, or dew condensation. 上記酸化マグネシウム含有物質が、軽焼マグネシアまたはその部分水和物である請求項1又は2に記載の掘削ずりの処理方法。The method for treating excavation scraps according to claim 1 or 2, wherein the magnesium oxide-containing substance is light-baked magnesia or a partial hydrate thereof.
JP2016123940A 2016-06-22 2016-06-22 How to handle excavation scraps Active JP6808373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016123940A JP6808373B2 (en) 2016-06-22 2016-06-22 How to handle excavation scraps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016123940A JP6808373B2 (en) 2016-06-22 2016-06-22 How to handle excavation scraps

Publications (2)

Publication Number Publication Date
JP2017225935A JP2017225935A (en) 2017-12-28
JP6808373B2 true JP6808373B2 (en) 2021-01-06

Family

ID=60890582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016123940A Active JP6808373B2 (en) 2016-06-22 2016-06-22 How to handle excavation scraps

Country Status (1)

Country Link
JP (1) JP6808373B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777995B (en) * 2021-01-11 2023-07-25 中国建筑第五工程局有限公司 Undisturbed shield slag soil baking-free product and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481360B1 (en) * 2009-10-05 2010-06-16 太平洋セメント株式会社 Insolubilizing material
JP2014227457A (en) * 2013-05-21 2014-12-08 三菱マテリアルテクノ株式会社 Insolubilizing agent of heavy metal or the like and insolubilizing method

Also Published As

Publication number Publication date
JP2017225935A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP5757613B2 (en) Processing materials such as heavy metals
CN103649016B (en) The manufacture method of phosphatic manure and phosphatic manure
JP6009118B1 (en) Treatment method of mud generated by bubble shield method
Silva et al. Reutilization of granite powder as an amendment and fertilizer for acid soils
JP6084745B1 (en) Disposal method of mud generated by muddy water type shield method
JP5969099B1 (en) Treatment method of mud generated by bubble shield method
JP2012092180A (en) Additive for neutral solidifying material, neutral solidifying material, and method for suppressing elution of heavy metal
JP6808373B2 (en) How to handle excavation scraps
JP2018030958A (en) Modifier for soft soil or the like and solidification treatment method of remaining soil
US9346087B2 (en) Non-embedding method for heavy metal stabilization using beef bone meal and blast media
JP6538356B2 (en) Insolubilizing material and insolubilizing slurry
JP2007268431A (en) Concrete reproduction material
JP6885681B2 (en) How to determine the maximum particle size of excavation shavings
JP6356933B1 (en) Disposal method of mud generated by muddy water type shield method
JP4070024B2 (en) Non-dust solidifying material and method for producing the same
KR101819395B1 (en) Composition for inhibiting scattering dust using slag and method for inhibiting scattering dust using the same
CN106242469B (en) A kind of preparation method of river and lake silt solidification and stabilization medicament
JP6465604B2 (en) Insolubilized slurry
KR20120093648A (en) Composition for stabilization of heavy metal or arsenic contaminated soils and wastewater using calcined oyster shell and sludge
JP4578920B2 (en) Ground improvement method
JP2017225937A (en) Method for detoxicating excavating muck
CA3053602A1 (en) Method for producing a binder for the conditioning of sludges, soils containing water and for the neutralization of acids
JP6112900B2 (en) Method for producing raw material particles for producing cement clinker
JP5800639B2 (en) Method for producing silica particles for adjusting cement clinker component
KR20110071339A (en) Composition for stabilization of pb contaminated soils and wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250