JP2017225935A - Treatment method of excavation muck - Google Patents

Treatment method of excavation muck Download PDF

Info

Publication number
JP2017225935A
JP2017225935A JP2016123940A JP2016123940A JP2017225935A JP 2017225935 A JP2017225935 A JP 2017225935A JP 2016123940 A JP2016123940 A JP 2016123940A JP 2016123940 A JP2016123940 A JP 2016123940A JP 2017225935 A JP2017225935 A JP 2017225935A
Authority
JP
Japan
Prior art keywords
excavation
shear
particle size
surface water
excavation shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016123940A
Other languages
Japanese (ja)
Other versions
JP6808373B2 (en
Inventor
優作 天本
Yusaku Amamoto
優作 天本
松山 祐介
Yusuke Matsuyama
祐介 松山
彰徳 杉山
Akinori Sugiyama
彰徳 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016123940A priority Critical patent/JP6808373B2/en
Publication of JP2017225935A publication Critical patent/JP2017225935A/en
Application granted granted Critical
Publication of JP6808373B2 publication Critical patent/JP6808373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method to be applied in the case excavation muck contains heavy metals and the like, for insolubilizing heavy metals and the like contained in the excavation mud, efficiently and sufficiently.SOLUTION: A treatment method of excavation muck comprises: a liquid supply step for supplying an aqueous liquid to material to be treated comprising excavation muck or crushed excavation muck to increase a surface moisture of particles constituting the material to be treated; and an insolubilization step for adding an insolubilization material comprising a magnesium oxide-containing substance to insolubilize harmful substances contained in the material to be treated.SELECTED DRAWING: None

Description

本発明は、掘削ずりの処理方法に関する。   The present invention relates to a processing method for excavation shear.

近年、工場、事業所、産業廃棄物処理場の跡地などにおいて、土壌が鉛、6価クロム、ヒ素等の重金属類やフッ素等(以下、「重金属類等」ともいう。)で汚染されていることが、しばしば報告されている。
汚染土壌中の重金属類等を不溶化して、これら重金属類等が土壌から溶出するのを抑制するための技術が種々提案されている。
例えば、特許文献1に、酸化マグネシウムを含んで成ることを特徴とする重金属溶出抑制固化材が提案されている。
In recent years, soil has been contaminated with heavy metals such as lead, hexavalent chromium, and arsenic, fluorine, etc. (hereinafter also referred to as “heavy metals”, etc.) in sites such as factories, offices, and industrial waste disposal sites. This has often been reported.
Various techniques for insolubilizing heavy metals and the like in contaminated soil and suppressing the elution of these heavy metals from the soil have been proposed.
For example, Patent Document 1 proposes a heavy metal elution-suppressing solidified material comprising magnesium oxide.

また、特許文献2に、以下の条件(a)〜(c)をすべて満たすマグネシウム系材料からなる粉末、を含むことを特徴とする不溶化材が提案されている。
(a)炭酸マグネシウムを主成分とする鉱物を650〜1,000℃で焼成して得た酸化マグネシウムと炭酸マグネシウムとを含む焼成物を、当該焼成物の一部が水酸化マグネシウムになるように水和したものであること
(b)カルシウムの酸化物換算の含有量が3.0質量%以下であること
(c)1,000℃における強熱減量率が6〜30質量%であること
また、特許文献3に、土壌に対してpH11以上の強アルカリ域とならない状態で使用される特定有害物質の不溶化材であって、非晶質アルミニウム化合物又はその誘導体を主成分とすることを特徴とする特定有害物質の不溶化材が提案されている。
Further, Patent Document 2 proposes an insolubilizing material including a powder made of a magnesium-based material that satisfies all of the following conditions (a) to (c).
(A) A fired product containing magnesium oxide and magnesium carbonate obtained by firing a mineral mainly composed of magnesium carbonate at 650 to 1,000 ° C. so that a part of the fired product becomes magnesium hydroxide. It is hydrated (b) The content of calcium in terms of oxide is 3.0% by mass or less (c) The ignition loss at 1,000 ° C. is 6-30% by mass , Patent Document 3, characterized in that it is an insolubilizing material for specific hazardous substances used in a state where it does not become a strong alkaline region having a pH of 11 or more with respect to soil, characterized by comprising an amorphous aluminum compound or a derivative thereof as a main component. Insolubilizing materials for specific harmful substances have been proposed.

特開2003−117532号公報JP 2003-117532 A 特開2010−131517号公報JP 2010-131517 A 特開2013−227554号公報JP 2013-227554 A

土木工事で発生する掘削ずりの中には、重金属類等を高い含有率で含むものがある。この場合、掘削ずりに含まれている重金属類等を不溶化して、重金属類等の漏出および拡散を抑制することが望まれている。
本発明の目的は、掘削ずりが重金属類等を含む場合に、掘削ずりに含まれている重金属類等を、簡易にかつ十分に不溶化するための処理方法を提供することである。
Some excavations generated during civil engineering contain heavy metals at a high content. In this case, it is desired to insolubilize heavy metals contained in the excavation and prevent leakage and diffusion of heavy metals.
An object of the present invention is to provide a treatment method for easily and sufficiently insolubilizing heavy metals and the like contained in excavation shear when the excavation shear includes heavy metals and the like.

本発明者は、上記課題を解決するために鋭意検討した結果、掘削ずりまたは掘削ずり破砕物(以下、「掘削ずり等」ともいう。)に、水性の液体(例えば、水)を供給して、当該掘削ずり等を構成する粒体の表面水率を増大させた後、当該掘削ずり等に、酸化マグネシウム含有物質からなる不溶化材を添加した場合、掘削ずり等の単位体積当たりの不溶化材の付着量が増大し、水性の液体(例えば、水)を供給しない場合に比べて、重金属類等の不溶化の程度を高めることができることを見出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor supplies an aqueous liquid (for example, water) to excavated slab or excavated crushed material (hereinafter also referred to as “excavated slag”). After increasing the surface water ratio of the particles constituting the excavation shear, etc., when an insolubilization material made of a magnesium oxide-containing substance is added to the excavation shear, etc., the insolubilization material per unit volume of the excavation shear, etc. The present inventors have found that the amount of adhesion is increased and the degree of insolubilization of heavy metals and the like can be increased as compared with the case where an aqueous liquid (for example, water) is not supplied.

すなわち、本発明は、以下の[1]〜[4]を提供するものである。
[1] 掘削ずり、または、該掘削ずりを破砕してなる掘削ずり破砕物からなる処理対象物に、水性の液体を供給して、上記処理対象物を構成する粒体の表面水率を増大させる液体供給工程と、上記水性の液体を供給した後の上記処理対象物に、酸化マグネシウム含有物質からなる不溶化材を添加して、上記処理対象物に含まれている有害物質を不溶化する不溶化工程、を含むことを特徴とする掘削ずりの処理方法。
[2] 上記液体供給工程において、上記表面水率が0.01〜3%になるように、上記水性の液体の供給量を調整する、上記[1]に記載の掘削ずりの処理方法。
[3] 上記液体供給工程における上記水性の液体の供給が、吹き付け、滴下、または、結露を生じさせる雰囲気の形成によるものである、上記[1]又は[2]に記載の掘削ずりの処理方法。
[4] 上記処理対象物を構成する粒体は、40mm以下の粒度を有する粒体を、50質量%以上の割合で含むものである、上記[1]〜[3]のいずれかに記載の掘削ずりの処理方法。
That is, the present invention provides the following [1] to [4].
[1] An aqueous liquid is supplied to a processing object made of excavated shear or a crushed excavated material obtained by crushing the excavated shear, and the surface water ratio of the particles constituting the processed object is increased. A liquid supply step to be performed, and an insolubilization step of adding an insolubilizing material made of a magnesium oxide-containing material to the processing target after supplying the aqueous liquid to insolubilize harmful substances contained in the processing target A method for treating excavation shears, comprising:
[2] The excavation shear treatment method according to [1], wherein in the liquid supply step, the supply amount of the aqueous liquid is adjusted so that the surface water ratio is 0.01 to 3%.
[3] The excavation shearing treatment method according to [1] or [2], wherein the supply of the aqueous liquid in the liquid supply step is performed by spraying, dripping, or forming an atmosphere that causes condensation. .
[4] The excavation shear according to any one of the above [1] to [3], wherein the granule constituting the treatment object includes a granule having a particle size of 40 mm or less at a ratio of 50% by mass or more. Processing method.

本発明によれば、処理対象物(掘削ずりまたは掘削ずり破砕物)に、水性の液体を供給して、処理対象物(掘削ずり等)を構成する粒体の表面水率を増大させているので、処理対象物(掘削ずり等)の単位体積当たりの不溶化材の付着量が増大し、処理対象物(掘削ずり等)に含まれている重金属類等の不溶化の程度を高めることができ、重金属類等を十分に不溶化することができる。
また、本発明によれば、水性の液体(例えば、水)の供給という簡易な操作を行なうだけでよいので、処理対象物(掘削ずり等)に含まれている重金属類等を、簡易に不溶化することができる。
According to the present invention, an aqueous liquid is supplied to an object to be treated (excavated shear or crushed excavated material) to increase the surface water ratio of the particles constituting the object to be treated (excavated shear, etc.). Therefore, the adhesion amount of the insolubilizing material per unit volume of the processing object (digging shear, etc.) increases, and the degree of insolubilization of heavy metals etc. contained in the processing object (digging shear, etc.) can be increased. Heavy metals can be sufficiently insolubilized.
In addition, according to the present invention, it is only necessary to perform a simple operation of supplying an aqueous liquid (for example, water). can do.

本発明の掘削ずりの処理方法は、掘削ずり、または、該掘削ずりを破砕してなる掘削ずり破砕物からなる処理対象物に、水性の液体(例えば、水)を供給して、上記処理対象物を構成する粒体の表面水率を増大させる液体供給工程と、上記水性の液体を供給した後の上記処理対象物に、酸化マグネシウム含有物質(例えば、軽焼マグネシアまたはその部分水和物)からなる不溶化材を添加して、上記処理対象物に含まれている有害物質を不溶化する不溶化工程、を含む。
以下、各工程を詳しく説明する。
The processing method of excavation shear of this invention supplies an aqueous liquid (for example, water) to the processing object which consists of excavation shear or the excavation shear crushed material which crushes this excavation shear, The said processing object A liquid supply step for increasing the surface water content of the particles constituting the product, and a magnesium oxide-containing substance (for example, light-burned magnesia or a partial hydrate thereof) to the object to be treated after the aqueous liquid is supplied An insolubilization step of adding an insolubilizing material consisting of the above to insolubilize harmful substances contained in the object to be treated.
Hereinafter, each process will be described in detail.

[A.液体供給工程]
本工程は、掘削ずりまたは掘削ずり破砕物からなる処理対象物に、水性の液体を供給して、処理対象物を構成する粒体の表面水率を増大させる工程である。
本明細書中、「掘削ずり」とは、土木工事における掘削で採掘された岩石または土壌をいう。ここで、「土木工事」とは、トンネル工事、開坑工事、探鉱作業等を包含するものである。
本発明において処理対象となる掘削ずりは、主に、自然由来の重金属類等が含まれる掘削ずりである。日本国内には、ヒ素や鉛等を含む岩石や土壌が広く分布しており、土木工事で生じる掘削ずりからの有害な重金属類等の漏出および拡散を未然に防ぐことが要請されている。そこで、本発明では、このような自然由来の重金属類等が含まれる掘削ずりを、主な処理対象物としている。
[A. Liquid supply process]
This step is a step of increasing the surface water ratio of the particles constituting the processing object by supplying an aqueous liquid to the processing object made of excavated or crushed excavated material.
In this specification, “excavation” refers to rock or soil mined by excavation in civil engineering work. Here, “civil engineering” includes tunnel construction, opening work, exploration work, and the like.
The excavation shear to be treated in the present invention is an excavation shear mainly including naturally derived heavy metals. In Japan, rocks and soils containing arsenic, lead, etc. are widely distributed, and it is required to prevent the leakage and diffusion of harmful heavy metals from excavations caused by civil engineering work. Therefore, in the present invention, excavation shear including such naturally-derived heavy metals and the like is used as a main processing object.

本発明において不溶化の対象となる重金属類等としては、例えば、土壌汚染対策法(平成15年)に規定されている第二種特定有害物質が挙げられ、具体的には、カドミウム及びその化合物、六価クロム化合物、水銀及びその化合物、セレン及びその化合物、鉛及びその化合物、ひ素及びその化合物、ふっ素及びその化合物、および、ほう素及びその化合物が挙げられる。   In the present invention, heavy metals and the like to be insolubilized include, for example, the second type specified harmful substances specified in the Soil Contamination Countermeasures Law (2003), specifically, cadmium and its compounds, Hexavalent chromium compounds, mercury and its compounds, selenium and its compounds, lead and its compounds, arsenic and its compounds, fluorine and its compounds, and boron and its compounds.

本発明の処理対象物(掘削ずりまたは掘削ずり破砕物)を構成する粒体は、好ましくは、40mm以下の粒度を有する粒体を、50質量%以上(好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上)の割合で含むものであり、より好ましくは、30mm以下の粒度を有する粒体を、50質量%以上(好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上)の割合で含むものであり、特に好ましくは、25mm以下の粒度を有する粒体を、50質量%以上(好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上)の割合で含むものである。   The granules constituting the object to be treated (excavated shear or excavated shear crushed material) of the present invention are preferably 50% by mass or more (preferably 60% by mass or more, more preferably) having a particle size of 40 mm or less. 70% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more), more preferably 50% by mass or more (preferably, particles having a particle size of 30 mm or less) 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, particularly preferably 90% by mass or more), and particularly preferably, particles having a particle size of 25 mm or less. , 50% by weight or more (preferably 60% by weight or more, more preferably 70% by weight or more, further preferably 80% by weight or more, particularly preferably 90% by weight or more). It is intended to include in the case.

本明細書中、「粒度」とは、該粒度を有する粒体が通過しうる、ふるいの最小の目開き寸法に相当する値(例えば、目開き寸法が20mm以上であれば、通過しうる場合、粒度は20mmである。)をいう。
処理対象物が上述の好ましい粒度分布を有することによって、処理対象物(掘削ずり等)の単位体積当たりの不溶化材の付着量が、より増大し、重金属類等の不溶化の程度を、より高めることができる。
なお、処理対象物が上述の好ましい粒度分布を有するためには、通常、掘削ずりを破砕する必要がある。
In this specification, “particle size” means a value corresponding to the minimum opening size of a sieve through which particles having the particle size can pass (for example, if the opening size is 20 mm or more, it can pass through). , The particle size is 20 mm).
When the object to be treated has the preferred particle size distribution described above, the amount of insolubilized material per unit volume of the object to be treated (such as excavation shear) is further increased, and the degree of insolubilization of heavy metals and the like is further increased. Can do.
In addition, in order for a processing target object to have the above-mentioned preferable particle size distribution, it is usually necessary to crush excavation shear.

本発明の処理対象物が掘削ずり破砕物である場合、処理対象物を構成する粒体は、破砕に要する手間の軽減等の観点からは、好ましくは、2mm以上の粒度を有する粒体を、5質量%以上の割合で含むものであり、より好ましくは、2mm以上の粒度を有する粒体を、10質量%以上の割合で含むものであり、特に好ましくは、2mm以上の粒度を有する粒体を、20質量%以上の割合で含むものである。
本発明の好ましい実施形態の一例として、破砕前の掘削ずりが、40mmを超える粒度を有する粒体を、50質量%を超える割合で含むものであり、かつ、破砕後の掘削ずりが、上述の好ましい粒度分布(例えば、40mm以下の粒度を有する粒体を、50質量%以上の割合で含むこと)を有するものであり、この破砕後の掘削ずりに、水性の液体を供給することが挙げられる。
When the object to be treated of the present invention is a excavated crushed material, the particles constituting the object to be treated are preferably particles having a particle size of 2 mm or more from the viewpoint of reducing labor required for crushing, 5% by mass or more, more preferably, a particle having a particle size of 2 mm or more, 10% by mass or more, particularly preferably a particle having a particle size of 2 mm or more In a proportion of 20% by mass or more.
As an example of a preferred embodiment of the present invention, the excavation shear before crushing includes particles having a particle size exceeding 40 mm in a proportion exceeding 50% by mass, and the excavation shear after crushing is the above-mentioned It has a preferable particle size distribution (for example, containing particles having a particle size of 40 mm or less in a proportion of 50% by mass or more), and an aqueous liquid is supplied to the excavated shear after crushing. .

本発明において、水性の液体としては、水、または、水を溶媒として含む液体を用いることができる。
水を溶媒として含む液体の例としては、各種の混和剤(例えば、消泡剤)と、水の混合物等が挙げられる。
処理対象物への水性の液体の供給方法の例としては、吹き付け(例えば、噴霧機を用いた噴霧)や、滴下(例えば、液体流通路であるチューブを用いた滴下)や、結露を生じさせる雰囲気の形成(例えば、水蒸気を供給するなどして、相対湿度を例えば90%以上に増大させた後に、気温を低下させること)等が挙げられる。
In the present invention, as the aqueous liquid, water or a liquid containing water as a solvent can be used.
Examples of the liquid containing water as a solvent include various admixtures (for example, an antifoaming agent) and a mixture of water.
Examples of a method for supplying an aqueous liquid to an object to be treated include spraying (for example, spraying using a sprayer), dropping (for example, dropping using a tube that is a liquid flow path), and condensation. Formation of an atmosphere (for example, by increasing the relative humidity to 90% or more by supplying water vapor or the like, and then lowering the temperature) is exemplified.

本発明において、水性の液体の供給後の処理対象物を構成する粒体の表面水率は、好ましくは0.01〜3%、より好ましくは0.01〜2%、さらに好ましくは0.01〜1%、さらに好ましくは0.05〜0.8%、さらに好ましくは0.1〜0.6%、特に好ましくは0.2〜0.4%である。該値が0.01%以上であると、処理対象物に含まれている重金属類等の不溶化の程度を、より高めることができる。該値が3%以下であると、所望の表面水率を得るための水性の液体の供給に、過度の手間や時間を要せず、本発明の処理方法をより効率的に行うことができる。なお、該値が3%を超えても、重金属類等の不溶化の程度が頭打ちとなる傾向がある。
本発明において、表面水率とは、「JIS A 1111:2007」(細骨材の表面水率試験方法」に準拠して算出される値をいう。
In the present invention, the surface water content of the granules constituting the treatment target after supplying the aqueous liquid is preferably 0.01 to 3%, more preferably 0.01 to 2%, and still more preferably 0.01. -1%, more preferably 0.05-0.8%, further preferably 0.1-0.6%, particularly preferably 0.2-0.4%. When the value is 0.01% or more, the degree of insolubilization of heavy metals and the like contained in the object to be processed can be further increased. When the value is 3% or less, supplying the aqueous liquid for obtaining a desired surface water ratio does not require excessive labor and time, and the treatment method of the present invention can be performed more efficiently. . Even if the value exceeds 3%, the degree of insolubilization of heavy metals tends to reach a peak.
In the present invention, the surface water ratio refers to a value calculated according to “JIS A 1111: 2007” (surface water ratio test method for fine aggregate).

[B.不溶化工程]
本工程は、液体供給工程で得られた処理対象物(水性の液体を供給した後の、掘削ずりまたは掘削ずり破砕物)に、酸化マグネシウム含有物質からなる不溶化材を添加して、上記処理対象物に含まれている有害物質を不溶化する工程である。
酸化マグネシウム含有物質の一例としては、軽焼マグネシアまたはその部分水和物が挙げられる。
軽焼マグネシアは、炭酸マグネシウムと水酸化マグネシウムのいずれか一方または両方を含む固形原料を、好ましくは650〜1,200℃の温度で焼成することによって得ることができる。
ここで、固形原料の例としては、マグネサイト、ドロマイト等の鉱物の塊状物または粉粒状物や、マグネシウム塩を含む海水等に、炭酸アルカリ化合物(例えば、炭酸ナトリウム)を加えることで得られる塊状物または粉粒状物等が挙げられる。
焼成温度(加熱温度)は、好ましくは650〜1,200℃、より好ましくは750〜1,100℃、特に好ましくは800〜1,000℃である。該温度が600℃以上であると、軽焼マグネシアの生成の効率が向上する点で好ましい。該温度が1,300℃以下であると、重金属類等の不溶化の効果が向上する点で好ましい。
焼成時間(加熱時間)は、固形原料の仕込み量や粒度等によって異なるが、通常、30分間〜5時間である。
[B. Insolubilization process]
In this process, an insolubilizing material made of a magnesium oxide-containing substance is added to the processing object obtained in the liquid supply process (excavated or crushed excavated material after supplying the aqueous liquid), and the above-mentioned object to be processed This is a process for insolubilizing harmful substances contained in products.
An example of the magnesium oxide-containing material is light-burned magnesia or a partial hydrate thereof.
Light calcined magnesia can be obtained by firing a solid raw material containing one or both of magnesium carbonate and magnesium hydroxide, preferably at a temperature of 650 to 1,200 ° C.
Here, as an example of the solid raw material, a lump obtained by adding an alkali carbonate compound (for example, sodium carbonate) to a lump or powder of a mineral such as magnesite or dolomite, seawater containing magnesium salt, or the like. Or a granular material.
The firing temperature (heating temperature) is preferably 650 to 1,200 ° C, more preferably 750 to 1,100 ° C, and particularly preferably 800 to 1,000 ° C. When the temperature is 600 ° C. or higher, it is preferable in terms of improving the efficiency of producing light-burned magnesia. When the temperature is 1,300 ° C. or lower, it is preferable in that the effect of insolubilizing heavy metals and the like is improved.
The firing time (heating time) is usually from 30 minutes to 5 hours, although it varies depending on the amount of solid raw materials and the particle size.

軽焼マグネシアの部分水和物は、軽焼マグネシアを粉砕した後、当該粉砕物に水を添加して撹拌し混合するか、または、当該粉砕物を相対湿度80%以上の雰囲気下に1週間以上保持して、軽焼マグネシアを部分的に水和させることによって得ることができる。
軽焼マグネシアまたはその部分水和物中の酸化マグネシウム(MgO)の含有率は、重金属類等の不溶化の効果を高める観点から、好ましくは65質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上、特に好ましくは85質量%以上である。
軽焼マグネシアまたはその部分水和物のブレーン比表面積は、重金属類等の不溶化の効果を高める観点から、好ましくは4,000〜20,000cm/g、より好ましくは4,500〜10,000cm/g、特に好ましくは5,000〜7,000cm/gである。
For the light hydrated magnesia partial hydrate, after pulverizing the light baked magnesia, water is added to the pulverized product and stirred or mixed, or the pulverized product is kept in an atmosphere of relative humidity of 80% or more for one week. Holding the above, it can be obtained by partially hydrating the light-burned magnesia.
The content of magnesium oxide (MgO) in light-burned magnesia or a partial hydrate thereof is preferably 65% by mass or more, more preferably 75% by mass or more, further preferably from the viewpoint of enhancing the effect of insolubilization of heavy metals and the like. Is 80% by mass or more, particularly preferably 85% by mass or more.
From the viewpoint of enhancing the effect of insolubilization of heavy metals and the like, the brane specific surface area of light-burned magnesia or a partial hydrate thereof is preferably 4,000 to 20,000 cm 2 / g, more preferably 4,500 to 10,000 cm. 2 / g, particularly preferably 5,000 to 7,000 cm 2 / g.

処理対象物(掘削ずりまたは掘削ずり破砕物)1m当たりの不溶化材(酸化マグネシウム含有物質;典型的には、軽焼マグネシアまたはその部分水和物)の添加量は、処理対象物に含まれている重金属類等の種類および含有率等によっても異なるが、好ましくは20〜300kg、より好ましくは25〜200kg、特に好ましくは30〜150kgである。該量が20kg以上であれば、重金属類等の不溶化の効果をより高めることができる。該量が300kg以下であれば、不溶化材を多量に用いることによる処理コストの増大を防ぐことができる。 The amount of insolubilizing material (magnesium oxide-containing material; typically light-burned magnesia or a partial hydrate thereof) per 1 m 3 of the object to be treated (drilled or crushed excavated) is included in the object to be treated. Although it varies depending on the type and content of heavy metals and the like, it is preferably 20 to 300 kg, more preferably 25 to 200 kg, and particularly preferably 30 to 150 kg. If this amount is 20 kg or more, the effect of insolubilizing heavy metals and the like can be further enhanced. If the amount is 300 kg or less, it is possible to prevent an increase in processing cost due to the use of a large amount of insolubilizing material.

不溶化材の添加および混合の方法としては、処理対象物(掘削ずりまたは掘削ずり破砕物)に不溶化材を粉体のまま添加し、混合するドライ添加、または、不溶化材に水を加えてスラリーを得た後、該スラリーを処理対象物(掘削ずりまたは掘削ずり破砕物)に添加して混合するスラリー添加を採用することができる。スラリー添加の場合、水/不溶化材の質量比は、好ましくは0.6〜1.5、より好ましくは0.8〜1.2である。   As a method of adding and mixing the insolubilizing material, the insolubilizing material is added as a powder to the object to be treated (excavated or excavated sheared material) and mixed by dry addition, or water is added to the insolubilized material and slurry is added. Once obtained, slurry addition can be employed in which the slurry is added to and mixed with the object to be treated (drilled or excavated crushed material). In the case of slurry addition, the mass ratio of water / insolubilized material is preferably 0.6 to 1.5, more preferably 0.8 to 1.2.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[1.使用材料]
(1)不溶化材:マグネサイト(炭酸マグネシウムの含有率:93質量%)を、1,000℃で焼成した後、得られた軽焼マグネシアを粉砕したもの(酸化マグネシウムの含有率:85質量%以上;ブレーン比表面積:6,120cm/g)
(2)掘削ずり:以下の通過質量百分率を有する掘削ずり(頁岩と砂岩の混在岩;密度:2.8g/cm;鉱物の種類:石英、イライト、バトラライト等)
0.1mm以下:9%
1mm以下:23%
2mm以下:32%
5mm以下:43%
10mm以下:51%
20mm以下:75%
30mm以下:82%
40mm以下:84%
50mm以下:96%
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[1. Materials used]
(1) Insolubilized material: Magnesite (magnesium carbonate content: 93% by mass) fired at 1,000 ° C. and then pulverized light-burned magnesia (magnesium oxide content: 85% by mass) Or more; Blaine specific surface area: 6,120 cm 2 / g)
(2) Excavation: Excavation with the following mass percentage passing through (mixed shale and sandstone; density: 2.8 g / cm 3 ; mineral type: quartz, illite, butralite, etc.)
0.1 mm or less: 9%
1mm or less: 23%
2mm or less: 32%
5mm or less: 43%
10mm or less: 51%
20 mm or less: 75%
30 mm or less: 82%
40 mm or less: 84%
50 mm or less: 96%

[2.掘削ずりの分画]
上記(2)の掘削ずりを、粒度の大きさに応じて、複数の粒度区分に分画した。
複数の粒度区分は、以下のとおりである。
(イ)平均粒度10mm(20mm以下の粒度を有するもの)
(ロ)平均粒度25mm(20mmを超え、30mm以下の粒度を有するもの)
(ハ)平均粒度38mm(30mmを超え、45mm以下の粒度を有するもの)
(ニ)平均粒度61mm(45mmを超え、76mm以下の粒度を有するもの)
[2. Fractionation of excavation]
The excavation shear of (2) was fractionated into a plurality of particle size categories according to the size of the particle size.
The plurality of particle size classifications are as follows.
(A) Average particle size: 10 mm (having a particle size of 20 mm or less)
(B) Average particle size of 25 mm (having a particle size of more than 20 mm and 30 mm or less)
(C) Average particle size of 38 mm (having a particle size of more than 30 mm and 45 mm or less)
(D) Average particle size 61 mm (having a particle size exceeding 45 mm and 76 mm or less)

[3.掘削ずりの表面水率の調整]
上記「2.掘削ずりの分画」で得た複数の粒度区分(イ)〜(ニ)の各々について、以下の3つの表面水率を有するものを調製した。
(a)掘削ずりA:表面水率が0.4%のもの
(b)掘削ずりB:表面水率が0.2%のもの
(c)掘削ずりC:表面水率が0%のもの(表乾状態のもの)
掘削ずりA〜Cは、「JIS A 1110−2006」(粗骨材の密度及び吸水率試験)に準拠して、以下のように調製した。
まず、掘削ずりの複数の粒度区分(イ)〜(ニ)の各々について、十分に水洗し、掘削ずりを構成する粒体の表面に付着している微粒分を除去した後、20℃の水中で24時間吸水させた。
吸水後の掘削ずりを水から取り出して、水を切った後、吸水性の布で粒体の表面の水膜を拭い去り、掘削ずりC(表乾状態;表面水率:0%)を調製した。
得られた掘削ずりCの一部について、霧吹きを用いて水を吹き付け、掘削ずりB(表面水率:0.2%)を調製した。
さらに、得られた掘削ずりB(表面水率:0.2%)の一部について、霧吹きを用いて水を吹き付け、掘削ずりA(表面水率:0.4%)を調製した。
[3. Adjustment of surface water ratio of excavated shear]
For each of the plurality of particle size classifications (A) to (D) obtained in the above “2. Fractionation of excavation shear”, those having the following three surface water ratios were prepared.
(A) Drilling shear A: surface water ratio of 0.4% (b) Drilling shear B: surface water ratio of 0.2% (c) Drilling shear C: surface water ratio of 0% ( (Dry surface)
The excavation shears A to C were prepared as follows in accordance with “JIS A 1110-2006” (coarse aggregate density and water absorption test).
First, each of the plurality of particle size categories (i) to (d) of the excavation shear is sufficiently washed with water to remove the fine particles adhering to the surface of the granule constituting the excavation shear, and then water at 20 ° C. For 24 hours.
Remove the excavated shear after water absorption, drain the water, wipe off the water film on the surface of the granules with a water-absorbent cloth, and prepare excavated shear C (surface dry state; surface water ratio: 0%) did.
About a part of the obtained excavation shear C, water was sprayed using a spray spray to prepare excavation shear B (surface water ratio: 0.2%).
Furthermore, about a part of the obtained excavation shear B (surface water ratio: 0.2%), water was sprayed using a spray spray to prepare excavation shear A (surface water ratio: 0.4%).

[4.掘削ずりの複数の粒度区分の各々における、表面水率と、不溶化材の付着量の関係]
掘削ずりの複数の粒度区分(イ)〜(ニ)の各々について、3つの異なる表面水率(0.4%、0.2%、0%;掘削ずりA〜C)の各場合について、不溶化材の付着量を測定した。
具体的には、不溶化材を付着させる対象となる試料(掘削ずり)に、十分な量の不溶化材を添加して混合した後、試料(掘削ずり)を構成する粒体の表面に、不溶化材からなる凝集物が残らないように、目開き寸法が2mmであるふるいを用いて、試料(掘削ずり)に余分に付着した不溶化材(凝集物)を落とし、その後、不溶化材が付着している試料(掘削ずり)の質量を測定した。この質量から、不溶化材が付着する前の試料(掘削ずり)の質量を差し引くことによって、付着した不溶化材の質量を算出した。また、この不溶化材の質量を、不溶化材が付着する前の試料(掘削ずり)の体積で除することによって、不溶化材が付着する前の試料(掘削ずり)の単位体積(1m)当たりの不溶化材の付着量(kg)を算出した。
結果は、以下のとおりである。
[4. Relationship between surface water ratio and amount of insolubilized material adhering in each of multiple particle size categories of excavation shears]
For each of a plurality of particle size categories (i) to (d) of excavation shear, insolubilization is performed for each of three different surface water ratios (0.4%, 0.2%, 0%; excavation shear AC). The adhesion amount of the material was measured.
Specifically, after adding a sufficient amount of the insolubilizing material to the sample (excavation shear) to which the insolubilizing material is to be attached and mixing, the insolubilizing material is formed on the surface of the particles constituting the sample (excavating shear). In order not to leave agglomerates composed of the above, the insolubilized material (aggregate) that has adhered to the sample (excavation) is dropped using a sieve having an opening size of 2 mm, and then the insolubilized material is adhered. The mass of the sample (drilling) was measured. From this mass, the mass of the insolubilized material adhering was calculated by subtracting the mass of the sample (excavated) before the insolubilized material adhered. Further, by dividing the mass of the insolubilizing material by the volume of the sample (digging shear) before adhering the insolubilizing material, per unit volume (1 m 3 ) of the sample (excavating shear) before adhering the insolubilizing material. The adhesion amount (kg) of the insolubilized material was calculated.
The results are as follows.

(イ)平均粒度10mm(20mm以下の粒度を有するもの)の場合
掘削ずりA(表面水率:0.4%)に対する不溶化材の付着量:16kg/m
掘削ずりB(表面水率:0.2%)に対する不溶化材の付着量:15kg/m
掘削ずりC(表面水率:0%)に対する不溶化材の付着量:8kg/m
(ロ)平均粒度25mm(20mmを超え、30mm以下の粒度を有するもの)の場合
掘削ずりA(表面水率:0.4%)に対する不溶化材の付着量:13kg/m
掘削ずりB(表面水率:0.2%)に対する不溶化材の付着量:11kg/m
掘削ずりC(表面水率:0%)に対する不溶化材の付着量:5kg/m
(ハ)平均粒度38mm(30mmを超え、45mm以下の粒度を有するもの)の場合
掘削ずりA(表面水率:0.4%)に対する不溶化材の付着量:9kg/m
掘削ずりB(表面水率:0.2%)に対する不溶化材の付着量:8kg/m
掘削ずりC(表面水率:0%)に対する不溶化材の付着量:4kg/m
(ニ)平均粒度61mm(45mmを超え、76mm以下の粒度を有するもの)の場合
掘削ずりA(表面水率:0.4%)に対する不溶化材の付着量:9kg/m
掘削ずりB(表面水率:0.2%)に対する不溶化材の付着量:7kg/m
掘削ずりC(表面水率:0%)に対する不溶化材の付着量:3kg/m
(A) In the case of an average particle size of 10 mm (having a particle size of 20 mm or less), the amount of insolubilized material attached to the excavation shear A (surface water ratio: 0.4%): 16 kg / m 3
Amount of insolubilized material attached to excavation shear B (surface water ratio: 0.2%): 15 kg / m 3
Amount of insolubilized material adhering to excavation shear C (surface water ratio: 0%): 8 kg / m 3
(B) In the case of an average particle size of 25 mm (having a particle size of more than 20 mm and not more than 30 mm): Amount of insolubilized material attached to excavation shear A (surface water ratio: 0.4%): 13 kg / m 3
Amount of insolubilized material attached to excavation shear B (surface water ratio: 0.2%): 11 kg / m 3
Amount of insolubilized material adhering to excavation shear C (surface water ratio: 0%): 5 kg / m 3
(C) In the case of an average particle size of 38 mm (having a particle size of more than 30 mm and 45 mm or less), the amount of insolubilized material attached to the excavation shear A (surface water ratio: 0.4%): 9 kg / m 3
Amount of insolubilized material attached to excavation shear B (surface water ratio: 0.2%): 8 kg / m 3
Amount of insolubilized material adhering to excavation shear C (surface water ratio: 0%): 4 kg / m 3
(D) In the case of an average particle size of 61 mm (having a particle size exceeding 45 mm and 76 mm or less), the amount of insolubilized material attached to the excavation shear A (surface water ratio: 0.4%): 9 kg / m 3
Amount of insolubilized material adhering to excavation shear B (surface water ratio: 0.2%): 7 kg / m 3
Amount of insolubilized material adhering to excavation shear C (surface water ratio: 0%): 3 kg / m 3

以上の結果から、以下のことがわかる。
表面水率が0%の場合(掘削ずりC)に比べて、表面水率が0.4%、0.2%の各場合(掘削ずりA、B)のほうが、不溶化材の付着量が大きかった。
表面水率が0.4%の場合(掘削ずりA)と、表面水率が0.2%の場合(掘削ずりB)とでは、不溶化材の付着量に大きな差は見られなかった。
表面水率が0.4%、0.2%、0%のいずれの場合(掘削ずりA〜C)であっても、粒度が小さいほど、不溶化材の付着量が大きいという傾向が見られた。
表面水率が0.4%、0.2%の各場合(掘削ずりA、B)においては、平均粒度38mm(最大粒度:45mm)から平均粒度25mm(最大粒度:30mm)に粒度が小さくなると、不溶化材の付着量が8〜9kg/mから11〜13kg/mに大幅に増大しているのに対し、表面水率が0%の場合(掘削ずりC)においては、平均粒度38mm(最大粒度:45mm)から平均粒度25mm(最大粒度:30mm)に粒度が小さくなっても、不溶化材の付着量が4kg/mから5kg/mに若干増大するだけであった。
不溶化材の付着量を増大させて、不溶化の効果を高めるためには、特定の表面水率(例えば、0.2〜0.4%)を有し、かつ、平均粒度25mm以下(最大粒度30mm以下)の粒体の割合を大きくすることが、効果的であることがわかる。
From the above results, the following can be understood.
The amount of insolubilized material attached was larger in each of the cases where the surface water ratio was 0.4% and 0.2% (excavation shears A and B) than when the surface water ratio was 0% (excavation shear C). It was.
When the surface water ratio was 0.4% (excavation shear A) and when the surface water ratio was 0.2% (excavation shear B), there was no significant difference in the amount of insolubilized material attached.
Even when the surface water ratio was 0.4%, 0.2%, or 0% (digging shear AC), there was a tendency that the smaller the particle size, the larger the amount of insolubilized material attached. .
In each case where the surface water ratio is 0.4% and 0.2% (excavation shears A and B), the average particle size is reduced from 38 mm (maximum particle size: 45 mm) to the average particle size 25 mm (maximum particle size: 30 mm) On the other hand, when the surface water content is 0% (excavation shear C), the average particle size is 38 mm, while the amount of insolubilized material greatly increased from 8-9 kg / m 3 to 11-13 kg / m 3. Even when the particle size was reduced from (maximum particle size: 45 mm) to an average particle size of 25 mm (maximum particle size: 30 mm), the adhesion amount of the insolubilized material only increased slightly from 4 kg / m 3 to 5 kg / m 3 .
In order to increase the adhesion amount of the insolubilizing material and enhance the insolubilizing effect, it has a specific surface water ratio (for example, 0.2 to 0.4%) and has an average particle size of 25 mm or less (maximum particle size of 30 mm). It can be seen that it is effective to increase the ratio of the following particles).

Claims (4)

掘削ずり、または、該掘削ずりを破砕してなる掘削ずり破砕物からなる処理対象物に、水性の液体を供給して、上記処理対象物を構成する粒体の表面水率を増大させる液体供給工程と、
上記水性の液体を供給した後の上記処理対象物に、酸化マグネシウム含有物質からなる不溶化材を添加して、上記処理対象物に含まれている有害物質を不溶化する不溶化工程、
を含むことを特徴とする掘削ずりの処理方法。
Liquid supply for increasing the surface water ratio of the particles constituting the processing object by supplying an aqueous liquid to the processing object made of the excavation shear or the excavated shear crushed material obtained by crushing the excavation shear Process,
An insolubilization step of adding an insolubilizing material composed of a magnesium oxide-containing substance to the object to be treated after supplying the aqueous liquid, and insolubilizing harmful substances contained in the object to be treated;
A method for treating excavation shear, comprising:
上記液体供給工程において、上記表面水率が0.01〜3%になるように、上記水性の液体の供給量を調整する請求項1に記載の掘削ずりの処理方法。   The excavation shear processing method according to claim 1, wherein in the liquid supply step, the supply amount of the aqueous liquid is adjusted so that the surface water ratio is 0.01 to 3%. 上記液体供給工程における上記水性の液体の供給が、吹き付け、滴下、または、結露を生じさせる雰囲気の形成によるものである請求項1又は2に記載の掘削ずりの処理方法。   The processing method of excavation shear according to claim 1 or 2, wherein the supply of the aqueous liquid in the liquid supply step is performed by forming an atmosphere that causes spraying, dripping, or condensation. 上記処理対象物を構成する粒体は、40mm以下の粒度を有する粒体を、50質量%以上の割合で含むものである請求項1〜3のいずれか1項に記載の掘削ずりの処理方法。   The processing method of excavation shear according to any one of claims 1 to 3, wherein the particles constituting the object to be processed include particles having a particle size of 40 mm or less at a ratio of 50 mass% or more.
JP2016123940A 2016-06-22 2016-06-22 How to handle excavation scraps Active JP6808373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016123940A JP6808373B2 (en) 2016-06-22 2016-06-22 How to handle excavation scraps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016123940A JP6808373B2 (en) 2016-06-22 2016-06-22 How to handle excavation scraps

Publications (2)

Publication Number Publication Date
JP2017225935A true JP2017225935A (en) 2017-12-28
JP6808373B2 JP6808373B2 (en) 2021-01-06

Family

ID=60890582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016123940A Active JP6808373B2 (en) 2016-06-22 2016-06-22 How to handle excavation scraps

Country Status (1)

Country Link
JP (1) JP6808373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777995A (en) * 2021-01-11 2021-05-11 中国建筑第五工程局有限公司 Undisturbed shield muck non-fired product and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079919A (en) * 2009-10-05 2011-04-21 Taiheiyo Cement Corp Insolubilizing material
JP2014227457A (en) * 2013-05-21 2014-12-08 三菱マテリアルテクノ株式会社 Insolubilizing agent of heavy metal or the like and insolubilizing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079919A (en) * 2009-10-05 2011-04-21 Taiheiyo Cement Corp Insolubilizing material
JP2014227457A (en) * 2013-05-21 2014-12-08 三菱マテリアルテクノ株式会社 Insolubilizing agent of heavy metal or the like and insolubilizing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777995A (en) * 2021-01-11 2021-05-11 中国建筑第五工程局有限公司 Undisturbed shield muck non-fired product and preparation method thereof
CN112777995B (en) * 2021-01-11 2023-07-25 中国建筑第五工程局有限公司 Undisturbed shield slag soil baking-free product and preparation method thereof

Also Published As

Publication number Publication date
JP6808373B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
KR100464666B1 (en) Solidificator Manufacturing Method with Waste Oyster Shell
JP6009118B1 (en) Treatment method of mud generated by bubble shield method
JP5969099B1 (en) Treatment method of mud generated by bubble shield method
JP2012092180A (en) Additive for neutral solidifying material, neutral solidifying material, and method for suppressing elution of heavy metal
JP2002348573A (en) Greening and soil-stabilizing material having unsolubilizing property of heavy metals and engineering method for blowing seed to thick-layer substrate, method for stabilizing soil and method for treating polluted soil by each using the same material
JP2018038957A (en) Processing method of mud generated in muddy water shield method
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP2017225935A (en) Treatment method of excavation muck
JP2018030958A (en) Modifier for soft soil or the like and solidification treatment method of remaining soil
US20100130806A1 (en) Method of treating asbestos-containing waste material
EP2982450A1 (en) In-situ process for stabilization and solidification of contaminated soil into composite material - building material
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JP2019143030A (en) Modifier of soft weak soil or the like, and solidification treatment method of remaining soil
KR20150141110A (en) Method for preparing a hardening composition for deep mixing method and hardening composition for deep mixing method
JP2007268431A (en) Concrete reproduction material
JP6885681B2 (en) How to determine the maximum particle size of excavation shavings
KR101447267B1 (en) Method for preparing a hardening composition for deep mixing method and hardening composition for deep mixing method
JP6356933B1 (en) Disposal method of mud generated by muddy water type shield method
JP4578920B2 (en) Ground improvement method
JP2017225937A (en) Method for detoxicating excavating muck
JP4070024B2 (en) Non-dust solidifying material and method for producing the same
KR20210047480A (en) Dredge solidification composition for rapid treatment
KR101819395B1 (en) Composition for inhibiting scattering dust using slag and method for inhibiting scattering dust using the same
CA3053602A1 (en) Method for producing a binder for the conditioning of sludges, soils containing water and for the neutralization of acids
JPH11347488A (en) Water proofing method by bentonite spraying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250