WO2017110999A1 - Insolubilization material, insolubilization mixture and insolubilization method - Google Patents

Insolubilization material, insolubilization mixture and insolubilization method Download PDF

Info

Publication number
WO2017110999A1
WO2017110999A1 PCT/JP2016/088341 JP2016088341W WO2017110999A1 WO 2017110999 A1 WO2017110999 A1 WO 2017110999A1 JP 2016088341 W JP2016088341 W JP 2016088341W WO 2017110999 A1 WO2017110999 A1 WO 2017110999A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
insolubilized
insolubilization
insolubilizing
light
Prior art date
Application number
PCT/JP2016/088341
Other languages
French (fr)
Japanese (ja)
Inventor
松山 祐介
喜彦 森
優作 天本
彰徳 杉山
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Publication of WO2017110999A1 publication Critical patent/WO2017110999A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/08Aluminium compounds, e.g. aluminium hydroxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to an insolubilizing material, an insolubilizing mixture, and an insolubilizing method.
  • Patent Document 1 discloses light-burned magnesia obtained by firing a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C.
  • a lightly baked magnesia partial hydrate obtained by hydrating a part of the hydrated magnesium magnesia, wherein the magnesium oxide content is 50 to 96.5% by mass and the magnesium hydroxide content is 3.5 to 50% by mass and containing a light-burned magnesia partial hydrate having a calcium content of 5.0% by mass or less in terms of oxide (however, containing 85% by mass or more of calcium carbonate)
  • Insolubilizing material characterized in that the powder containing at a rate of 20 to 70 parts by mass is added to 100 parts by mass of the light-burned magnesia partial hydrate).
  • Patent Document 2 discloses that (A) a part of light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 650 to 1,000 ° C. is hydrated. A light-burned magnesia partial hydrate having a magnesium oxide content of 65-96.5% by mass and a magnesium hydroxide content of 3.5-30% by mass. Yes, with respect to 100 parts by mass of the powder made of light-burned magnesia partial hydrate having a calcium content of 3.0% by mass or less in terms of oxide, (B) calcium carbonate at a content of 85% by mass or more. An insolubilizing material containing 20 to 70 parts by mass of the powder containing is described.
  • An object of the present invention is to provide an insolubilizing material that can be added to and mixed with soil contaminated with heavy metals to insolubilize heavy metals in the soil and suppress elution of heavy metals. .
  • the present inventor is an insolubilized material mainly composed of light-burned magnesia, and the content of forsterite is 6.0% by mass in 100% by mass of the insolubilized material. %, And the insolubilized material having a fluorine (F) content of 0.045% by mass or less has found that the above-mentioned object can be achieved, thereby completing the present invention. That is, the present invention provides the following [1] to [5].
  • An insolubilized mixture which is a powder composed of one or more selected from the group consisting of magnesium, dicalcium phosphate, calcium sulfate, ferrous sulfate, aluminum sulfate, and zeolite.
  • [5] A method for producing the insolubilizing material according to [1] or [2], wherein a solid raw material mainly composed of magnesium carbonate is fired at 650 to 1,200 ° C., and lightly burned magnesia And a pulverizing step of pulverizing the light-burned magnesia obtained in the calcination step to obtain the insolubilized material.
  • the insolubilizing material of the present invention can be added to and mixed with soil contaminated with heavy metals to insolubilize heavy metals in the soil and suppress elution of heavy metals and the like.
  • the insolubilized material of the present invention is an insolubilized material mainly composed of light-burned magnesia, and the content of forsterite is 6.0% by mass or less in a total amount of 100% by mass of the insolubilized material, and fluorine (F ) Content of 0.045% by mass or less.
  • the content of lightly burned magnesia in the insolubilized material is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. If this content rate is 50 mass% or more, elution of heavy metals etc. can be suppressed more.
  • Light-burned magnesia can be obtained, for example, by baking a solid raw material mainly composed of magnesium carbonate at 650 to 1,200 ° C.
  • the solid raw material containing magnesium carbonate as a main component include a lump or powder obtained by adding alkali carbonate to minerals such as magnesite and dolomite, seawater containing magnesium salts, and the like.
  • the content of magnesium carbonate in the solid raw material is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more from the viewpoint of obtaining more light-burned magnesia.
  • the firing temperature is preferably 650 to 1,200 ° C., more preferably 750 to 1,100 ° C., further preferably 800 to 1,000 ° C., more preferably 850 to 1,000 ° C., and further preferably 900 to
  • the temperature is 1,000 ° C., particularly preferably 950 to 1,000 ° C. If this temperature is 650 degreeC or more, the production
  • the firing time is usually 30 minutes to 5 hours, although it varies depending on the amount of solid materials charged and the particle size.
  • the content of forsterite in 100% by mass of the insolubilized material is 6.0% by mass or less, preferably 5.0% by mass or less, more preferably 4.0% by mass or less, and further preferably 3.0% by mass.
  • it is more preferably 2.0% by mass or less, further preferably 1.0% by mass or less, further preferably 0.5% by mass or less, and particularly preferably 0.3% by mass or less.
  • the content of fluorine in the total amount of 100% by mass of the insolubilized material is 0.045% by mass or less, preferably 0.035% by mass or less, more preferably 0.025% by mass or less, and further preferably 0.020% by mass or less. Especially preferably, it is 0.015 mass% or less. When the content exceeds 0.045% by mass, elution of heavy metals and the like cannot be sufficiently suppressed.
  • the Blaine specific surface area of the lightly burned magnesia constituting the insolubilized material of the present invention is preferably from 4,000 to 20,000 cm 2 / g, more preferably from 4,500 to from the viewpoint of further enhancing the effect of suppressing elution of heavy metals and the like. It is 10,000 cm 2 / g, particularly preferably 5,000 to 7,000 cm 2 / g.
  • the insolubilizing material of the present invention if necessary, a powder comprising at least one selected from the group consisting of calcium carbonate, blast furnace slag, magnesium hydroxide, dicalcium phosphate, calcium sulfate, ferrous sulfate, aluminum sulfate, and zeolite. May be mixed as an additive to form an insolubilized mixture. According to the insolubilized mixture obtained by mixing the insolubilizing material and the additive, elution of heavy metals and the like can be further suppressed.
  • the amount of the additive is preferably 3 to 100 parts by mass, more preferably 4 to 80 parts by mass, and particularly preferably 5 to 60 parts by mass with respect to 100 parts by mass of the insolubilizing material.
  • the amount is 3 parts by mass or more, elution of heavy metals and the like can be further suppressed.
  • the amount is 100 parts by mass or less, it is possible to prevent a decrease in the elution suppression effect of heavy metals and the like due to a decrease in the amount of the insolubilizing material of the present invention.
  • the insolubilizing material or insolubilizing mixture of the present invention (hereinafter also referred to as “insolubilizing material”) to the soil to be insolubilized (soil contaminated with heavy metals, etc.), and mixing,
  • the elution of heavy metals and the like can be suppressed by insolubilizing heavy metals and the like in the soil.
  • the heavy metal or the like to be insolubilized is at least one selected from the group consisting of arsenic, lead, selenium, cadmium, mercury, cyan, hexavalent chromium, fluorine, and boron.
  • the addition amount of such insoluble material to soil 1 m 3, the properties of the soil of interest, welding conditions, the upper limit of the amount of elution of such heavy metals required for soil after insolubilization (reference value) also varies depending on the like, preferably It is 20 to 300 kg, more preferably 25 to 200 kg, particularly preferably 30 to 150 kg. If the amount is 20 kg or more, elution of heavy metals and the like can be further suppressed. If the amount is 300 kg or less, an increase in cost can be prevented.
  • the insolubilizing material or the like is added to the target soil as a powder and mixed to dry, or water is added to the insolubilizing material to form a slurry, and the slurry is added and mixed. Slurry addition to be performed.
  • the water / insolubilized material mass ratio in the case of slurry addition is preferably 0.6 to 1.5, more preferably 0.8 to 1.2.
  • Soil A to H soil containing heavy metals and the like (details such as the types of heavy metals contained in each soil and the amount of elution are shown in Table 1)
  • Insolubilized Materials A to E and Insolubilized Mixtures A to H The following insolubilized materials A to E and insolubilized mixtures A to H were prepared.
  • Insolubilized material A Containing only light-burned magnesia a
  • Insolubilized material B Light-burned magnesia a and light-burned magnesia b are insolubilized material B, and the content of light-burned magnesia a is 69 mass%.
  • Insolubilized material C Light calcined magnesia a and light calcined magnesia b are mixed with insolubilized material C so that the content of light calcined magnesia a is 31% by mass.
  • Insolubilized material D composed only of light-burned magnesia b
  • Insolubilized material E light-burned magnesia c only What consists of
  • Insolubilized mixture A Calcium carbonate (limestone powder, Blaine specific surface area: 4,000 cm 2 / g, calcium carbonate content: 98.4 masses) based on 100 parts by mass of light-burned magnesia a (7)
  • Insolubilized mixture B blast furnace slag fine powder in an amount shown in Table 2 (brain specific surface area: 4,140 cm 2 ) with respect to 100 parts by mass of light-burned magnesia a (8)
  • Insolubilized mixture C Magnesium hydroxide in an amount shown in Table 2 with respect to 100 parts by weight of lightly burned magnesia (manufactured by Kanto Chemical Co., Ltd., deer grade 1) (9)
  • Insolubilized mixture D Calcium hydrogen phosphate dihydrate in the amount shown in Table 2 (dicalcium calcium phosphate, manufactured by Kanto Chemical Co., Inc.
  • Insolubilized mixture E Calcium sulfate in an amount shown in Table 2 with respect to 100 parts by weight of light-burned magnesia a (Brain specific surface area: 4,440 cm 2 / g, Thai anhydrous gypsum, (11)
  • Insolubilized mixture F Zeolite (made by Okutama Kogyo Co., Ltd., trade name “Tamarite”) in the amount shown in Table 2 is added to 100 parts by mass of lightly burned magnesia a.
  • Insolubilized mixture G A mixture obtained by adding and mixing ferrous sulfate in the amount shown in Table 2 (food additive, manufactured by Kokusan Kagaku Co.) to 100 parts by weight of light-burned magnesia a (13)
  • Insolubilized Mixture H A mixture of 14 to 18 aluminum sulfate 14-18 hydrate (Kanto Chemical Co., Ltd., deer special grade) in the amount shown in Table 2 to 100 parts by weight of light-burned magnesia a
  • Table 2 shows the contents of forsterite and fluorine in the insolubilized materials A to E and the insolubilized mixtures A to H.
  • Forsterite was measured by a calibration curve method using a powder X-ray diffractometer.
  • Fluorine (total content) is determined by the method described in JP-A 2010-44034 (specifically, the carrier to be measured is mixed with the WO 3 fine powder, which is a reaction accelerator, and heated. Heated at 1,050 ° C using non-humidified air as the gas, and collected fluoride was collected in an aqueous sodium acetate solution as an absorption solution. The amount of fluorine in this aqueous solution was determined by ion chromatography. Measured according to the method).
  • Example 1 The soil 1 m 3 shown in Table 3 and the addition amount of the insolubilized material shown in Table 3 were mixed for 3 minutes using a Hobart mixer. The obtained mixture was sealed and cured at 20 ° C. for 7 days. After curing, in accordance with Ministry of the Environment Notification No. 18, the elution test of heavy metals (fluorine) contained in the used soil was performed, and the elution amount of heavy metals (fluorine) was measured.
  • the pH of the test solution for measuring the amount of elution of heavy metals (fluorine), pH meter (trade name “F-52” manufactured by Horiba, Ltd.) and pH electrode (trade name “9615-10D” manufactured by Horiba, Ltd.) It measured using.
  • Examples 2 and 3 Comparative Examples 1 and 2
  • the elution amount of heavy metals and the like contained in each soil and the pH of the test solution for measuring the elution amount of heavy metals and the like were measured.
  • Examples 4 to 11 Except for using the insolubilized mixture shown in Table 3 in place of the insolubilized material, the amount of elution of heavy metals and the like contained in each soil and the pH of the test solution for measuring the elution amount of heavy metals etc. are measured in the same manner as in Example 1. did. The results are shown in Table 3. No experiment was conducted on soil containing hexavalent chromium.
  • Example 3 From Table 3, it can be seen that according to the insolubilized material (Examples 1 to 3) and the insolubilized mixture (Examples 4 to 11) of the present invention, the amount of elution of heavy metals and the like in the soil can be suppressed below the environmental standard value.
  • Examples 1 to 3 show that the smaller the forsterite content in 100% by mass of the insolubilized material, the smaller the amount of elution of heavy metals and the like in the soil.
  • Comparative Examples 1 and 2 it can be seen that the amount of elution of heavy metals in the soil exceeds the environmental standard value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

Provided is an insolubilization material which is capable of insolubilizing a heavy metal or the like in soil and suppressing dissolution of the heavy metal or the like by being added and mixed into the soil that is contaminated with the heavy metal or the like. An insolubilization material which is mainly composed of light burned magnesia, and wherein the content of forsterite is 6.0% by mass or less and the content of fluorine (F) is 0.045% by mass or less, respectively in 100% by mass of the total of the insolubilization material. An insolubilization mixture which contains 100 parts by mass of this insolubilization material and 3-100 parts by mass of an added material, and wherein the added material is a powder that is formed from one or more substances selected from the group consisting of calcium carbonate, blast furnace slag, magnesium hydroxide, dicalcium phosphate, calcium sulfate, ferrous sulfate, aluminum sulfate and zeolite.

Description

不溶化材、不溶化混合物、及び不溶化方法Insolubilizing material, insolubilizing mixture, and insolubilizing method
 本発明は、不溶化材、不溶化混合物、及び不溶化方法に関する。 The present invention relates to an insolubilizing material, an insolubilizing mixture, and an insolubilizing method.
 近年、工場、事業所、産業廃棄物処理場の跡地などにおいて、土壌がひ素、鉛、セレン、カドミウム、水銀、シアン、六価クロム、ふっ素、または、ほう素(以下、「重金属等」ともいう。)で汚染されていることが、しばしば報告されている。土壌汚染対策法においては、上述した9種類を重金属類と定めている。土壌が重金属等で汚染されると、その汚染が地下水にまで広がり、人体や穀物等にまで影響を及ぼすという安全衛生上の問題がある。また、土壌の汚染濃度が環境基準値を超える場合には、跡地をそのまま利用することができない等の問題もある。 In recent years, arsenic, lead, selenium, cadmium, mercury, cyanide, hexavalent chromium, fluorine, or boron (hereinafter also referred to as “heavy metal, etc.”) at sites such as factories, offices, and industrial waste disposal sites )) Is often reported as contaminated. In the Soil Contamination Countermeasures Law, the above nine types are defined as heavy metals. When soil is contaminated with heavy metals, there is a safety and health problem that the contamination spreads to the groundwater and affects the human body and grains. In addition, when the soil contamination concentration exceeds the environmental standard value, there is a problem that the site cannot be used as it is.
 汚染土壌中の重金属等を不溶化して、これら重金属等が土壌から溶出するのを抑制するための技術が種々提案されている。
 重金属等の溶出を抑制することができる不溶化材として、特許文献1には、炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を550~1,400℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が50~96.5質量%、水酸化マグネシウムの含有率が3.5~50質量%であり、カルシウムの含有率が酸化物換算で5.0質量%以下である軽焼マグネシア部分水和物を含むこと(ただし、炭酸カルシウムを85質量%以上の含有率で含む粉末を、前記軽焼マグネシア部分水和物100質量部に対して20~70質量部加えた場合を除く。)を特徴とする不溶化材が記載されている。
Various techniques for insolubilizing heavy metals and the like in contaminated soil and suppressing the elution of these heavy metals from the soil have been proposed.
As an insolubilizing material capable of suppressing elution of heavy metals and the like, Patent Document 1 discloses light-burned magnesia obtained by firing a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 550 to 1,400 ° C. A lightly baked magnesia partial hydrate obtained by hydrating a part of the hydrated magnesium magnesia, wherein the magnesium oxide content is 50 to 96.5% by mass and the magnesium hydroxide content is 3.5 to 50% by mass and containing a light-burned magnesia partial hydrate having a calcium content of 5.0% by mass or less in terms of oxide (however, containing 85% by mass or more of calcium carbonate) Insolubilizing material characterized in that the powder containing at a rate of 20 to 70 parts by mass is added to 100 parts by mass of the light-burned magnesia partial hydrate).
 また、特許文献2には、(A)炭酸マグネシウム及び/又は水酸化マグネシウムを主成分とする鉱物を650~1,000℃で焼成して得た軽焼マグネシアの一部を水和してなる軽焼マグネシア部分水和物であって、該軽焼マグネシア部分水和物中、酸化マグネシウムの含有率が65~96.5質量%、水酸化マグネシウムの含有率が3.5~30質量%であり、カルシウムの含有率が酸化物換算で3.0質量%以下である軽焼マグネシア部分水和物からなる粉末100質量部に対して、(B)炭酸カルシウムを85質量%以上の含有率で含む粉末を20~70質量部含む不溶化材が記載されている。 Patent Document 2 discloses that (A) a part of light-burned magnesia obtained by baking a mineral mainly composed of magnesium carbonate and / or magnesium hydroxide at 650 to 1,000 ° C. is hydrated. A light-burned magnesia partial hydrate having a magnesium oxide content of 65-96.5% by mass and a magnesium hydroxide content of 3.5-30% by mass. Yes, with respect to 100 parts by mass of the powder made of light-burned magnesia partial hydrate having a calcium content of 3.0% by mass or less in terms of oxide, (B) calcium carbonate at a content of 85% by mass or more. An insolubilizing material containing 20 to 70 parts by mass of the powder containing is described.
特許第4481360号公報Japanese Patent No. 4481360 特許第4343259号公報Japanese Patent No. 4343259
 本発明の目的は、重金属等に汚染された土壌に添加し、混合することで、土壌中の重金属等を不溶化して、重金属等の溶出を抑制することができる不溶化材を提供することである。 An object of the present invention is to provide an insolubilizing material that can be added to and mixed with soil contaminated with heavy metals to insolubilize heavy metals in the soil and suppress elution of heavy metals. .
 本発明者は、上記課題を解決するために鋭意検討した結果、軽焼マグネシアを主成分とする不溶化材であって、不溶化材の全量100質量%中、フォルステライトの含有率が6.0質量%以下であり、かつ、ふっ素(F)の含有率が0.045質量%以下である不溶化材によれば、上記目的を達成できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[5]を提供するものである。
[1] 軽焼マグネシアを主成分とする不溶化材であって、上記不溶化材の全量100質量%中、フォルステライトの含有率が6.0質量%以下であり、かつ、ふっ素(F)の含有率が0.045質量%以下であることを特徴とする不溶化材。
[2] 上記軽焼マグネシアが、炭酸マグネシウムを主成分とする固形原料を650~1,200℃で焼成して得たものである前記[1]に記載の不溶化材。
[3] 前記[1]又は[2]に記載の不溶化材100質量部、および、添加材3~100質量部を含む不溶化混合物であって、上記添加材が、炭酸カルシウム、高炉スラグ、水酸化マグネシウム、第二リン酸カルシウム、硫酸カルシウム、硫酸第一鉄、硫酸アルミニウム、およびゼオライトからなる群より選ばれる一種以上からなる粉末であることを特徴とする不溶化混合物。
[4] 前記[1]又は[2]に記載の不溶化材、または、前記[3]に記載の不溶化混合物を、土壌1mに対して、20~300kgの量で添加し、混合することを特徴とする不溶化方法。
[5] 前記[1]又は[2]に記載の不溶化材を製造するための方法であって、炭酸マグネシウムを主成分とする固形原料を、650~1,200℃で焼成し、軽焼マグネシアを得る焼成工程、および、上記焼成工程で得た軽焼マグネシアを粉砕して、上記不溶化材を得る粉砕工程、を含む不溶化材の製造方法。
As a result of intensive studies to solve the above problems, the present inventor is an insolubilized material mainly composed of light-burned magnesia, and the content of forsterite is 6.0% by mass in 100% by mass of the insolubilized material. %, And the insolubilized material having a fluorine (F) content of 0.045% by mass or less has found that the above-mentioned object can be achieved, thereby completing the present invention.
That is, the present invention provides the following [1] to [5].
[1] An insolubilized material mainly composed of light-burned magnesia, wherein the forsterite content is 6.0% by mass or less in the total amount of 100% by mass of the insolubilized material, and fluorine (F) is contained. An insolubilizing material characterized in that the rate is 0.045% by mass or less.
[2] The insolubilized material according to the above [1], wherein the lightly burned magnesia is obtained by firing a solid raw material mainly composed of magnesium carbonate at 650 to 1,200 ° C.
[3] An insolubilized mixture containing 100 parts by mass of the insolubilizing material according to [1] or [2] and 3 to 100 parts by mass of the additive, wherein the additive includes calcium carbonate, blast furnace slag, hydroxylation An insolubilized mixture, which is a powder composed of one or more selected from the group consisting of magnesium, dicalcium phosphate, calcium sulfate, ferrous sulfate, aluminum sulfate, and zeolite.
[4] insolubilizing material according to [1] or [2], or, the insolubilized mixture according to [3], with respect to the soil 1 m 3, that is added in an amount of 20 ~ 300 kg, mixed Characterized insolubilization method.
[5] A method for producing the insolubilizing material according to [1] or [2], wherein a solid raw material mainly composed of magnesium carbonate is fired at 650 to 1,200 ° C., and lightly burned magnesia And a pulverizing step of pulverizing the light-burned magnesia obtained in the calcination step to obtain the insolubilized material.
 本発明の不溶化材によれば、重金属等に汚染された土壌に添加し、混合することで、土壌中の重金属等を不溶化して、重金属等の溶出を抑制することができる。 The insolubilizing material of the present invention can be added to and mixed with soil contaminated with heavy metals to insolubilize heavy metals in the soil and suppress elution of heavy metals and the like.
 本発明の不溶化材は、軽焼マグネシアを主成分とする不溶化材であって、不溶化材の全量100質量%中、フォルステライトの含有率が6.0質量%以下であり、かつ、ふっ素(F)の含有率が0.045質量%以下のものである。
 不溶化材中の軽焼マグネシアの含有率は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。該含有率が50質量%以上であれば、重金属等の溶出をより抑制することができる。
The insolubilized material of the present invention is an insolubilized material mainly composed of light-burned magnesia, and the content of forsterite is 6.0% by mass or less in a total amount of 100% by mass of the insolubilized material, and fluorine (F ) Content of 0.045% by mass or less.
The content of lightly burned magnesia in the insolubilized material is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. If this content rate is 50 mass% or more, elution of heavy metals etc. can be suppressed more.
 軽焼マグネシアは、例えば、炭酸マグネシウムを主成分とする固形原料を650~1,200℃で焼成することで得ることができる。
 炭酸マグネシウムを主成分とする固形原料としては、例えば、マグネサイト、ドロマイト等の鉱物や、マグネシウム塩を含む海水等に、炭酸アルカリを加えることで得られる塊状物または粉粒状物等が挙げられる。
 固形原料中の炭酸マグネシウムの含有率は、より多くの軽焼マグネシアを得る観点から、好ましくは80質量%以上、より好ましくは85質量%以上、特に好ましくは90質量%以上である。
 また、焼成温度は、好ましくは650~1,200℃、より好ましくは750~1,100℃、さらに好ましくは800~1,000℃、さらに好ましくは850~1,000℃、さらに好ましくは900~1,000℃、特に好ましくは950~1,000℃である。該温度が650℃以上であれば、軽焼マグネシアの生成の効率が向上する。該温度が1,200℃以下であれば、重金属等の溶出をより抑制することができる。
 焼成時間は、固形原料の仕込み量や粒度等によって異なるが、通常、30分間~5時間である。
Light-burned magnesia can be obtained, for example, by baking a solid raw material mainly composed of magnesium carbonate at 650 to 1,200 ° C.
Examples of the solid raw material containing magnesium carbonate as a main component include a lump or powder obtained by adding alkali carbonate to minerals such as magnesite and dolomite, seawater containing magnesium salts, and the like.
The content of magnesium carbonate in the solid raw material is preferably 80% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more from the viewpoint of obtaining more light-burned magnesia.
The firing temperature is preferably 650 to 1,200 ° C., more preferably 750 to 1,100 ° C., further preferably 800 to 1,000 ° C., more preferably 850 to 1,000 ° C., and further preferably 900 to The temperature is 1,000 ° C., particularly preferably 950 to 1,000 ° C. If this temperature is 650 degreeC or more, the production | generation efficiency of light-fired magnesia will improve. If this temperature is 1200 degrees C or less, elution of heavy metals etc. can be suppressed more.
The firing time is usually 30 minutes to 5 hours, although it varies depending on the amount of solid materials charged and the particle size.
 不溶化材の全量100質量%中のフォルステライトの含有率は、6.0質量%以下、好ましくは5.0質量%以下、より好ましくは4.0質量%以下、さらに好ましくは3.0質量%以下、さらに好ましくは2.0質量%以下、さらに好ましくは1.0質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは0.3質量%以下である。該含有率が6.0質量%を超える場合、重金属等の溶出を十分に抑制することができなくなる。
 不溶化材の全量100質量%中のふっ素の含有率は、0.045質量%以下、好ましくは0.035質量%以下、より好ましくは0.025質量%以下、さらに好ましくは0.020質量%以下、特に好ましくは0.015質量%以下である。該含有率が0.045質量%を超える場合、重金属等の溶出を十分に抑制することができなくなる。
The content of forsterite in 100% by mass of the insolubilized material is 6.0% by mass or less, preferably 5.0% by mass or less, more preferably 4.0% by mass or less, and further preferably 3.0% by mass. Hereinafter, it is more preferably 2.0% by mass or less, further preferably 1.0% by mass or less, further preferably 0.5% by mass or less, and particularly preferably 0.3% by mass or less. When this content rate exceeds 6.0 mass%, elution of heavy metals etc. cannot fully be suppressed.
The content of fluorine in the total amount of 100% by mass of the insolubilized material is 0.045% by mass or less, preferably 0.035% by mass or less, more preferably 0.025% by mass or less, and further preferably 0.020% by mass or less. Especially preferably, it is 0.015 mass% or less. When the content exceeds 0.045% by mass, elution of heavy metals and the like cannot be sufficiently suppressed.
 本発明の不溶化材を構成する軽焼マグネシアのブレーン比表面積は、重金属等の溶出の抑制効果をより高める観点から、好ましくは4,000~20,000cm/g、より好ましくは4,500~10,000cm/g、特に好ましくは5,000~7,000cm/gである。 The Blaine specific surface area of the lightly burned magnesia constituting the insolubilized material of the present invention is preferably from 4,000 to 20,000 cm 2 / g, more preferably from 4,500 to from the viewpoint of further enhancing the effect of suppressing elution of heavy metals and the like. It is 10,000 cm 2 / g, particularly preferably 5,000 to 7,000 cm 2 / g.
 本発明の不溶化材に、必要に応じて、炭酸カルシウム、高炉スラグ、水酸化マグネシウム、第二リン酸カルシウム、硫酸カルシウム、硫酸第一鉄、硫酸アルミニウム、およびゼオライトからなる群より選ばれる一種以上からなる粉末を添加材として混合して、不溶化混合物としてもよい。
 不溶化材と添加材を混合してなる不溶化混合物によれば、重金属等の溶出をより抑制することができる。
 添加材の配合量は、不溶化材100質量部に対して、好ましくは3~100質量部、より好ましくは4~80質量部、特に好ましくは5~60質量部である。該量が3質量部以上であれば、重金属等の溶出をより抑制することができる。該量が100質量部以下であれば、本発明の不溶化材の量が少なくなることによる、重金属等の溶出の抑制効果の低下を防ぐことができる。
The insolubilizing material of the present invention, if necessary, a powder comprising at least one selected from the group consisting of calcium carbonate, blast furnace slag, magnesium hydroxide, dicalcium phosphate, calcium sulfate, ferrous sulfate, aluminum sulfate, and zeolite. May be mixed as an additive to form an insolubilized mixture.
According to the insolubilized mixture obtained by mixing the insolubilizing material and the additive, elution of heavy metals and the like can be further suppressed.
The amount of the additive is preferably 3 to 100 parts by mass, more preferably 4 to 80 parts by mass, and particularly preferably 5 to 60 parts by mass with respect to 100 parts by mass of the insolubilizing material. When the amount is 3 parts by mass or more, elution of heavy metals and the like can be further suppressed. When the amount is 100 parts by mass or less, it is possible to prevent a decrease in the elution suppression effect of heavy metals and the like due to a decrease in the amount of the insolubilizing material of the present invention.
 本発明の不溶化材、または、不溶化混合物(以下、「不溶化材等」ともいう。)を、不溶化処理の対象となる土壌(重金属等で汚染された土壌)に、添加し、混合することで、土壌中の重金属等を不溶化して、重金属等の溶出を抑制することができる。
 本発明において、不溶化の対象となる重金属等とは、例えば、ひ素、鉛、セレン、カドミウム、水銀、シアン、六価クロム、ふっ素、および、ほう素からなる群より選ばれる一種以上である。
 土壌1mに対する不溶化材等の添加量は、対象となる土壌の性状、施工条件、不溶化処理後の土壌に求められる重金属等の溶出量の上限値(基準値)等によっても異なるが、好ましくは20~300kg、より好ましくは25~200kg、特に好ましくは30~150kgである。該量が20kg以上であれば、重金属等の溶出をより抑制することができる。該量が300kg以下であれば、コストの増大を防ぐことができる。
 不溶化材等の添加および混合方法としては、対象となる土壌に不溶化材等を粉体のまま添加し、混合するドライ添加や、不溶化材に水を加えてスラリーとし、該スラリーを添加し、混合するスラリー添加が挙げられる。スラリー添加の場合の水/不溶化材の質量比は、好ましくは0.6~1.5、より好ましくは0.8~1.2である。
By adding the insolubilizing material or insolubilizing mixture of the present invention (hereinafter also referred to as “insolubilizing material”) to the soil to be insolubilized (soil contaminated with heavy metals, etc.), and mixing, The elution of heavy metals and the like can be suppressed by insolubilizing heavy metals and the like in the soil.
In the present invention, the heavy metal or the like to be insolubilized is at least one selected from the group consisting of arsenic, lead, selenium, cadmium, mercury, cyan, hexavalent chromium, fluorine, and boron.
The addition amount of such insoluble material to soil 1 m 3, the properties of the soil of interest, welding conditions, the upper limit of the amount of elution of such heavy metals required for soil after insolubilization (reference value) also varies depending on the like, preferably It is 20 to 300 kg, more preferably 25 to 200 kg, particularly preferably 30 to 150 kg. If the amount is 20 kg or more, elution of heavy metals and the like can be further suppressed. If the amount is 300 kg or less, an increase in cost can be prevented.
As a method for adding and mixing the insolubilizing material, etc., the insolubilizing material or the like is added to the target soil as a powder and mixed to dry, or water is added to the insolubilizing material to form a slurry, and the slurry is added and mixed. Slurry addition to be performed. The water / insolubilized material mass ratio in the case of slurry addition is preferably 0.6 to 1.5, more preferably 0.8 to 1.2.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[使用材料]
(1)軽焼マグネシアa:マグネサイト(炭酸マグネシウムの含有率:93質量%)を、1,000℃で焼成した後、得られた軽焼マグネシアを粉砕したもの(ブレーン比表面積:6,120cm/g)
(2)軽焼マグネシアb:天然の軽焼マグネシアを粉砕したもの(ブレーン比表面積:6,300cm/g)
(3)軽焼マグネシアc:マグネサイト(炭酸マグネシウムの含有率:94質量%)を、950℃で焼成した後、得られた軽焼マグネシアを粉砕したもの(ブレーン比表面積:5,970cm/g)
(4)土壌A~H:重金属等を含む土壌(各土壌に含まれる重金属等の種類や、溶出量等の詳細は表1に記載した。)
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[Materials used]
(1) Lightly burned magnesia a: Magnesite (magnesium carbonate content: 93% by mass) baked at 1,000 ° C. and then pulverized light burned magnesia (Brain specific surface area: 6,120 cm 2 / g)
(2) light burned magnesia b: those obtained by pulverizing natural light burned magnesia (Blaine specific surface area: 6,300cm 2 / g)
(3) Lightly burned magnesia c: Magnesite (magnesium carbonate content: 94% by mass) fired at 950 ° C. and then pulverized light burned magnesia (Brain specific surface area: 5,970 cm 2 / g)
(4) Soil A to H: soil containing heavy metals and the like (details such as the types of heavy metals contained in each soil and the amount of elution are shown in Table 1)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[不溶化材A~E及び不溶化混合物A~Hの調製]
 以下の不溶化材A~E、及び、不溶化混合物A~Hを調製した。
(1)不溶化材A:軽焼マグネシアaのみからなるもの
(2)不溶化材B:軽焼マグネシアaと軽焼マグネシアbを、不溶化材B中、軽焼マグネシアaの含有率が69質量%、軽焼マグネシアbの含有率が31質量%となるように、混合したもの
(3)不溶化材C:軽焼マグネシアaと軽焼マグネシアbを、不溶化材C中、軽焼マグネシアaの含有率が35質量%、軽焼マグネシアbの含有率が65質量%となるように、混合したもの
(4)不溶化材D:軽焼マグネシアbのみからなるもの
(5)不溶化材E:軽焼マグネシアcのみからなるもの
[Preparation of Insolubilized Materials A to E and Insolubilized Mixtures A to H]
The following insolubilized materials A to E and insolubilized mixtures A to H were prepared.
(1) Insolubilized material A: Containing only light-burned magnesia a (2) Insolubilized material B: Light-burned magnesia a and light-burned magnesia b are insolubilized material B, and the content of light-burned magnesia a is 69 mass%. (3) Insolubilized material C: Light calcined magnesia a and light calcined magnesia b are mixed with insolubilized material C so that the content of light calcined magnesia a is 31% by mass. (4) Insolubilized material D: composed only of light-burned magnesia b (5) Insolubilized material E: light-burned magnesia c only What consists of
(6)不溶化混合物A:軽焼マグネシアa100質量部に対して、表2に示す量の炭酸カルシウム(石灰石粉末、ブレーン比表面積:4,000cm/g、炭酸カルシウムの含有率:98.4質量%、有燐興業社製)を添加し混合したもの
(7)不溶化混合物B:軽焼マグネシアa100質量部に対して、表2に示す量の高炉スラグ微粉末(ブレーン比表面積:4,140cm/g、デイ・シイ社製)を添加し混合したもの
(8)不溶化混合物C:軽焼マグネシアa100質量部に対して、表2に示す量の水酸化マグネシウム(関東化学社製、鹿1級)を添加し混合したもの
(9)不溶化混合物D:軽焼マグネシアa100質量部に対して、表2に示す量のリン酸水素カルシウム2水和物(第二リン酸カルシウム、関東化学社製、鹿特級)を添加し混合したもの
(10)不溶化混合物E:軽焼マグネシアa100質量部に対して、表2に示す量の硫酸カルシウム(ブレーン比表面積:4,440cm/g、タイ産無水石膏、太平洋セメント社製)を添加し混合したもの
(11)不溶化混合物F:軽焼マグネシアa100質量部に対して、表2に示す量のゼオライト(奥多摩工業社製、商品名「タマライト」)を添加し混合したもの
(12)不溶化混合物G:軽焼マグネシアa100質量部に対して、表2に示す量の硫酸第一鉄(国産化学社製、食品添加物)を添加し混合したもの
(13)不溶化混合物H:軽焼マグネシアa100質量部に対して、表2に示す量の硫酸アルミニウム14~18水和物(関東化学社製、鹿特級)を添加し混合したもの
(6) Insolubilized mixture A: Calcium carbonate (limestone powder, Blaine specific surface area: 4,000 cm 2 / g, calcium carbonate content: 98.4 masses) based on 100 parts by mass of light-burned magnesia a (7) Insolubilized mixture B: blast furnace slag fine powder in an amount shown in Table 2 (brain specific surface area: 4,140 cm 2 ) with respect to 100 parts by mass of light-burned magnesia a (8) Insolubilized mixture C: Magnesium hydroxide in an amount shown in Table 2 with respect to 100 parts by weight of lightly burned magnesia (manufactured by Kanto Chemical Co., Ltd., deer grade 1) (9) Insolubilized mixture D: Calcium hydrogen phosphate dihydrate in the amount shown in Table 2 (dicalcium calcium phosphate, manufactured by Kanto Chemical Co., Inc. (10) Insolubilized mixture E: Calcium sulfate in an amount shown in Table 2 with respect to 100 parts by weight of light-burned magnesia a (Brain specific surface area: 4,440 cm 2 / g, Thai anhydrous gypsum, (11) Insolubilized mixture F: Zeolite (made by Okutama Kogyo Co., Ltd., trade name “Tamarite”) in the amount shown in Table 2 is added to 100 parts by mass of lightly burned magnesia a. Mixed (12) Insolubilized mixture G: A mixture obtained by adding and mixing ferrous sulfate in the amount shown in Table 2 (food additive, manufactured by Kokusan Kagaku Co.) to 100 parts by weight of light-burned magnesia a (13) Insolubilized Mixture H: A mixture of 14 to 18 aluminum sulfate 14-18 hydrate (Kanto Chemical Co., Ltd., deer special grade) in the amount shown in Table 2 to 100 parts by weight of light-burned magnesia a
 不溶化材A~E及び不溶化混合物A~H中、フォルステライト及びふっ素の含有率を表2に示す。
 なお、フォルステライトは、粉末X線回折装置を用いた検量線法によって測定した。また、ふっ素(全含有量)は、特開2010-44034号公報に記載の方法(具体的には、測定対象物に、反応促進剤であるWO微粉末を混合して加熱するにあたり、キャリアーガスとして非加湿の空気を用いて1,050℃で加熱し、発生したフッ化物を、吸収液である酢酸ナトリウム水溶液に捕集し、この水溶液中のふっ素の量を、イオンクロマトグラフ法で定量する方法)に準拠して測定した。
Table 2 shows the contents of forsterite and fluorine in the insolubilized materials A to E and the insolubilized mixtures A to H.
Forsterite was measured by a calibration curve method using a powder X-ray diffractometer. Fluorine (total content) is determined by the method described in JP-A 2010-44034 (specifically, the carrier to be measured is mixed with the WO 3 fine powder, which is a reaction accelerator, and heated. Heated at 1,050 ° C using non-humidified air as the gas, and collected fluoride was collected in an aqueous sodium acetate solution as an absorption solution. The amount of fluorine in this aqueous solution was determined by ion chromatography. Measured according to the method).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例1]
 表3に示す土壌1mと、表3に示す添加量の不溶化材を、ホバートミキサを用いて3分間混合した。得られた混合物を20℃の条件下で、7日間封緘養生を行った。養生後、環境省告示第18号に準拠して、使用した土壌に含まれる重金属等(ふっ素)の溶出試験を行い、重金属等(ふっ素)の溶出量を測定した。
 また、重金属等(ふっ素)溶出量測定用検液のpHを、pHメーター(堀場製作所社製、商品名「F-52」)およびpH電極(堀場製作所社製、商品名「9615-10D」)を用いて測定した。
[Example 1]
The soil 1 m 3 shown in Table 3 and the addition amount of the insolubilized material shown in Table 3 were mixed for 3 minutes using a Hobart mixer. The obtained mixture was sealed and cured at 20 ° C. for 7 days. After curing, in accordance with Ministry of the Environment Notification No. 18, the elution test of heavy metals (fluorine) contained in the used soil was performed, and the elution amount of heavy metals (fluorine) was measured.
In addition, the pH of the test solution for measuring the amount of elution of heavy metals (fluorine), pH meter (trade name “F-52” manufactured by Horiba, Ltd.) and pH electrode (trade name “9615-10D” manufactured by Horiba, Ltd.) It measured using.
[実施例2~3、比較例1~2]
 実施例1と同様にして、各土壌に含まれる重金属等の溶出量、及び、重金属等溶出量測定用検液のpHを測定した。
[実施例4~11]
 不溶化材の代わりに表3に示す不溶化混合物を使用する以外は、実施例1と同様にして、各土壌に含まれる重金属等の溶出量、及び、重金属等溶出量測定用検液のpHを測定した。
 結果を表3に示す。
 なお、六価クロムを含む土壌については、実験を行わなかった。
[Examples 2 and 3, Comparative Examples 1 and 2]
In the same manner as in Example 1, the elution amount of heavy metals and the like contained in each soil and the pH of the test solution for measuring the elution amount of heavy metals and the like were measured.
[Examples 4 to 11]
Except for using the insolubilized mixture shown in Table 3 in place of the insolubilized material, the amount of elution of heavy metals and the like contained in each soil and the pH of the test solution for measuring the elution amount of heavy metals etc. are measured in the same manner as in Example 1. did.
The results are shown in Table 3.
No experiment was conducted on soil containing hexavalent chromium.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、本発明の不溶化材(実施例1~3)および不溶化混合物(実施例4~11)によれば、土壌の重金属等の溶出量を環境基準値以下に抑えうることがわかる。特に、実施例1~3から、不溶化材の全量100質量%中のフォルステライトの含有率が小さいほど、土壌の重金属等の溶出量が小さくなることがわかる。
 一方、比較例1~2の不溶化材によれば、土壌の重金属等の溶出量が環境基準値を超えることがわかる。
From Table 3, it can be seen that according to the insolubilized material (Examples 1 to 3) and the insolubilized mixture (Examples 4 to 11) of the present invention, the amount of elution of heavy metals and the like in the soil can be suppressed below the environmental standard value. In particular, Examples 1 to 3 show that the smaller the forsterite content in 100% by mass of the insolubilized material, the smaller the amount of elution of heavy metals and the like in the soil.
On the other hand, according to the insolubilized materials of Comparative Examples 1 and 2, it can be seen that the amount of elution of heavy metals in the soil exceeds the environmental standard value.

Claims (5)

  1.  軽焼マグネシアを主成分とする不溶化材であって、上記不溶化材の全量100質量%中、フォルステライトの含有率が6.0質量%以下であり、かつ、ふっ素(F)の含有率が0.045質量%以下であることを特徴とする不溶化材。 A light-solubilized magnesia-based insolubilizing material having a forsterite content of 6.0% by mass or less in a total amount of 100% by mass of the insolubilizing material and a fluorine (F) content of 0 0.045% by mass or less, an insolubilizing material.
  2.  上記軽焼マグネシアが、炭酸マグネシウムを主成分とする固形原料を650~1,200℃で焼成して得たものである請求項1に記載の不溶化材。 The insolubilized material according to claim 1, wherein the light-burned magnesia is obtained by firing a solid raw material mainly composed of magnesium carbonate at 650 to 1,200 ° C.
  3.  請求項1又は2に記載の不溶化材100質量部、および、添加材3~100質量部を含む不溶化混合物であって、上記添加材が、炭酸カルシウム、高炉スラグ、水酸化マグネシウム、第二リン酸カルシウム、硫酸カルシウム、硫酸第一鉄、硫酸アルミニウム、およびゼオライトからなる群より選ばれる一種以上からなる粉末であることを特徴とする不溶化混合物。 An insolubilized mixture comprising 100 parts by mass of the insolubilized material according to claim 1 and 3 to 100 parts by mass of the additive, wherein the additive comprises calcium carbonate, blast furnace slag, magnesium hydroxide, dicalcium phosphate, An insolubilized mixture, which is a powder comprising at least one selected from the group consisting of calcium sulfate, ferrous sulfate, aluminum sulfate, and zeolite.
  4.  請求項1又は2に記載の不溶化材、または、請求項3に記載の不溶化混合物を、土壌1mに対して、20~300kgの量で添加し、混合することを特徴とする不溶化方法。 An insolubilization method comprising adding the insolubilizing material according to claim 1 or 2 or the insolubilizing mixture according to claim 3 in an amount of 20 to 300 kg to 1 m 3 of soil and mixing.
  5.  請求項1又は2に記載の不溶化材を製造するための方法であって、
     炭酸マグネシウムを主成分とする固形原料を、650~1,200℃で焼成し、軽焼マグネシアを得る焼成工程、および、
     上記焼成工程で得た軽焼マグネシアを粉砕して、上記不溶化材を得る粉砕工程、
    を含む不溶化材の製造方法。
    A method for producing the insolubilized material according to claim 1 or 2,
    A firing step of firing a solid raw material containing magnesium carbonate as a main component at 650 to 1,200 ° C. to obtain light-burned magnesia; and
    Crushing the light magnesia obtained in the firing step to obtain the insolubilized material,
    The manufacturing method of the insolubilization material containing this.
PCT/JP2016/088341 2015-12-24 2016-12-22 Insolubilization material, insolubilization mixture and insolubilization method WO2017110999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252100A JP6656912B2 (en) 2015-12-24 2015-12-24 Sorting method of insolubilizing material
JP2015-252100 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110999A1 true WO2017110999A1 (en) 2017-06-29

Family

ID=59090459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088341 WO2017110999A1 (en) 2015-12-24 2016-12-22 Insolubilization material, insolubilization mixture and insolubilization method

Country Status (2)

Country Link
JP (1) JP6656912B2 (en)
WO (1) WO2017110999A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675779B2 (en) * 2016-01-25 2020-04-01 太平洋セメント株式会社 Method for producing soil modifying material and method for modifying soil
JP6983671B2 (en) * 2018-01-16 2021-12-17 太平洋セメント株式会社 Insolubilizer and selection method of insolubilizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052986A1 (en) * 2008-11-07 2010-05-14 太平洋セメント株式会社 Insolubilizing agent
JP2010131517A (en) * 2008-12-04 2010-06-17 Taiheiyo Cement Corp Insolubilizing agent
JP2013088237A (en) * 2011-10-17 2013-05-13 Ntt Gp Eco Communication Inc Cesium contaminated soil surface solidification method, cesium solidification/insolubilization method, soil solidification agent used therefor, cesium removal method and magnesium-oxide based adsorbent used therefor
CN103756682A (en) * 2014-01-13 2014-04-30 东南大学 Solidifying agent of repairing high-concentration multiple heavy metal polluted site and preparation and application methods thereof
JP2015196829A (en) * 2014-04-03 2015-11-09 宇部興産株式会社 Insolubilizer and insolubilization method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220032A (en) * 2008-03-17 2009-10-01 Taiheiyo Cement Corp Insolubilization material
JP2012055815A (en) * 2010-09-08 2012-03-22 Taiheiyo Cement Corp Method of suppressing elution of heavy metals
JP2012082330A (en) * 2010-10-13 2012-04-26 Taiheiyo Cement Corp Insolubilization material of heavy metals, and insolubilization method of heavy metals
JP6184149B2 (en) * 2012-10-11 2017-08-23 太平洋セメント株式会社 Fired product
JP6370074B2 (en) * 2014-03-20 2018-08-08 太平洋セメント株式会社 Soil reforming method
JP6358513B2 (en) * 2017-05-09 2018-07-18 住友大阪セメント株式会社 Fluorine elution reducing material and fluorine elution reducing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052986A1 (en) * 2008-11-07 2010-05-14 太平洋セメント株式会社 Insolubilizing agent
JP2010131517A (en) * 2008-12-04 2010-06-17 Taiheiyo Cement Corp Insolubilizing agent
JP2013088237A (en) * 2011-10-17 2013-05-13 Ntt Gp Eco Communication Inc Cesium contaminated soil surface solidification method, cesium solidification/insolubilization method, soil solidification agent used therefor, cesium removal method and magnesium-oxide based adsorbent used therefor
CN103756682A (en) * 2014-01-13 2014-04-30 东南大学 Solidifying agent of repairing high-concentration multiple heavy metal polluted site and preparation and application methods thereof
JP2015196829A (en) * 2014-04-03 2015-11-09 宇部興産株式会社 Insolubilizer and insolubilization method

Also Published As

Publication number Publication date
JP6656912B2 (en) 2020-03-04
JP2017113703A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP4343259B1 (en) Insolubilizing material
JP5748015B1 (en) Insolubilizer and insolubilization method
JP6850171B2 (en) Solidification insolubilization method
JP2010131517A (en) Insolubilizing agent
WO2014162623A1 (en) Insolubilizing material for hazardous substances, and treatment method using same
JP6267922B2 (en) Hazardous substance treatment chemical
JP5306524B1 (en) Hazardous material insolubilizing material and treatment method using the same
JP6338885B2 (en) Oil-contaminated soil solidification treatment material and solidification treatment method
WO2017110999A1 (en) Insolubilization material, insolubilization mixture and insolubilization method
JP6355946B2 (en) Selenium insolubilizing material for soil and method for insolubilizing selenium in soil
JP6675779B2 (en) Method for producing soil modifying material and method for modifying soil
JP6957922B2 (en) Hardened coal ash
JP2012055815A (en) Method of suppressing elution of heavy metals
JP2014097477A (en) Harmful substance insolubilizing material and insolubilizing method of harmful substance
JP6992651B2 (en) Insolubilizing materials such as heavy metals and their manufacturing methods, quality control methods for insolubilizing materials such as heavy metals, and insolubilizing methods for heavy metals, etc.
JP6922448B2 (en) Coal ash composition
JP2016129869A (en) Insolubilization material and insolubilization slurry
JP2020029502A (en) Solidification material and solidification method of soil
JP6066268B2 (en) Heavy metal elution reducing material and method for reducing heavy metal elution from incinerated ash
JP2021041316A (en) Insolubilization material of heavy metal or the like and manufacturing method therefor, quality control method of insolubilization material of heavy metal or the like, and insolubilization method of heavy metal or the like
JP6356933B1 (en) Disposal method of mud generated by muddy water type shield method
JP6465604B2 (en) Insolubilized slurry
JP5689605B2 (en) Ground improvement material and ground improvement method
JP5629105B2 (en) Fluorine insolubilizing material for fluorine-contaminated soil and fluorine insolubilizing method for fluorine-contaminated soil using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878886

Country of ref document: EP

Kind code of ref document: A1