JP5898350B1 - Paving material - Google Patents
Paving material Download PDFInfo
- Publication number
- JP5898350B1 JP5898350B1 JP2015045832A JP2015045832A JP5898350B1 JP 5898350 B1 JP5898350 B1 JP 5898350B1 JP 2015045832 A JP2015045832 A JP 2015045832A JP 2015045832 A JP2015045832 A JP 2015045832A JP 5898350 B1 JP5898350 B1 JP 5898350B1
- Authority
- JP
- Japan
- Prior art keywords
- pavement
- silica
- aggregate
- surface temperature
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 20
- 239000002893 slag Substances 0.000 claims abstract description 20
- 238000002156 mixing Methods 0.000 claims abstract description 18
- 239000004568 cement Substances 0.000 claims abstract description 10
- 239000011230 binding agent Substances 0.000 claims abstract description 4
- 239000004575 stone Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000004927 clay Substances 0.000 abstract 1
- 239000011521 glass Substances 0.000 abstract 1
- 239000010438 granite Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 230000035699 permeability Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000010426 asphalt Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000011041 water permeability test Methods 0.000 description 5
- 239000004567 concrete Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 238000013329 compounding Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 241000923606 Schistes Species 0.000 description 1
- 108010082455 Sebelipase alfa Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000011384 asphalt concrete Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229940041615 kanuma Drugs 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 sulfonic acid compound Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Road Paving Structures (AREA)
Abstract
【課題】従来よりも容易な手段で舗装表面の温度低下が有効に図られる舗装材を提供することにある。【解決手段】骨材と、バインダーとしてのセメントと、混和剤とが混合された舗装材であって、骨材は多孔質水砕スラグ粒子と粒径が10mm以下のけい石、粘土瓦材、ガラス材のうちの少なくとも1種とを混合したものであり、骨材中のけい石の配合率を5〜25重量%とする。【選択図】なしAn object of the present invention is to provide a pavement material that can effectively reduce the temperature of the pavement surface by means easier than before. A pavement material in which an aggregate, a cement as a binder, and an admixture are mixed, the aggregate is porous granulated slag particles, and a granite having a particle size of 10 mm or less, a clay tile material, It is a mixture of at least one of the glass materials, and the blending ratio of the silica in the aggregate is 5 to 25% by weight. [Selection figure] None
Description
本発明は舗装材に係り、特に、舗装の表面温度の低下を図る技術に関する。 The present invention relates to a pavement material, and more particularly to a technique for reducing the surface temperature of a pavement.
道路や駐車場などの路面舗装として一般的なアスファルトコンクリートは、雨水が地中に浸透し難いことから、地下水の枯渇や地表温度が上昇してヒートアイランドの原因になるなどの問題を招来していた。特に道路における舗装表面の温度上昇は可塑化による交通荷重への耐久性低下の原因となり、また、歩道においては夏季の照り返しが歩行者への負担になる。そこで、例えば舗装内に設置した導水管路内に水を供給して舗装の表面温度を低下させるといった対策が講じられてはいるが、施工費用に負担が生じ、また水の供給が必要であるため、コスト面で不利という問題がある。一方、舗装表面を日射を反射し得る構成にしたり、舗装材に樹脂や金属繊維を含有させたりすることによって路面温度の上昇を抑制する技術も提案されている(特許文献1、2等参照)。 Asphalt concrete, which is commonly used as a road pavement for roads and parking lots, has caused problems such as the drainage of groundwater and the rise in surface temperature causing heat islands because rainwater is difficult to penetrate into the ground. . In particular, the temperature increase of the pavement surface on the road causes a decrease in durability against traffic loads due to plasticization, and the summer reflection on the sidewalk becomes a burden on pedestrians. Therefore, for example, measures have been taken to reduce the surface temperature of the pavement by supplying water into the water conduit installed in the pavement, but there is a burden on the construction cost and the supply of water is necessary. Therefore, there is a problem that it is disadvantageous in terms of cost. On the other hand, the technology which suppresses a raise of road surface temperature by making the pavement surface the structure which can reflect solar radiation, or making a pavement material contain resin and a metal fiber is also proposed (refer patent documents 1, 2 etc.). .
しかし、上記従来技術にあっては、材料費が高くなりがちであるため、なるべくコストを下げ、かつより容易な手段で舗装表面の温度低下が図られる技術が求められた。 However, since the material cost tends to be high in the above-described conventional technology, there has been a demand for a technology capable of reducing the cost as much as possible and reducing the temperature of the pavement surface with easier means.
本発明は、上記事情に鑑みてなされたものであり、その主たる目的は、従来よりも容易な手段で舗装表面の温度低下が有効に図られる舗装材を提供することにある。 This invention is made | formed in view of the said situation, The main objective is to provide the pavement material by which the temperature fall of a pavement surface is effectively aimed at by means easier than before.
本発明は、多孔質水砕スラグ粒子と高熱伝導材としてけい石とを混合した骨材と、バインダーとしてのセメントと、混和剤とが混合され、前記骨材における前記けい石の重量配合率が5〜25重量%であり、かつ該けい石の粒径が10mm以下であり、舗装材全体としての熱伝導率が0.3W/(m・K)以上であることを特徴とする舗装材である。 In the present invention, an aggregate obtained by mixing porous granulated slag particles and silica as a high thermal conductivity material, cement as a binder, and an admixture are mixed, and the weight ratio of the silica in the aggregate is 5-25 wt% der is, and the particle size of the silica stone is at 10mm or less, paving the thermal conductivity of the entire paving material, characterized in that it is 0.3W / (m · K) or higher It is.
本発明の骨材を構成する水砕スラグ粒子は、高炉で生成される溶融状態のスラグを水で急冷することによって得られるガラス質粒子を備えた多孔質の高炉水砕スラグが好適とされる。例えば、溶融したスラグに所定の水圧、水量の加圧水を噴射することによってそのような水砕スラグを得ることができる。加圧水の水圧、水量によって硬質で重い硬質水砕スラグと、多孔質で軽い軟質水砕スラグとに造り分けることができるが、本発明では軟質水砕スラグが好適に用いられる。 The granulated slag particles constituting the aggregate of the present invention are preferably porous blast furnace granulated slag having vitreous particles obtained by quenching molten slag produced in a blast furnace with water. . For example, such a granulated slag can be obtained by injecting pressurized water having a predetermined water pressure and water amount into molten slag. Although hard and heavy hard granulated slag can be divided into porous and light soft granulated slag depending on the pressure and amount of pressurized water, soft granulated slag is preferably used in the present invention.
また、本発明の骨材を構成する高熱伝導材のけい石は、主として珪酸分(SiO2)を主成分とする石英片岩を砕いたものが用いられ、上記のように粒径が10mm以下から粒径0mmと称される粉状のものが混合状態になったものを用いることができる。高熱伝導材としてけい石を混合することで本発明の舗装材は熱伝導性が高くなり、このため表層を本発明の舗装材を用いて舗装した場合においては、日射等によって表面に受けた熱が速やかに下方に伝わって表面の温度蓄積が生じ難くなり、その結果、表面温度の上昇が抑えられる。また、地熱よりも舗装表面温度が低くなる冬季においては、逆に地熱を受けて温度が表面側に伝わり、舗装の表面温度を上昇させて凍結が抑えられるという効果も得られる。なお、けい石の熱伝導率は0.35W/(m・K)程度である。 In addition, the high thermal conductive silica composing the aggregate of the present invention is obtained by pulverizing quartz schist mainly composed of silicic acid (SiO 2 ), and the particle size is 10 mm or less as described above. What mixed the powdery thing called a particle size of 0 mm can be used. By mixing silica as a high thermal conductivity material, the pavement material of the present invention has high thermal conductivity.For this reason, when the surface layer is paved with the pavement material of the present invention, the heat received on the surface by solar radiation or the like. Is promptly transmitted downward, making it difficult for temperature accumulation to occur on the surface, and as a result, an increase in surface temperature is suppressed. In winter, when the pavement surface temperature is lower than that of geothermal heat, conversely, the heat is transmitted to the surface side by receiving geothermal heat, and the effect of suppressing freezing by raising the surface temperature of the pavement is also obtained . The thermal conductivity of silica is 0 . It is about 35 W / (m · K).
本発明の骨材中のけい石の配合率は、5重量%を下回ると温度低下の効果が発揮され難く、一方、25重量%を超えると透水性や保水性が低下するため、5〜25重量%が好適であり、10〜20重量%であればより好ましい。 If the blending ratio of the silica in the aggregate of the present invention is less than 5% by weight, the effect of lowering the temperature is difficult to be exhibited. On the other hand, if it exceeds 25% by weight, the water permeability and water retention are decreased. % By weight is preferred, and 10 to 20% by weight is more preferred.
本発明の水砕スラグ粒子は多孔質であり、セメントで結合された骨材の水砕スラグ粒子どうしの間の空孔と、水砕スラグ粒子の中の空孔の存在により、本発明の舗装材は空孔率の高い舗装が可能となる。よって、この舗装の上面に落下した雨水等の水は直ちに舗装の内部に浸み込むので、十分な透水性が確保されるとともに、地中に雨水を速やかに供給することができる。また、多孔質ゆえに保水性も発揮され、水砕スラグ粒子に保水されることで熱伝導性は高くなるため、上記したように骨材のけい石と相まってより高い熱伝導性を示し、結果として舗装表面の温度低下の効果が促進される。本発明の多孔質水砕スラグ粒子は、差し渡し最外径が10mm以下、好ましくは1〜3mmが用いられる。 The granulated slag particles of the present invention are porous, and due to the presence of pores between the granulated slag particles of the cement-bonded aggregate and the pores in the granulated slag particles, the paving of the present invention The material can be paved with a high porosity. Therefore, rainwater or the like that has fallen onto the upper surface of the pavement immediately soaks into the interior of the pavement, so that sufficient water permeability is ensured and rainwater can be quickly supplied into the ground. Further, water retention in the porous due also be exhibited, because the thermal conductivity is increased by being water retention in granulated slag particles, as described above showed the silica stone higher than combined thermal conductivity of aggregate, as a result The effect of lowering the temperature of the pavement surface is promoted. The porous granulated slag particles of the present invention have an outermost diameter of 10 mm or less, preferably 1 to 3 mm.
本発明では、骨材に対するセメントの割合は、それがバインダーとして機能するに十分な量であれば良いが、例えばセメントの重量1に対して骨材を重量比2〜10の割合として骨材の割合を多くすることで、舗装材全体としての空孔率を高くすることができる。 In the present invention, the ratio of the cement to the aggregate may be an amount sufficient to function as a binder. For example, the ratio of the aggregate is 2 to 10 in weight ratio to the weight 1 of the cement. By increasing the ratio, the porosity of the paving material as a whole can be increased.
本発明の舗装材に添加される混和剤としては、例えばJIS A 6204「コンクリート用化学混和剤」のAE減水剤・標準型(I種)に適合するものが好適に用いられ、例えば変性リグニンスルホン酸化合物を主成分とするものを用いることができる。この種の混和剤によれば、セメントの分散作用と良質な連行空気泡との相互作用によってコンクリートの単位水量が減少し、また、コンクリートのワーカビリティ、強度発現性、耐凍害性、水密性、中性化に対する抵抗性の向上が図られ、コンクリートの耐久性を向上させることができる。本発明の舗装材に添加する混和剤の割合は、例えばセメントの重量を1とした場合に、重量比で0.006〜0.1とされる。 As admixture to be added to the paving material of the present invention, for example, JIS A 6204 "for concrete chemical admixture" AE down liquid medication-standard type (I type) is preferably used shall comply with, for example, modified lignin What has a sulfonic acid compound as a main component can be used. According to this kind of admixture, the unit water volume of concrete decreases due to the interaction of cement dispersion and good quality entrained air bubbles, and also the workability, strength development, frost damage resistance, water tightness of concrete, The resistance to neutralization is improved, and the durability of the concrete can be improved. The ratio of the admixture added to the paving material of the present invention is set to 0.006 to 0.1 by weight ratio, for example, when the weight of cement is 1.
本発明の舗装用材料は、水と混合すると比較的早期に固化するので、舗装する現場で水と混合することが望ましい。本発明の舗装材を用いて舗装を行うには、地表を露出させた路床に例えば水硬性粒度調整スラグなどの路盤材を敷き詰めて路盤を形成し、その上に水と混合した本発明の舗装材を敷き均し、ローラ等によって締固めることでなされる。 Since the paving material of the present invention solidifies relatively early when mixed with water, it is desirable to mix with water at the site of paving. In order to perform paving using the paving material of the present invention, a roadbed is formed by laying a roadbed material such as hydraulic particle size adjusting slag on the roadbed with the ground surface exposed, and mixed with water on the roadbed. This is done by paving the material and compacting it with rollers.
本発明によれば、骨材に高熱伝導材としてけい石を所定量含有することにより、従来よりも容易な手段で舗装表面の温度低下が有効に図られる舗装材が提供されるといった効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that the pavement material by which the temperature fall of a pavement surface is effectively aimed at by the means easier than before is provided by containing a predetermined amount of silica as a high heat conductive material in an aggregate. .
以下、実施例を提示して本発明の効果を実証する。
[1]舗装材の作製
・実施例
骨材(高炉水砕スラグ:三和グランド社、けい石(栃木県鹿沼産:粒径10mm〜0mm):アワノ砕石社)と、セメントと、混和剤(マスターポゾリス78S:BASFジャパン社)と、水とを、表1に示す配合率とし、高炉水砕スラグ、けい石、セメント、混和剤・水の順にモルタルミキサーに投入して2分間混合し、本発明に基づく実施例1〜5の舗装材を作製した。なお、表1に示す配合率(%)は重量%である。
Hereinafter, examples will be presented to demonstrate the effects of the present invention.
[1] Production and Examples of Pavement Material Aggregate (blast furnace granulated slag: Sanwa Grand Co., Ltd., silica (from Kanuma, Tochigi Prefecture: particle size 10 mm to 0 mm): Awano Crushed Co.), cement, and admixture ( Master Pozzolith 78S: BASF Japan Ltd.) and water at the blending ratio shown in Table 1 and put into a mortar mixer in the order of granulated blast furnace slag, silica, cement, admixture and water, and mixed for 2 minutes. Pavement materials of Examples 1 to 5 based on the invention were produced. In addition, the compounding ratio (%) shown in Table 1 is weight%.
・比較例
表1に示すように、けい石の配合率を30重量%とし、これ以外は実施例1〜5と同様に配合して、比較例1の舗装材を作製した。また、骨材を高炉水砕スラグのみとし、これ以外は実施例1〜5と同様に配合した比較例2の舗装材を混合して作製した。
Comparative Example As shown in Table 1, a pavement material of Comparative Example 1 was prepared by setting the blending ratio of silica to 30% by weight, and otherwise blending in the same manner as in Examples 1-5. Moreover, only the blast furnace granulated slag was used as the aggregate, and the pavement material of Comparative Example 2 blended in the same manner as in Examples 1 to 5 was prepared.
[2]供試体の作製
(A)室内照射試験および室内透水試験用の供試体
「舗装調査・試験法便覧」B001マーシャル安定度試験に規定されたモールドを用いて、実施例1〜5、比較例1、2の舗装材をそれぞれ使用し、締固めて直径101mm、厚さ77mmの円筒形に形成した供試体を3個作製した。硬化養生28日以後に、1組3個中の1個を室内透水試験に供した。また、硬化養生28日以後に、1組3個中の2個を厚さ50mmに切断して、下記室内照射試験に供した。
[2] Preparation of Specimen (A) Specimen for Indoor Irradiation Test and Indoor Permeability Test "Pavement Survey and Test Method Handbook" B001 Marshall Stability Test, Examples 1-5, Comparison Using each of the pavement materials of Examples 1 and 2, three specimens formed into a cylindrical shape having a diameter of 101 mm and a thickness of 77 mm were formed by compaction. After 28 days of curing and curing, one of three in one set was subjected to an indoor water permeability test. Further, after 28 days of curing and curing, 2 out of 3 pieces were cut into a thickness of 50 mm and subjected to the following indoor irradiation test.
(B)模擬路盤の供試体
アスファルト舗装に用いる最大粒径13mmの骨材に2重量%のセメントを添加混合し、上記供試体と同様の方法で直径101mm、厚さ77mmの円筒形形成した模擬路盤を作製した。硬化養生28日以後に厚さ50mmに切断して、下記室内照射試験に供した。
(B) Specimen for simulated roadbed 2% by weight cement was added to and mixed with aggregate with a maximum particle size of 13 mm used for asphalt pavement, and a cylinder with a diameter of 101 mm and a thickness of 77 mm was formed in the same manner as the above specimen. A roadbed was produced. After 28 days of curing and curing, it was cut into a thickness of 50 mm and subjected to the following indoor irradiation test.
(C)熱伝導率測定用供試体
「舗装調査・試験法便覧」B003ホイールトラッキング試験に規定する型枠の内側に厚さ20mmの敷板を設置し、実施例1〜5、比較例1、2の舗装材をそれぞれ使用し、締固めて長さ300mm、幅300mm、厚さ30mmの供試体を1個作製した。硬化養生28日以後に、長さ200mm、幅200mmに切断し、恒温乾燥器にて60℃で24時間乾燥後に下記熱伝導率測定試験に供した。
(C) Specimen for measuring thermal conductivity "Handbook of pavement survey and test method" B003 A 20 mm-thick laying board is installed inside the formwork specified in the wheel tracking test. Examples 1 to 5 and Comparative Examples 1 and 2 Each of these pavement materials was compacted and compacted to prepare one specimen having a length of 300 mm, a width of 300 mm, and a thickness of 30 mm. After 28 days of curing and curing, it was cut into a length of 200 mm and a width of 200 mm, dried at 60 ° C. for 24 hours in a constant temperature dryer, and then subjected to the following thermal conductivity measurement test.
(D)従来の舗装として、実施例1〜5および比較例1、2とは別に、標準供試体として最大粒径13mmの密粒度アスファルト混合物による舗装(以下、アスファルト舗装と称する)を比較対象の舗装とする。 (D) As a conventional pavement, apart from Examples 1 to 5 and Comparative Examples 1 and 2, pavement using a dense asphalt mixture having a maximum particle size of 13 mm as a standard specimen (hereinafter referred to as asphalt pavement) is to be compared. Paved.
[3]特性調査
上記実施例1〜5、比較例1、2の供試体につき、以下の各試験および各測定を行って特性を調べた。
[3] Characteristic investigation The specimens of Examples 1 to 5 and Comparative Examples 1 and 2 were subjected to the following tests and measurements to examine the characteristics.
3−1.舗装の熱伝導率
はじめに、実施例1〜5、比較例1、2の供試体の舗装につき、JIS A 1412-2に基づいて熱伝導率を調べた。その結果を表2および図1に示す。
3-1. Thermal conductivity of pavement First, the thermal conductivity of the specimens of Examples 1 to 5 and Comparative Examples 1 and 2 was examined based on JIS A 1412-2. The results are shown in Table 2 and FIG.
3−2.室内照射試験
「舗装性能評価法別冊』(平成20年3月、日本道路協会)、1−6路面温度低減値に規定された「(2)路面温度低減値を求めるための照射ランプによる供試体表面温度の測定法」に準じて、以下のように室内照射試験を行った。
3-2. Indoor irradiation test “Pavement performance evaluation method separate volume” (March 2008, Japan Road Association), 1-6 Specified by irradiation lamp to determine road surface temperature reduction value An indoor irradiation test was conducted as follows according to “Measurement method of surface temperature”.
上記(D)のアスファルト舗装の供試体を恒温槽(30℃)で5時間以上養生した後、断熱材を供試体の底面と側面に設置し、照射試験装置をセットした恒温恒湿槽(室温30℃、湿度50%)に設置する。供試体表面の所定の3個所に熱電対を貼り付けてデータロガーに接続後、照射試験を開始する。表面温度平均値が30℃に達した時点から3時間にわたり5分ごとに測定値をデータロガーに自動記録し、3時間後に表面温度平均値が60℃になるように照射ランプの高さを調整する。 After the specimen of asphalt pavement (D) above was cured in a thermostatic bath (30 ° C.) for 5 hours or more, a heat insulating material was installed on the bottom and side surfaces of the specimen, and a constant temperature and humidity bath (room temperature) in which an irradiation test apparatus was set. (30 ° C, 50% humidity). After attaching thermocouples at predetermined three locations on the surface of the specimen and connecting them to the data logger, the irradiation test is started. Measured values are automatically recorded in a data logger every 5 minutes for 3 hours from the time when the surface temperature average value reaches 30 ° C, and the height of the irradiation lamp is adjusted so that the surface temperature average value becomes 60 ° C after 3 hours. To do.
上記(B)の模擬路盤の供試体を恒温水槽(水温30℃)内で1時間水浸養生し、照射試験直前にウエスで表面の水分を拭き取り表乾状態にする。この後、模擬路盤供試体の表面の中央部1個所に熱電対を貼り付ける。 The specimen of the simulated roadbed of (B) is water-cured for 1 hour in a constant temperature water bath (water temperature 30 ° C.), and the surface moisture is wiped off with a waste cloth to make it surface dry immediately before the irradiation test. Thereafter, a thermocouple is attached to one central portion of the surface of the simulated roadbed specimen.
上記(A)の実施例1〜5、比較例1、2の供試体のそれぞれを恒温槽(室温30℃)で5時間以上養生した後、これら供試体の裏面を模擬路盤の表面に固定し、さらに底面および側面に断熱材を設置する。そして供試体表面の所定の3個所に熱電対を貼り付ける。 After curing each of the specimens of Examples 1 to 5 and Comparative Examples 1 and 2 in (A) for 5 hours or more in a thermostatic chamber (room temperature 30 ° C.), the back surface of these specimens is fixed to the surface of the simulated roadbed. Furthermore, heat insulating materials are installed on the bottom and side surfaces. And a thermocouple is affixed on predetermined three places on the surface of the specimen.
照射試験装置がセットされた恒温恒湿槽(室温30℃、湿度50%)内に断熱材ブロックに固定した上記供試体を設置し、照射ランプ高さを試験準備で確認した高さに調整する。この後、上記と同様に照射試験を実施する。 Place the above-mentioned specimen fixed to a heat insulating material block in a constant temperature and humidity chamber (room temperature 30 ° C, humidity 50%) where the irradiation test equipment is set, and adjust the irradiation lamp height to the height confirmed in the test preparation. . Thereafter, an irradiation test is performed in the same manner as described above.
データロガーに記録された表面温度について、照射試験3時間後の3個所の値を供試体別に表3に示す。また、データロガーに記録された表面温度について、供試体別2回の平均表面温度と照射試験の5分ごとの経過時間との関係を表3および図2に示す。 Regarding the surface temperature recorded in the data logger, three values after 3 hours of the irradiation test are shown in Table 3 for each specimen. Moreover, regarding the surface temperature recorded in the data logger, the relationship between the average surface temperature of two times for each specimen and the elapsed time every 5 minutes of the irradiation test is shown in Table 3 and FIG.
アスファルト舗装の供試体の表面温度は60℃を示しており、全ての供試体においてアスファルト舗装より表面温度が10℃以上低下している。表3および図2によれば、表面温度はけい石の配合率が高くなると低下傾向を示すが、けい石の配合率が20重量%(実施例4)で表面温度は最低となり、それ以後は上昇傾向を示している。この傾向は、湿潤状態の模擬路盤による影響と考えられる。すなわち、けい石の配合量が多くなると熱伝導率は高くなるが、保水率が低減し、毛細管現象による模擬路盤中の水分の吸い上げによる冷却効果が低減するからである。 The surface temperature of the asphalt pavement specimens is 60 ° C., and the surface temperature of all the specimens is 10 ° C. or more lower than that of the asphalt pavement. According to Table 3 and FIG. 2, the surface temperature tends to decrease as the blending ratio of the silica increases, but the surface temperature becomes the lowest when the blending ratio of the silica is 20% by weight (Example 4), and thereafter. It shows an upward trend. This tendency is considered to be caused by the wet simulated roadbed. That is, when the blending amount of silica increases, the thermal conductivity increases, but the water retention rate decreases, and the cooling effect due to the suction of moisture in the simulated roadbed due to the capillary phenomenon decreases.
データロガーに記録された裏面温度について、照射試験開始時および3時間後の裏面温度を個別に、また、3時間後の裏面温度の供試体種類別の平均値を表4に示す。また、データロガーに記録された裏面温度について、2回の裏面温度平均値と照射試験の5分ごとの経過時間との関係を図3に示す。これによると、舗装裏面の温度は、けい石の配合率の増加に伴い上昇傾向を示し、熱伝導率が大きくなっているものと考えられる。 Regarding the back surface temperature recorded in the data logger, Table 4 shows the back surface temperature at the start of the irradiation test and after 3 hours individually, and the average value of the back surface temperature after 3 hours for each specimen type. FIG. 3 shows the relationship between the back surface temperature average value of the two times and the elapsed time every 5 minutes of the irradiation test for the back surface temperature recorded in the data logger. According to this, it is thought that the temperature of the back surface of the pavement shows an upward trend as the blending ratio of the silica is increased, and the thermal conductivity is increased.
データロガーに記録された表面温度と裏面温度について、照射試験3時間後の種類別表面温度の平均値、裏面温度の平均値、および表面温度と裏面温度との温度差を、表5および図4に示す。これによると、表面と裏面の温度差は、けい石の配合率の増加に伴って小さくなることが判る。 Regarding the surface temperature and the back surface temperature recorded in the data logger, the average value of the surface temperature by type after 3 hours of the irradiation test, the average value of the back surface temperature, and the temperature difference between the surface temperature and the back surface temperature are shown in Table 5 and FIG. Shown in According to this, it turns out that the temperature difference of the front surface and a back surface becomes small with the increase in the compounding ratio of a silica.
3−3.現場透水試験・室内透水試験
「舗装調査・試験法便覧」(平成19年6月 社団法人日本道路協会)」に記載される「S025 現場透水量試験」に基づいた現場透水試験と、「B012 開粒度アスファルト混合物の透水試験方法」に基づいた室内透水試験を行った。これらの結果を表6および図5のグラフに示す。この結果によれば、けい石の配合率が増えると透水能力が低減はするが、いずれの実施例も車道用の規格値を満足しており、本発明のものは透水能力が十分であることが確認された。
3-3. On-site permeability test / indoor permeability test On-site permeability test based on “S025 On-site permeability test” described in “Handbook of pavement survey and test method” (Japan Road Association, June 2007) and “B012 Open” The indoor water permeability test based on the method of water permeability test of particle size asphalt mixture was conducted. These results are shown in Table 6 and the graph of FIG. According to this result, the water permeability decreases as the blending ratio of silica increases, but all the examples satisfy the standard value for roadways, and the water permeability of the present invention is sufficient. Was confirmed.
3−4.透水係数と表面温度の関係
図6に、室内透水試験と表面温度の測定結果をグラフ化した。これによると、骨材中へのけい石の添加による舗装表面温度の低減効果を得るためには、骨材中のけい石の配合率は5重量%以上が必要であり、配合率25重量%を超えると、透水・保水機能を阻害し、舗装表面の温度低減効果が得られなくなると考えられる。透水係数の値は、けい石の配合率の増加に伴い減少し、配合率が30重量%で車道用の規格値(1×10−2cm/s)を下回る。したがって表面温度の低減と透水・保水機能の両立が効果的に図れる骨材中のけい石の配合率は、5〜25重量%が適切である。
3-4. FIG. 6 is a graph showing the results of indoor water permeability tests and surface temperature. According to this, in order to obtain the effect of reducing the pavement surface temperature due to the addition of the silica in the aggregate, the blending ratio of the silica in the aggregate needs to be 5% by weight or more, and the blending ratio is 25% by weight. Exceeding the water resistance will impede the water permeability and water retention functions, making it impossible to obtain the temperature reduction effect on the pavement surface. The value of the water permeability decreases with an increase in the blending rate of the silica, and the blending rate is 30% by weight, which is lower than the standard value for roadways (1 × 10 −2 cm / s). Therefore, 5 to 25% by weight is appropriate for the blending ratio of the silica in the aggregate that can effectively reduce the surface temperature and achieve both water permeability and water retention functions.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015045832A JP5898350B1 (en) | 2015-03-09 | 2015-03-09 | Paving material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015045832A JP5898350B1 (en) | 2015-03-09 | 2015-03-09 | Paving material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5898350B1 true JP5898350B1 (en) | 2016-04-06 |
JP2016166456A JP2016166456A (en) | 2016-09-15 |
Family
ID=55648225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015045832A Active JP5898350B1 (en) | 2015-03-09 | 2015-03-09 | Paving material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5898350B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020012345A (en) * | 2018-07-20 | 2020-01-23 | 日本軽金属株式会社 | Pavement material with high heat dissipation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7277738B2 (en) * | 2019-05-30 | 2023-05-19 | 日本製鉄株式会社 | Simple pavement construction method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08259294A (en) * | 1995-03-20 | 1996-10-08 | Nippon Steel Corp | Polymer cement composition for repairing concrete structure |
JP2007084420A (en) * | 2005-08-26 | 2007-04-05 | Ohbayashi Corp | Mortar composition, coating material, and spray material |
JP2007176788A (en) * | 2005-11-29 | 2007-07-12 | Gako Imai | Composition for porous ceramic, porous ceramic using the same and method for manufacturing the same |
JP2009091872A (en) * | 2007-10-12 | 2009-04-30 | Yoshikazu Fuji | Composition for road surface pavement and road surface paving method |
JP2012171855A (en) * | 2011-02-24 | 2012-09-10 | Yoshiji Hirota | Curing composition using no cement |
JP2014152073A (en) * | 2013-02-08 | 2014-08-25 | Ube Ind Ltd | Block having high water retentivity, and method for producing the same |
-
2015
- 2015-03-09 JP JP2015045832A patent/JP5898350B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08259294A (en) * | 1995-03-20 | 1996-10-08 | Nippon Steel Corp | Polymer cement composition for repairing concrete structure |
JP2007084420A (en) * | 2005-08-26 | 2007-04-05 | Ohbayashi Corp | Mortar composition, coating material, and spray material |
JP2007176788A (en) * | 2005-11-29 | 2007-07-12 | Gako Imai | Composition for porous ceramic, porous ceramic using the same and method for manufacturing the same |
JP2009091872A (en) * | 2007-10-12 | 2009-04-30 | Yoshikazu Fuji | Composition for road surface pavement and road surface paving method |
JP2012171855A (en) * | 2011-02-24 | 2012-09-10 | Yoshiji Hirota | Curing composition using no cement |
JP2014152073A (en) * | 2013-02-08 | 2014-08-25 | Ube Ind Ltd | Block having high water retentivity, and method for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020012345A (en) * | 2018-07-20 | 2020-01-23 | 日本軽金属株式会社 | Pavement material with high heat dissipation |
JP7139178B2 (en) | 2018-07-20 | 2022-09-20 | 日本軽金属株式会社 | Paving material with high heat dissipation |
Also Published As
Publication number | Publication date |
---|---|
JP2016166456A (en) | 2016-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107915427B (en) | Construction method of semi-flexible pavement material | |
Ajamu et al. | Evaluation of structural performance of pervious concrete in construction | |
CN101817660B (en) | Heat-insulating bituminous mixture for roads and production method thereof | |
CN108532407A (en) | One kind is anti-blocking to ooze aggregate size selection method in water-permeable brick and anti-blocking surface layer soon | |
JP5898350B1 (en) | Paving material | |
JP4138398B2 (en) | Concrete pavement and concrete block with water retention function | |
KR20120108688A (en) | Polymer cement mortar composite and manufacturing method of water retainable and permeable block using the composite | |
JP2007145669A (en) | Water-retainable block and its production method | |
KR101037576B1 (en) | Conservatism mortar composition, pavement composition and pavement | |
Okunade | Engineering properties of locally manufactured burnt brick pavers for Agrarian and rural earth roads | |
JP4456984B2 (en) | Water-retaining concrete member | |
KR101136118B1 (en) | Water-soluabe polymer, Cement mortar composite with water holding characterics, boundary block using the same and manufacturing method thereof | |
KR100924765B1 (en) | Road pavement composition of enhanced retentiveness and drainage, and constructing method using the composition | |
JP2003201705A (en) | Paving body and its building method | |
JP4617084B2 (en) | Construction method of porous concrete pavement | |
JP3050793B2 (en) | Pavement material and pavement block using the same | |
JP6617043B2 (en) | Construction method of drainage pavement | |
JP3852290B2 (en) | Road pavement structure and road pavement method | |
CN101148339B (en) | Water pervious concrete and producing method thereof | |
JP5440832B2 (en) | Earth-based paving material | |
JP2008215039A (en) | Water-retention/permeation pavement block and its manufacturing method | |
KR101037577B1 (en) | Paving blocks using mortar composition and preparation method | |
JP5639627B2 (en) | Earth-based pavement construction method and soil-based pavement | |
KR101616273B1 (en) | Bottom ash to the main material for a eco-friendly composition permeable block | |
JP7432212B1 (en) | Terrazzo structure and method for manufacturing terrazzo structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160303 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5898350 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |