JP2017225937A - Method for detoxicating excavating muck - Google Patents
Method for detoxicating excavating muck Download PDFInfo
- Publication number
- JP2017225937A JP2017225937A JP2016124021A JP2016124021A JP2017225937A JP 2017225937 A JP2017225937 A JP 2017225937A JP 2016124021 A JP2016124021 A JP 2016124021A JP 2016124021 A JP2016124021 A JP 2016124021A JP 2017225937 A JP2017225937 A JP 2017225937A
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- shear
- insolubilizing
- amount
- crushing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 123
- 239000002245 particle Substances 0.000 claims abstract description 96
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 23
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000009412 basement excavation Methods 0.000 claims description 40
- 229910052785 arsenic Inorganic materials 0.000 claims description 23
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 22
- 239000002689 soil Substances 0.000 claims description 14
- 238000001784 detoxification Methods 0.000 claims description 13
- 238000010828 elution Methods 0.000 claims description 13
- 238000003672 processing method Methods 0.000 claims description 4
- 238000004949 mass spectrometry Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 239000000383 hazardous chemical Substances 0.000 claims description 2
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 23
- 239000000126 substance Substances 0.000 description 18
- 239000008187 granular material Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 6
- 239000001095 magnesium carbonate Substances 0.000 description 6
- 235000014380 magnesium carbonate Nutrition 0.000 description 6
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000010304 firing Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- -1 aluminum compound Chemical class 0.000 description 2
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940031958 magnesium carbonate hydroxide Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は、掘削ずりの無害化処理方法に関し、より詳しくは、掘削ずりに含まれていることがあるひ素等の有害物質(重金属類等)を不溶化するための、掘削ずりの無害化処理方法に関する。 The present invention relates to a method for detoxifying debris, and more particularly, a method for detoxifying debris for insolubilizing arsenic and other harmful substances (heavy metals, etc.) that may be contained in the excavation. About.
近年、工場、事業所、産業廃棄物処理場の跡地などにおいて、土壌が鉛、6価クロム、ひ素等の重金属やフッ素等(本明細書中、「重金属類等」ともいう。)で汚染されていることが、しばしば報告されている。
汚染土壌中の重金属類等を不溶化して、これら重金属類等が土壌から溶出するのを抑制するための技術が種々提案されている。
例えば、特許文献1に、酸化マグネシウムを含んで成ることを特徴とする重金属溶出抑制固化材が提案されている。
In recent years, soil has been contaminated with heavy metals such as lead, hexavalent chromium, and arsenic, fluorine, and the like (also referred to as “heavy metals” in this specification) at sites such as factories, business establishments, and industrial waste treatment plants. Have been reported frequently.
Various techniques for insolubilizing heavy metals and the like in contaminated soil and suppressing the elution of these heavy metals from the soil have been proposed.
For example, Patent Document 1 proposes a heavy metal elution-suppressing solidified material comprising magnesium oxide.
また、特許文献2に、以下の条件(a)〜(c)をすべて満たすマグネシウム系材料からなる粉末、を含むことを特徴とする不溶化材が提案されている。
(a)炭酸マグネシウムを主成分とする鉱物を650〜1,000℃で焼成して得た酸化マグネシウムと炭酸マグネシウムとを含む焼成物を、当該焼成物の一部が水酸化マグネシウムになるように水和したものであること
(b)カルシウムの酸化物換算の含有量が3.0質量%以下であること
(c)1,000℃における強熱減量率が6〜30質量%であること
また、特許文献3に、土壌に対してpH11以上の強アルカリ域とならない状態で使用される特定有害物質の不溶化材であって、非晶質アルミニウム化合物又はその誘導体を主成分とすることを特徴とする特定有害物質の不溶化材が提案されている。
Further, Patent Document 2 proposes an insolubilizing material including a powder made of a magnesium-based material that satisfies all of the following conditions (a) to (c).
(A) A fired product containing magnesium oxide and magnesium carbonate obtained by firing a mineral mainly composed of magnesium carbonate at 650 to 1,000 ° C. so that a part of the fired product becomes magnesium hydroxide. It is hydrated (b) The content of calcium in terms of oxide is 3.0% by mass or less (c) The ignition loss at 1,000 ° C. is 6-30% by mass , Patent Document 3, characterized in that it is an insolubilizing material for specific hazardous substances used in a state where it does not become a strong alkaline region having a pH of 11 or more with respect to soil, characterized by comprising an amorphous aluminum compound or a derivative thereof as a main component. Insolubilizing materials for specific harmful substances have been proposed.
土木工事で発生する掘削ずりの中には、重金属類等(例えば、ひ素)を高い含有率で含むものがある。この場合、掘削ずりに含まれている重金属類等を不溶化して、重金属類等の漏出および拡散を抑制することが望まれている。
一方、重金属類等の不溶化のために用いられる不溶化材を過剰な量で用いたのでは、処理コストが増大し、望ましくない。
本発明の目的は、掘削ずりに含まれている有害物質(重金属類等)を不溶化するに際して、不溶化材を過剰な量で用いることなく、有害物質の不溶化の処理を効率的にかつ十分に行なうための、掘削ずりの無害化処理方法を提供することである。
Some excavations generated in civil engineering work include heavy metals (eg, arsenic) at a high content rate. In this case, it is desired to insolubilize heavy metals contained in the excavation and prevent leakage and diffusion of heavy metals.
On the other hand, if an insolubilizing material used for insolubilizing heavy metals or the like is used in an excessive amount, the processing cost increases, which is not desirable.
It is an object of the present invention to efficiently and sufficiently perform insolubilization treatment of harmful substances without using excessive amounts of insolubilizing materials when insolubilizing harmful substances (heavy metals, etc.) contained in excavation shears. Therefore, it is to provide a detoxification processing method for excavation shear.
本発明者は、上記課題を解決するために鋭意検討した結果、掘削ずりを、予め定めた特定の粒度分布(例えば、特定の粒度以下の粒度を有する粒体の割合が、特定の値以上であるもの)を有するようになるまで破砕して、掘削ずり破砕物を得た後、この掘削ずり破砕物の一部を構成する特定の粒度範囲(例えば、上述の予め定めた特定の粒度分布の例の説明における特定の粒度を上限とする範囲)内の粒体に付着する不溶化材の量が、該粒体の単位量(例えば、単位体積)に対して、予め定めた特定の値以上になるように、この掘削ずり破砕物に、酸化マグネシウム含有物質からなる不溶化材を添加して混合すれば、不溶化材を過剰な量で用いることなく、有害物質(重金属類等)の不溶化の処理を効率的にかつ十分に行なうことができることを見出し、本発明を完成した。 As a result of diligent investigations to solve the above problems, the present inventor conducted excavation shearing with a predetermined specific particle size distribution (for example, a ratio of particles having a particle size equal to or less than a specific particle size is a specific value or more). After crushing until it has a certain thing, and obtaining the excavated shear crushed material, a specific particle size range (for example, a predetermined particle size distribution as described above) constituting a part of the excavated shear crushed material The amount of the insolubilizing material adhering to the granules within the range having a specific particle size as the upper limit in the description of the example is greater than or equal to a predetermined value with respect to the unit amount (for example, unit volume) of the granules. Thus, if the insolubilized material made of magnesium oxide-containing material is added and mixed to this excavated crushed material, the insolubilizing treatment of harmful substances (heavy metals, etc.) can be performed without using an excessive amount of insolubilized material. It can be done efficiently and sufficiently Headlines, and completed the present invention.
本発明は、以下の[1]〜[5]を提供するものである。
[1] 有害物質を含む掘削ずりを破砕して、掘削ずり破砕物を得る破砕工程と、上記掘削ずり破砕物に、酸化マグネシウム含有物質からなる不溶化材を添加して混合し、上記有害物質を不溶化する不溶化材添加工程、を含む掘削ずりの無害化処理方法であって、上記破砕工程における破砕は、上記掘削ずりが、予め定めた特定の粒度分布を有するようになるまで行なわれるものであり、上記不溶化材添加工程における不溶化材の添加は、上記掘削ずり破砕物の一部を構成する特定の粒度範囲内の粒体に付着する不溶化材の量が、該粒体の単位量に対して、予め定めた特定の値以上になるように行なわれることを特徴とする掘削ずりの無害化処理方法。
[2] 上記破砕工程において、上記予め定めた特定の粒度分布は、30〜45mmの範囲内で定められる特定の値以下の粒度を有する粒体の割合が、特定の値以上のものであり、かつ、上記不溶化材添加工程において、上記掘削ずり破砕物の一部を構成する特定の粒度範囲は、該粒度範囲の上限値が、30〜45mmの範囲内で定められる特定の値であるものである、上記[1]に記載の掘削ずりの無害化処理方法。
[3] 上記破砕工程において、37.5mm以下の粒度を有する粒体の割合が通過質量百分率で50%以上になるまで上記掘削ずりを破砕し、かつ、上記不溶化材添加工程において、上記掘削ずり破砕物の一部を構成する9.5mmを超え、37.5mm以下の粒度範囲内の粒体に付着する不溶化材の量が、該粒体1m3当たり15kg以上になるように、上記不溶化材を添加する、上記[2]に記載の掘削ずりの無害化処理方法。
[4] 上記掘削ずりの含水率が、3〜20%である、上記[1]〜[3]のいずれかに記載の掘削ずりの無害化処理方法。
[5] 上記掘削ずりは、平成15年3月6日環境省告示第18号「土壌溶出量調査に係る測定方法を定める件」(「環告18号」と略されることがある。)に準拠して調製した検出溶液中のひ素の濃度を、「JIS K 0102−2013」(ICP質量分析法)に準拠して測定した場合における値が、0.01〜0.4mg/リットルのものである、上記[1]〜[4]のいずれかに記載の掘削ずりの無害化処理方法。
The present invention provides the following [1] to [5].
[1] A crushing step of crushing excavated shear containing harmful substances to obtain excavated shear crushed material, and adding and mixing an insolubilizing material made of a magnesium oxide-containing material to the excavated shear crushed material, An insolubilizing material adding step for insolubilizing, wherein the excavation debris is detoxified, and the crushing in the crushing step is performed until the excavation debris has a predetermined specific particle size distribution. The addition of the insolubilizing material in the insolubilizing material adding step is such that the amount of the insolubilizing material adhering to the particles within a specific particle size range constituting a part of the excavated crushed material is relative to the unit amount of the particles. An excavation detoxification method, characterized by being carried out so as to be equal to or greater than a predetermined value.
[2] In the crushing step, the predetermined specific particle size distribution is such that the proportion of particles having a particle size equal to or less than a specific value determined within a range of 30 to 45 mm is greater than or equal to a specific value. And in the said insolubilization material addition process, the specific particle size range which comprises a part of said excavation shearing material is a specific value by which the upper limit of this particle size range is defined within the range of 30-45 mm. The method for detoxifying debris according to [1] above.
[3] In the crushing step, the excavation shear is crushed until the ratio of particles having a particle size of 37.5 mm or less reaches 50% or more in terms of passing mass percentage, and in the insolubilizing material addition step, the excavation shear is performed. The insolubilizing material described above so that the amount of the insolubilizing material adhering to the particles in the particle size range exceeding 9.5 mm and not exceeding 37.5 mm constituting a part of the crushed material is 15 kg or more per 1 m 3 of the particles. The method for detoxifying debris according to the above [2], in which is added.
[4] The debris detoxification method according to any one of [1] to [3], wherein a moisture content of the excavation shear is 3 to 20%.
[5] The above excavation drill is March 18, 2003 Ministry of the Environment Notification No. 18 “Matters for Measuring Soil Elution Survey” (may be abbreviated as “announcement No. 18”). When the concentration of arsenic in the detection solution prepared in accordance with the standard is measured according to “JIS K 0102-2013” (ICP mass spectrometry), the value is 0.01 to 0.4 mg / liter The detoxification processing method for excavation shear according to any one of the above [1] to [4].
本発明によれば、掘削ずりを、予め定めた特定の粒度分布を有するように破砕した後、得られた掘削ずり破砕物の一部を構成する特定の粒度範囲内の粒体に付着する不溶化材の量が、該粒体の単位量に対して、予め定めた特定の値以上になるように、不溶化材を添加しているので、不溶化材を過剰な量で添加して、処理コストを増大させることがなく、また、有害物質(重金属類等)の不溶化の処理を効率的にかつ十分に行なうことができる。 According to the present invention, the excavated shear is crushed so as to have a predetermined specific particle size distribution, and then insolubilized to adhere to particles within a specific particle size range constituting a part of the obtained excavated shear crushed material. Since the insolubilizing material is added so that the amount of the material becomes a predetermined value or more with respect to the unit amount of the granule, the insolubilizing material is added in an excessive amount, and the processing cost is reduced. In addition, the treatment for insolubilizing harmful substances (such as heavy metals) can be performed efficiently and sufficiently.
本発明の掘削ずりの無害化処理方法は、有害物質(例えば、ひ素)を含む掘削ずりを破砕して、掘削ずり破砕物を得る破砕工程と、上記掘削ずり破砕物に、酸化マグネシウム含有物質からなる不溶化材を添加して混合し、上記有害物質を不溶化する不溶化材添加工程、を含む掘削ずりの無害化処理方法であって、上記破砕工程における破砕は、上記掘削ずりが、予め定めた特定の粒度分布を有するようになるまで行なわれるものであり、上記不溶化材添加工程における不溶化材の添加は、上記掘削ずり破砕物の一部を構成する特定の粒度範囲内の粒体に付着する不溶化材の量が、該粒体の単位量に対して、予め定めた特定の値以上になるように行なわれるものである。
以下、工程毎に詳しく説明する。
The debris detoxification method of the present invention includes a crushing step of crushing a drilling shear containing a harmful substance (for example, arsenic) to obtain a ground excavation sheared material, and a magnesium oxide-containing material into the excavated sheared material. A detoxification method for excavation shear including an insolubilization material addition step for insolubilizing the harmful substances, wherein the excavation shear is specified by the excavation shear in advance. In the insolubilizing material adding step, the insolubilizing material is added in the insolubilizing material adhering to the particles within a specific particle size range constituting a part of the excavated crushed material. The amount of the material is set so as to be equal to or more than a predetermined value with respect to the unit amount of the particles.
Hereinafter, each process will be described in detail.
[破砕工程]
破砕工程は、有害物質を含む掘削ずりを破砕して、掘削ずり破砕物を得る工程である。
本発明において、無害化処理の処理対象物は、有害物質(重金属類等)を含む掘削ずりである。
本明細書中、「掘削ずり」とは、土木工事における掘削で採掘された岩石または土壌をいう。ここで、「土木工事」とは、トンネル工事、開坑工事、探鉱作業等を包含するものである。
本発明で処理の対象となる掘削ずりは、その含水率が特に限定されるものではなく、例えば、3〜20%の範囲内の任意の含水率を有することができる。なお、3〜20%の範囲は、掘削ずりが通常有し得ると想定される含水率の範囲である。ここで、含水率とは、掘削ずりに含まれている水の質量を、掘削ずりの質量(水を含むもの)で除して得られる値をいう。
本発明において処理対象となる掘削ずりは、主に、自然由来の重金属類等が含まれる掘削ずりである。日本国内には、ひ素や鉛等を含む岩石や土壌が広く分布しており、土木工事で生じる掘削ずりからの有害な重金属類等の漏出および拡散を未然に防ぐことが要請されている。そこで、本発明では、このような自然由来の重金属類等が含まれる掘削ずりを、主な処理対象物としている。
[Crushing process]
The crushing step is a step of crushing excavated shear containing harmful substances to obtain a excavated shear crushed material.
In the present invention, the treatment object of the detoxification treatment is excavation shear including a harmful substance (such as heavy metals).
In this specification, “excavation” refers to rock or soil mined by excavation in civil engineering work. Here, “civil engineering” includes tunnel construction, opening work, exploration work, and the like.
The moisture content of the excavation shear to be treated in the present invention is not particularly limited, and can have any moisture content within a range of 3 to 20%, for example. In addition, the range of 3 to 20% is a range of the moisture content assumed that the excavation shear can usually have. Here, the moisture content means a value obtained by dividing the mass of water contained in the excavation shear by the mass of the excavation shear (including water).
The excavation shear to be treated in the present invention is an excavation shear mainly including naturally derived heavy metals. In Japan, rocks and soils containing arsenic, lead, etc. are widely distributed, and it is required to prevent leakage and diffusion of harmful heavy metals from excavations caused by civil engineering work. Therefore, in the present invention, excavation shear including such naturally-derived heavy metals and the like is used as a main processing object.
本発明において不溶化の対象となる重金属類等としては、例えば、土壌汚染対策法(平成15年)に規定されている第二種特定有害物質が挙げられ、具体的には、カドミウム及びその化合物、六価クロム化合物、水銀及びその化合物、セレン及びその化合物、鉛及びその化合物、ひ素及びその化合物、ふっ素及びその化合物、および、ほう素及びその化合物が挙げられる。 In the present invention, heavy metals and the like to be insolubilized include, for example, the second type specified harmful substances specified in the Soil Contamination Countermeasures Law (2003), specifically, cadmium and its compounds, Hexavalent chromium compounds, mercury and its compounds, selenium and its compounds, lead and its compounds, arsenic and its compounds, fluorine and its compounds, and boron and its compounds.
破砕工程における破砕は、掘削ずりが、予め定めた特定の粒度分布を有するようになるまで行なわれる。
ここで、「予め定めた特定の粒度分布」の好ましい一例として、30〜45mmの範囲内で定められる特定の値(例えば、37.5mm)以下の粒度を有する粒体の割合が、特定の値(好ましくは、通過質量百分率で40〜70%の範囲内の特定の値)以上であるものが挙げられる。この場合、本発明による無害化処理後の掘削ずり破砕物からの有害物質(例えば、ひ素)の溶出量を、所望の値(例えば、土壌溶出量基準の値;例えば、ひ素の土壌溶出量基準の値として、0.01mg/リットル)以下に、より確実に低減させることができる。
また、「予め定めた特定の粒度分布」は、本発明による無害化処理後の掘削ずり破砕物からの有害物質(例えば、ひ素)の溶出量の低減の観点からは、30〜45mmの範囲内で定められる特定の値(例えば、37.5mm)以下の粒度を有する粒体の割合が通過質量百分率で、好ましくは50%以上、より好ましくは60%以上、特に好ましくは70%以上になるような粒度分布である。
さらに、「予め定めた特定の粒度分布」は、破砕の処理に要する手間および時間の削減の観点からは、30〜45mmの範囲内で定められる特定の値(例えば、37.5mm)以下の粒度を有する粒体の割合が通過質量百分率で、好ましくは99%以下、より好ましくは95%以下、特に好ましくは90%以下になるような粒度分布である。この場合、粒度が過度に小さいこと(過度の破砕)による無害化処理の効率の低下を避けることができる。
The crushing in the crushing process is performed until the excavation shear has a predetermined specific particle size distribution.
Here, as a preferable example of the “predetermined specific particle size distribution”, the ratio of particles having a specific value (for example, 37.5 mm) or less determined within a range of 30 to 45 mm is a specific value. (Preferably, a specific value within the range of 40 to 70% in terms of passing mass percentage) or more may be mentioned. In this case, the leaching amount of harmful substances (for example, arsenic) from the crushed excavated material after the detoxification treatment according to the present invention is set to a desired value (for example, a value based on the amount of soil leaching; The value can be more reliably reduced to 0.01 mg / liter or less.
In addition, the “predetermined specific particle size distribution” is within a range of 30 to 45 mm from the viewpoint of reducing the amount of harmful substances (eg, arsenic) eluted from the crushed excavated material after the detoxification treatment according to the present invention. The proportion of granules having a particle size of not more than a specific value (for example, 37.5 mm) determined by the formula is preferably 50% or more, more preferably 60% or more, and particularly preferably 70% or more in terms of passing mass percentage. The particle size distribution.
Furthermore, the “predetermined specific particle size distribution” is a particle size of a specific value (for example, 37.5 mm) or less determined within a range of 30 to 45 mm from the viewpoint of reducing labor and time required for the crushing process. The particle size distribution is such that the proportion of particles having a weight percentage is preferably 99% or less, more preferably 95% or less, and particularly preferably 90% or less. In this case, it is possible to avoid a decrease in the efficiency of the detoxification process due to the excessively small particle size (excessive crushing).
[不溶化材添加工程]
不溶化材添加工程は、掘削ずり破砕物に、酸化マグネシウム含有物質からなる不溶化材を添加して混合し、有害物質(例えば、ひ素)を不溶化する工程である。
酸化マグネシウム含有物質の一例としては、軽焼マグネシアまたはその部分水和物が挙げられる。
軽焼マグネシアは、炭酸マグネシウムと水酸化マグネシウムのいずれか一方または両方を含む固形原料を、好ましくは650〜1,200℃の温度で焼成することによって得ることができる。
ここで、固形原料の例としては、マグネサイト、ドロマイト等の鉱物の塊状物または粉粒状物や、マグネシウム塩を含む海水等に、炭酸アルカリ化合物(例えば、炭酸ナトリウム)を加えることで得られる塊状物または粉粒状物等が挙げられる。
焼成温度(加熱温度)は、好ましくは650〜1,200℃、より好ましくは750〜1,100℃、特に好ましくは800〜1,000℃である。該温度が650℃以上であると、軽焼マグネシアの生成の効率が向上する点で好ましい。該温度が1,200℃以下であると、重金属類等の不溶化の効果が向上する点で好ましい。
焼成時間(加熱時間)は、固形原料の仕込み量や粒度等によって異なるが、通常、30分間〜5時間である。
[Insolubilizing material addition process]
The insolubilizing material adding step is a step of insolubilizing a harmful substance (for example, arsenic) by adding and mixing an insolubilizing material made of a magnesium oxide-containing material to the excavated crushed material.
An example of the magnesium oxide-containing material is light-burned magnesia or a partial hydrate thereof.
Light calcined magnesia can be obtained by firing a solid raw material containing one or both of magnesium carbonate and magnesium hydroxide, preferably at a temperature of 650 to 1,200 ° C.
Here, as an example of the solid raw material, a lump obtained by adding an alkali carbonate compound (for example, sodium carbonate) to a lump or powder of a mineral such as magnesite or dolomite, seawater containing magnesium salt, or the like. Or a granular material.
The firing temperature (heating temperature) is preferably 650 to 1,200 ° C, more preferably 750 to 1,100 ° C, and particularly preferably 800 to 1,000 ° C. When the temperature is 650 ° C. or higher, it is preferable in terms of improving the efficiency of producing light-burned magnesia. When the temperature is 1,200 ° C. or less, it is preferable in that the effect of insolubilization of heavy metals and the like is improved.
The firing time (heating time) is usually from 30 minutes to 5 hours, although it varies depending on the amount of solid raw materials and the particle size.
軽焼マグネシアの部分水和物は、軽焼マグネシアを粉砕した後、当該粉砕物に水を添加して撹拌し混合するか、または、当該粉砕物を相対湿度80%以上の雰囲気下に1週間以上保持して、軽焼マグネシアを部分的に水和させることによって得ることができる。
軽焼マグネシアまたはその部分水和物中の酸化マグネシウム(MgO)の含有率は、重金属類等の不溶化の効果を高める観点から、好ましくは65質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上、特に好ましくは85質量%以上である。
軽焼マグネシアまたはその部分水和物のブレーン比表面積は、重金属類等の不溶化の効果を高める観点から、好ましくは4,000〜20,000cm2/g、より好ましくは4,500〜10,000cm2/g、特に好ましくは5,000〜7,000cm2/gである。
For the light hydrated magnesia partial hydrate, after pulverizing the light baked magnesia, water is added to the pulverized product and stirred or mixed, or the pulverized product is kept in an atmosphere of relative humidity of 80% or more for one week. Holding the above, it can be obtained by partially hydrating the light-burned magnesia.
The content of magnesium oxide (MgO) in light-burned magnesia or a partial hydrate thereof is preferably 65% by mass or more, more preferably 75% by mass or more, further preferably from the viewpoint of enhancing the effect of insolubilization of heavy metals and the like. Is 80% by mass or more, particularly preferably 85% by mass or more.
From the viewpoint of enhancing the effect of insolubilization of heavy metals and the like, the brane specific surface area of light-burned magnesia or a partial hydrate thereof is preferably 4,000 to 20,000 cm 2 / g, more preferably 4,500 to 10,000 cm. 2 / g, particularly preferably 5,000 to 7,000 cm 2 / g.
不溶化材の添加は、掘削ずり破砕物の一部を構成する特定の粒度範囲内の粒体に付着する不溶化材の量が、該粒体の単位量に対して、予め定めた特定の値以上になるように行なわれる。
このように不溶化材の付着量を、特定の粒度範囲内の粒体のみを対象にして測定することによって、掘削ずり破砕物の全粒度分布(粒度範囲を定めないもの)を対象にして測定する場合に比べて、不溶化材の添加すべき量を、過剰でなくかつ十分な量に、正確に定めることができる。
ここで、「掘削ずり破砕物の一部を構成する特定の粒度範囲」の好ましい一例として、該粒度範囲の上限値が、30〜45mmの範囲内で定められる特定の値(例えば、37.5mm)であるものが挙げられる。この場合、該粒度範囲の上限値が45mmを超える場合に比べて、本発明による無害化処理後の掘削ずり破砕物からの有害物質(例えば、ひ素)の溶出量を、所望の値(例えば、土壌溶出量基準の値;例えば、ひ素の土壌溶出量基準の値として、0.01mg/リットル)以下に、より確実に低減させることができる。
「掘削ずり破砕物の一部を構成する特定の粒度範囲」の下限値は、特に定めなくてもよいが、不溶化材の付着量の測定をより容易にかつ迅速に行なう観点から、好ましくは、5〜15mmの範囲内で定められる特定の値(例えば、9.5mm)である。
不溶化材の付着量としての「予め定めた特定の値以上」における「特定の値」は、「掘削ずり破砕物の一部を構成する特定の粒度範囲」に応じて、定められる。
不溶化材の添加の好ましい実施形態の具体例としては、掘削ずり破砕物の一部を構成する9.5mmを超え、37.5mm以下の粒度範囲内の粒体に付着する不溶化材の量が、該粒体(9.5mmを超え、37.5mm以下の粒度範囲内の粒体)1m3当たり15kg以上になるような量で、不溶化材を添加することが挙げられる。
不溶化材の付着量の測定方法として、例えば、不溶化材が酸化マグネシウム含有物質である場合、付着している不溶化材の主成分であるマグネシウムの量を定量することによって、不溶化材の付着量を算出する方法が挙げられる。
The addition of the insolubilizing material is such that the amount of the insolubilizing material adhering to the particles within a specific particle size range constituting a part of the excavated crushed material is equal to or greater than a predetermined value with respect to the unit amount of the particles. It is done to become.
In this way, the amount of insolubilized material attached is measured only for particles within a specific particle size range, thereby measuring the total particle size distribution of the excavated crushed material (which does not define the particle size range). Compared to the case, the amount of the insolubilizing material to be added can be accurately determined to be not excessive and sufficient.
Here, as a preferred example of the “specific particle size range constituting a part of the excavated shear crushed material”, the upper limit value of the particle size range is a specific value determined within a range of 30 to 45 mm (for example, 37.5 mm). ). In this case, compared to the case where the upper limit value of the particle size range exceeds 45 mm, the amount of harmful substances (eg, arsenic) eluted from the excavated sheared crushed material after the detoxification treatment according to the present invention is set to a desired value (eg, It can be more reliably reduced to a value based on the soil elution amount; for example, 0.01 mg / liter or less as a value based on the soil elution amount of arsenic.
The lower limit of the “specific particle size range constituting a part of the excavated crushed material” may not be particularly defined, but from the viewpoint of more easily and quickly measuring the amount of insolubilized material attached, It is a specific value (for example, 9.5 mm) determined within a range of 5 to 15 mm.
The “specific value” in the “predetermined specific value or more” as the adhesion amount of the insolubilized material is determined in accordance with the “specific particle size range constituting a part of the excavated shear material”.
As a specific example of a preferred embodiment of the addition of the insolubilizing material, the amount of the insolubilizing material adhering to the particles within the particle size range of more than 9.5 mm and 37.5 mm or less constituting a part of the excavated shear crushed material, The insolubilizing material may be added in such an amount that 15 kg or more per 1 m 3 of the granules (granular grains having a particle size range of more than 9.5 mm and not more than 37.5 mm).
For example, when the insolubilizing material is a magnesium oxide-containing substance, the amount of insoluble material adhering is calculated by quantifying the amount of magnesium that is the main component of the insolubilizing material. The method of doing is mentioned.
掘削ずり破砕物1m3当たりの不溶化材(例えば、酸化マグネシウム含有物質;典型的には、軽焼マグネシアまたはその部分水和物)の添加量は、掘削ずり破砕物に含まれている重金属類等の種類および含有率等によっても異なるが、通常、20〜300kgの範囲内である。
不溶化材の添加および混合の方法としては、掘削ずり破砕物に不溶化材を粉体のまま添加し、混合するドライ添加、または、不溶化材に水を加えてスラリーを得た後、該スラリーを掘削ずり破砕物に添加して混合するスラリー添加を採用することができる。スラリー添加の場合、水/不溶化材の質量比は、好ましくは0.6〜1.5、より好ましくは0.8〜1.2である。
The amount of insolubilizing material (for example, magnesium oxide-containing substance; typically light-burned magnesia or a partial hydrate thereof) per 1 m 3 of excavated crushed material is heavy metals contained in the excavated crushed material, etc. Usually, it is in the range of 20 to 300 kg, although it varies depending on the type and content of the material.
As a method of adding and mixing the insolubilizing material, the insolubilizing material is added to the excavated crushed material as it is, dry mixing to mix, or water is added to the insolubilizing material to obtain a slurry, and then the slurry is excavated. Addition of a slurry that is added to and mixed with the crushed material can be employed. In the case of slurry addition, the mass ratio of water / insolubilized material is preferably 0.6 to 1.5, more preferably 0.8 to 1.2.
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[1.使用材料]
(1)掘削ずり
掘削ずりとして、各種の掘削ずりの中から、含水率が特に小さいもの(本明細書中、「ずりA」と称する。)、および、含水率が特に大きいもの(本明細書中、「ずりB」と称する。)を選択した。
ずりAおよびずりBについて、これらを構成する複数の粒度範囲内の粒体の含水率は、表1に示すとおりである。
(2)不溶化材
マグネサイト(炭酸マグネシウムの含有率:93質量%)を、1,000℃で焼成した後、得られた軽焼マグネシアを粉砕したもの(酸化マグネシウムの含有率:85質量%以上;ブレーン比表面積:6,120cm2/g)
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[1. Materials used]
(1) Excavation shear As excavation shear, various kinds of excavation shear have a particularly low moisture content (referred to as “shear A” in the present specification) and a particularly high moisture content (this specification) Among them, it is referred to as “shear B”.
About the shear A and the shear B, the moisture content of the granular material in the some particle size range which comprises these is as showing in Table 1.
(2) Insolubilized material Magnesite (magnesium carbonate content: 93% by mass) fired at 1,000 ° C. and then pulverized light-burned magnesia (magnesium oxide content: 85% by mass or more) Brain specific surface area: 6,120 cm 2 / g)
[2.破砕の程度および不溶化材の添加量を変えた場合のひ素の溶出量の測定]
ずりAおよびずりBの各々について、「37.5mm以下の粒度を有する粒体の割合である通過質量百分率」が、表2に示す各値(表2中、「粒度37.5mm以下の割合(%)」と略す。)となるように、破砕を行なった後、ずりの単位量(1m3)当たりの不溶化材の添加量(kg)が、表2に示す値となるように、不溶化材を添加した。
次いで、ずりAおよびずりBの各々について、ひ素の溶出量(溶出検液中の濃度;表2中の「ひ素の濃度」)を測定した。この測定は、平成15年3月6日環境省告示第18号「土壌溶出量調査に係る測定方法を定める件」に記載されている方法を用いて、溶出検液を作製し、この溶出検液中のひ素の量を、「JIS K 0102(2013)」(ICP質量分析法)に準じて測定することによって行なった。
結果を表2に示す。表2中、「評価」の欄において、得られた測定値(ひ素の溶出量)が、ひ素の土壌溶出基準値(0.01mg/リットル)以下である場合、および、該値を超える場合を、各々、「○」(良好)、「×」(不良)として評価した。
[2. Measurement of arsenic elution when the degree of crushing and the amount of insolubilizing material added are changed]
For each of the shear A and the shear B, the “percentage of passing mass, which is the proportion of particles having a particle size of 37.5 mm or less” is the value shown in Table 2 (in Table 2, “the proportion of the particle size of 37.5 mm or less ( %))), After the crushing, the insolubilized material so that the added amount (kg) of the insolubilized material per unit amount (1 m 3 ) of the shear becomes the value shown in Table 2. Was added.
Next, for each of shear A and shear B, the amount of arsenic eluted (concentration in the elution test solution; “arsenic concentration” in Table 2) was measured. This measurement was carried out by preparing an elution test solution using the method described in the Ministry of the Environment Notification No. 18 of March 6, 2003, “Determining Measurement Method for Soil Elution Amount Survey”. The amount of arsenic in the liquid was measured by measuring according to “JIS K 0102 (2013)” (ICP mass spectrometry).
The results are shown in Table 2. In Table 2, in the column “Evaluation”, the measured value (arsenic elution amount) is less than or equal to the arsenic soil elution standard value (0.01 mg / liter) and , Evaluated as “◯” (good) and “x” (bad), respectively.
[3.ずりを構成する粒体の粒度の大きさを変えた場合の不溶化材の付着量の測定]
ずりAおよびずりBの各々について、表3に示す粒度範囲を有する場合であって、かつ、表3に示す添加量で不溶化材を添加した場合における、当該粒度範囲を有する粒体への不溶化材の付着量(粒体1m3当たりの質量;単位:kg)を測定した。
結果を表3に示す
[3. Measurement of the amount of insolubilized material adhering when the size of the particles constituting the shear is changed]
For each of the shear A and the shear B, the insolubilizing material to particles having the particle size range in the case of having the particle size range shown in Table 3 and when the insolubilizing material is added in the addition amount shown in Table 3 The adhesion amount (mass per 1 m 3 of granule; unit: kg) was measured.
The results are shown in Table 3.
表2および表3から、以下のことがわかる。
表2中、ずりAについて、不溶化材の添加量が50kg/m3、100kg/m3、150g/m3のいずれであっても、「粒度37.5mm以下の割合」が50%以上であれば、評価が「○」であり、ひ素の溶出量が基準値(0.01mg/リットル)以下であることがわかる。
なお、表3中、ずりAについて、「9.5mmを超え、37.5mm以下」の粒度範囲を有する粒体について、不溶化材の添加量が50kg/m3、100kg/m3、150g/m3のいずれであっても、不溶化材の付着量は、16〜19kg/m3の範囲内に収まっている。
From Tables 2 and 3, the following can be understood.
In Table 2, for shear A, if the amount of insolubilizing material is 50 kg / m 3 , 100 kg / m 3 , or 150 g / m 3 , the “ratio of particle size of 37.5 mm or less” should be 50% or more. For example, the evaluation is “◯”, and it can be seen that the amount of arsenic eluted is equal to or less than the reference value (0.01 mg / liter).
In Table 3, with respect to the shear A, the amount of insolubilizing material added is 50 kg / m 3 , 100 kg / m 3 , and 150 g / m for the particles having a particle size range of “greater than 9.5 mm and 37.5 mm or less”. In any case, the amount of the insolubilized material adhered is within the range of 16 to 19 kg / m 3 .
一方、表2中、ずりBについて、不溶化材の添加量が50kg/m3の場合には、「粒度37.5mm以下の割合」が50%以上(具体的には、50%、70%)であっても、評価が「×」であり、ひ素の溶出量が基準値(0.01mg/リットル)を超えているものの、不溶化材の添加量が100kg/m3、150g/m3の各場合には、「粒度37.5mm以下の割合」が50%以上であれば、ひ素の溶出量が基準値(0.01mg/リットル)以下であり、評価が「○」であることがわかる。
また、表3中、ずりBについて、「9.5mmを超え、37.5mm以下」の粒度範囲を有する粒体について、不溶化材の添加量が50kg/m3の場合には、不溶化材の付着量が12kg/m3であり、不溶化材の添加量が100kg/m3、150g/m3の各場合には、不溶化材の付着量は、15〜17kg/m3であることがわかる。
つまり、ずりBについて、「粒度37.5mm以下の割合」が50%以上であるという第1の条件(表2)によって、「粒度37.5mm以下の割合が40%である場合」(具体的には、表2中の「ずりB」の「添加量(kg/m3)」の「50」、「100」、「150」の各欄の「粒度37.5mm以下の割合(%)」の「40」の「評価」である3つの「×」を参照)を排除した後、「9.5mmを超え、37.5mm以下」の粒度範囲を有する粒体に対する不溶化材の付着量が15kg/m3以上であるという第2の条件(表3;添加量50kg/m3の場合の付着量である12kg/m3を参照)によって、「不溶化材の添加量が50kg/m3の場合」(具体的には、表2中の「ずりB」の「添加量(kg/m3)」の「50」の欄の「粒度37.5mm以下の割合(%)」の「50」、「70」の「評価」である2つの「×」を参照)を排除することによって、評価が「○」のものを確実に得ることができる。
On the other hand, in Table 2, when the amount of insolubilizing material is 50 kg / m 3 for shear B, the “ratio of particle size of 37.5 mm or less” is 50% or more (specifically, 50% or 70%). Even though the evaluation is “×” and the elution amount of arsenic exceeds the standard value (0.01 mg / liter), the addition amount of the insolubilizing material is 100 kg / m 3 and 150 g / m 3 , respectively. In this case, if the “ratio of particle size of 37.5 mm or less” is 50% or more, the elution amount of arsenic is not more than the reference value (0.01 mg / liter), and the evaluation is “◯”.
In Table 3, for shear B, for particles having a particle size range of “greater than 9.5 mm and less than or equal to 37.5 mm”, when the addition amount of the insolubilizer is 50 kg / m 3 , adhesion of the insolubilizer When the amount is 12 kg / m 3 and the addition amount of the insolubilizing material is 100 kg / m 3 or 150 g / m 3 , it can be seen that the adhesion amount of the insolubilizing material is 15 to 17 kg / m 3 .
That is, for the shear B, the first condition (Table 2) that “the ratio of the particle size of 37.5 mm or less” is 50% or more, “when the ratio of the particle size of 37.5 mm or less is 40%” (specifically In Table 2, the “addition amount (kg / m 3 )” of “Shear B” in “50”, “100”, and “150” in each column “ratio (%) of particle size of 37.5 mm or less” 3 "x", which is an "evaluation" of "40" of No. 40), the amount of insolubilizing material adhering to particles having a particle size range of "greater than 9.5 mm and less than 37.5 mm" is 15 kg. / m 3 or more in the second condition that, by (see Table 3 to 12 kg / m 3 is an adhesion amount in case of the addition amount 50 kg / m 3), when the addition amount of "insoluble material is 50 kg / m 3 (Specifically, “5” in “Addition amount (kg / m 3 )” of “Suri B” in Table 2. By eliminating “50” and “70” “evaluation” of “ratio (%) of particle size of 37.5 mm or less” in the column of “0”), the evaluation is “◯” Can definitely get things.
ずりAとずりBの試験結果から、37.5mm以下の粒度を有する粒体の割合が通過質量百分率で50%以上になるまで、掘削ずりを破砕し、かつ、得られた掘削ずり破砕物の一部を構成する「9.5mmを超え、37.5mm以下」の粒度範囲内の粒体に付着する不溶化材の量が、該粒体1m3当たり15kg以上になるように、不溶化材を添加すれば、ひ素の溶出量が基準値(0.01mg/リットル)以下になることがわかる。 From the test results of the shear A and the shear B, the excavated shear was crushed until the ratio of the particles having a particle size of 37.5 mm or less reached 50% or more in terms of the passing mass percentage, and The insolubilizing material is added so that the amount of the insolubilizing material adhering to the particles within the particle size range of “over 9.5 mm and 37.5 mm or less” constituting a part is 15 kg or more per 1 m 3 of the particles. As a result, it can be seen that the amount of arsenic eluted is below the reference value (0.01 mg / liter).
Claims (5)
上記掘削ずり破砕物に、酸化マグネシウム含有物質からなる不溶化材を添加して混合し、上記有害物質を不溶化する不溶化材添加工程、
を含む掘削ずりの無害化処理方法であって、
上記破砕工程における破砕は、上記掘削ずりが、予め定めた特定の粒度分布を有するようになるまで行なわれるものであり、
上記不溶化材添加工程における不溶化材の添加は、上記掘削ずり破砕物の一部を構成する特定の粒度範囲内の粒体に付着する不溶化材の量が、該粒体の単位量に対して、予め定めた特定の値以上になるように行なわれることを特徴とする掘削ずりの無害化処理方法。 A crushing process for crushing excavated shear containing hazardous substances to obtain excavated shear crushed material,
An insolubilizing material addition step of adding insolubilizing material composed of magnesium oxide-containing material to the excavated crushed material and mixing to insolubilize the harmful material,
A detoxification method for excavating shear including
The crushing in the crushing step is performed until the excavation shear has a predetermined specific particle size distribution,
The addition of the insolubilizing material in the insolubilizing material adding step is such that the amount of the insolubilizing material adhering to the particles within a specific particle size range constituting a part of the excavated shear crushed material is based on the unit amount of the particles. An excavation detoxification processing method characterized by being performed so as to be equal to or greater than a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016124021A JP2017225937A (en) | 2016-06-22 | 2016-06-22 | Method for detoxicating excavating muck |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016124021A JP2017225937A (en) | 2016-06-22 | 2016-06-22 | Method for detoxicating excavating muck |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017225937A true JP2017225937A (en) | 2017-12-28 |
Family
ID=60888892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016124021A Pending JP2017225937A (en) | 2016-06-22 | 2016-06-22 | Method for detoxicating excavating muck |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017225937A (en) |
-
2016
- 2016-06-22 JP JP2016124021A patent/JP2017225937A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6009118B1 (en) | Treatment method of mud generated by bubble shield method | |
JP5599061B2 (en) | Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals | |
JP6084745B1 (en) | Disposal method of mud generated by muddy water type shield method | |
JP5757613B2 (en) | Processing materials such as heavy metals | |
JP5969099B1 (en) | Treatment method of mud generated by bubble shield method | |
JP6850171B2 (en) | Solidification insolubilization method | |
JP2012082330A (en) | Insolubilization material of heavy metals, and insolubilization method of heavy metals | |
JP7073088B2 (en) | Soil reforming method | |
JP5291333B2 (en) | Insolubilizing material and insolubilizing method | |
JP6370074B2 (en) | Soil reforming method | |
JP6267922B2 (en) | Hazardous substance treatment chemical | |
JP2015160169A (en) | Material and method for solidifying oil-contaminated soil | |
JP2017225937A (en) | Method for detoxicating excavating muck | |
JP6356933B1 (en) | Disposal method of mud generated by muddy water type shield method | |
JP6675779B2 (en) | Method for producing soil modifying material and method for modifying soil | |
JP4663905B2 (en) | Heavy metal elution inhibitor and heavy metal elution control method for heavy metal contaminated soil | |
JP6656912B2 (en) | Sorting method of insolubilizing material | |
JP6808373B2 (en) | How to handle excavation scraps | |
JP2019143030A (en) | Modifier of soft weak soil or the like, and solidification treatment method of remaining soil | |
JP6885681B2 (en) | How to determine the maximum particle size of excavation shavings | |
JP4745955B2 (en) | Hexavalent chromium elution inhibitor | |
JP6749126B2 (en) | Hazardous substance treatment material and treatment method | |
JP2008284537A (en) | Treatment method for heavy metals in solid waste | |
JP7170570B2 (en) | Insolubilizing material and insolubilizing treatment method | |
JP7436200B2 (en) | Insolubilization treatment method for heavy metals contained in waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201005 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210105 |