JP4138398B2 - Concrete pavement and concrete block with water retention function - Google Patents

Concrete pavement and concrete block with water retention function Download PDF

Info

Publication number
JP4138398B2
JP4138398B2 JP2002240366A JP2002240366A JP4138398B2 JP 4138398 B2 JP4138398 B2 JP 4138398B2 JP 2002240366 A JP2002240366 A JP 2002240366A JP 2002240366 A JP2002240366 A JP 2002240366A JP 4138398 B2 JP4138398 B2 JP 4138398B2
Authority
JP
Japan
Prior art keywords
concrete
water
cement
water retention
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002240366A
Other languages
Japanese (ja)
Other versions
JP2004076482A (en
Inventor
章 高橋
Original Assignee
章 高橋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 章 高橋 filed Critical 章 高橋
Priority to JP2002240366A priority Critical patent/JP4138398B2/en
Publication of JP2004076482A publication Critical patent/JP2004076482A/en
Application granted granted Critical
Publication of JP4138398B2 publication Critical patent/JP4138398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • C04B5/065Porous slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1088Water
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Road Paving Structures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽熱の蓄熱により歩道、道路、公園、駐車場等の舗装表面温度が上昇する事を防ぐ方法に関する。
【0002】
【従来の技術】
アスファルトやコンクリートなどの舗装道路による太陽熱の蓄熱は夏季においては舗装面が温度上昇し60℃近くまで上昇する。特に大都市部ではビルの乱立により舗装面の割合が高く、また緑化不足のため都市部のヒートアイランド現象が起きている。そこで近年、舗装部の温度を下げる方法として微細な空隙を有するセラミック板を舗装部へ使用する方法があるがセラミック板の耐久性、施工性及びコスト面で問題がある。また既設のアスファルトやコンクリート舗装部へセメントと吸水性樹脂をスラリー状にして浸透させる方法があるが保水性能が低い。
【0003】
【発明が解決しようとする課題】
本発明は舗装道路の温度を下げ、しかも安価な保水機能を有するコンクリート舗装及びコンクリートブロックを提供する。
【0004】
さらに、コンクリートブロックの平坦度確保と安定性の目的で自然砂を敷砂として使用しているものに替え保水機能と水硬性を有し、しかも締め固めに優れた敷き砂を提供する。
【0005】
【課題を解決する手段】
本発明の舗装道路の温度上昇を防ぐ方法のコンクリート舗装は次の様な構成とする。すなわちこの発明に使用するコンクリート舗装の骨材は、多孔質で強度があり微小孔隙が多くあり、透水性が高い特性を持った高炉水砕軟質スラグと高炉徐冷スラグを粒度調整し適量混ぜ、これに保水性が高いバーミキュライト(蛭石)を加えたものとする。この骨材へバインダーとしてセメントとポリマーエマルジョン樹脂を加え、さらにセメントの水和反応に必要な水の保水を高めるためセルロースエーテルを添加すると共にコンクリート舗装は空隙率が5〜20容積%に加工する事を特徴とする。この構成によるとコンクリート舗装は、雨水の浸透がコンクリートへすみやかに浸透し、浸透した水分が多孔質で微小孔隙が多数ある高炉水砕軟質スラグ及び高炉徐冷スラグに吸水及び保水され、また保水力が高いバーミキュライト(蛭石)骨材と相俟って保水される為、長時間コンクリート舗装へ水分が保持される。よって、太陽熱によりコンクリート舗装の温度上昇が起きてくる場合、保水された水分が徐々に気化されるため舗装部は長期間低温状態に維持される。また透水性は、骨材の粒度調整と水の比率を調整すれば所定の透水性能が確保されて雨水がコンクリート舗装内部へ浸透され、保水に必要な水はコンクリート舗装部へ補給され、それ以外は地下へ浸透されるため保水効率の良い構造となる。
【0006】
コンクリートブロックにて舗装する場合、前述の骨材の高炉水砕軟質スラグを粒度調整しコンクリートブロックの敷き砂代替として使用すれば前述のコンクリートブロック及び敷き砂の両効果によりさらに保水効果が向上する。
【0007】
【発明の実施の形態】
以下、詳細に本発明を説明する。本発明で請求項1に記載のコンクリート舗装へ使用する材料は、骨材、セメント、ポリマーエマルジョン、セルロースエーテル及び水とからなる混合物で、必要により顔料又は化粧骨材を入れる。骨材は多孔質で強度があり微小孔隙に雨水等が吸水し易い構造をしている高炉水砕軟質スラグで粒度0.15〜2.36mmを43〜60重量%と高炉徐冷スラグで粒度1.2〜4.75mmを13〜30重量%に、保水力が高いバーミキュライト(蛭石)0.15〜2.36mmを0.3〜3.0重量%を混合したものを使用する。セメントは普通ポルトランドセメント、高炉セメント及び白色ポルトランドセメントのいずれかを20〜25重量%とする。セメント量が25重量%を超えると骨材が保有している微小孔隙をセメントで覆い骨材へ侵入する雨水を遮断しコンクリート舗装の保水性が低下する。ポリマーエマルジョンはコンクリートの増粘性を向上し、骨材へセメントペーストが付着しコンクリート強度を向上さす為に、スチレン・アクリル共重合エマルジョン(クラリアントポリマー株式会社製:モビニールLDM6880)又はアクリル系エマルジョン(旭化成:A−1500)をセメント比2重量%添加する。また骨材自体が吸収性のよい材料を選定している為、コンクリートの水和反応に使用される水が骨材へ吸収され水和反応に必要な水不足を防止する目的としてセメント水の保水力が高いセルロースエーテルをセメント比0.4重量%添加する。水和反応に必要な水はセメント比40〜44重量%とする。水はコンクリート舗装の強度と透水性に影響し、水が少ないと強度が落ち、多すぎると透水性が落ちそれに伴い保水性も落ちる。製造方法は図5に示すコンクリート舗装の製造工程に示す方法で製造する。まず骨材、セメント、セルロースエーテルを混練ミキサーへ入れ空練りを約2分間行い、その後水及びポリマーエマルジョンを入れ約3分間混練し所定の現場へコンクリートを打ち込む。養生は自然乾燥で4週間経過すれば所定の強度が出る。
【0008】
請求項2に記載のコンクリートブロックへ使用される材料は、請求項1で使用する材料と同じものを使用する。ただしコンクリートブロックへ着色する場合は顔料をセメント比1〜5重量%添加する。化粧骨材は化粧表面の発色程度により適量混合する。またコンクリートブロックの表面へ美装性を向上させる為に表面加工としてショットブラスト、研磨、洗い出し等の加工を加える事も可能である。2層型コンクリートブロックの製造方法は図4に示す方法で製造する。まず表層部の骨材、セメント、セルロースエーテルを混練ミキサーへいれ空練を約2分間行う。このとき表層部へ着色したい場合は、顔料や化粧骨材を適量混ぜる。その後、水とポリマーエマルジョンをいれ約3分間混練し型枠へ定量充填し4000〜8000rpmの振動をあたえる。次に基層部の骨材、セメント、セルロースエーテル、を混練ミキサーへ入れ空練り約2分間行い、その後、水とポリマーエマルジョンを入れ約3分間混練する。混練された基層材は、型枠へすでに充填されている表層材の上に定量充填し4000〜8000rpmの振動を与えた後、プレス加圧し所定の製品厚みに仕上げる。成型された製品は型枠より即脱され養生加工後表面の仕上げ加工を行う。コンクリートブロック表面の仕上げ加工は洗い出し仕上げ、研磨仕上げ及びショットブラスト仕上げを行うが仕上げ加工を省略しても良い。
【0009】
また、1層型コンクリートブロックは2層型コンクリートブロックの基層部を無くし全てを表層部で製造したものである。
【0010】
コンクリート舗装及びコンクリートブロックにおいて、表面の耐磨耗性をさらに高めるため表層部と基層部の2層構造とし、表層部の骨材へは硅石等の耐磨耗性が高くしかも熱伝導率が低い材料を使用し他は請求項1,2に示す材料で製造すると、表面の耐磨耗性が向上し太陽熱がコンクリート表面へ輻射されても熱が伝わりにくく、また基層部に保水された水分が気化され表面の骨材を冷やし低温化がはかれる。
【0011】
敷き砂へ使用される材料は、高炉水砕軟質スラグで粒度0.15〜0.3mmを50重量%と粒度1.2〜2.36mmを50重量%混合した敷き砂。
【0012】
【実施例】
以下、実施例について説明する。実施例では請求項2に示すコンクリートブロックを作成した。材料は表1に示すものを使用し、材料の配合割合は表2に示すNO1コンクリート舗装A、NO2コンクリート舗装B、コンクリートブロックA、及びコンクリートブロックBの4種類でサイズは200x100x60mmとした。製造方法は図4に示す2層型コンクリートブロックの製造工程に示す方法と表層部のみの配合で基層部の配合が無い1層型コンクリートブロックとした。
【0013】
【表1】

Figure 0004138398
【表2】
Figure 0004138398
【0014】
【発明の効果】
コンクリートブロックの吸水性、保水性、断熱性機能を測定するため試験体を以下に示す方法にて試験を行った。
【0015】
試験体は前述のNO1〜NO4コンクリートブロックと従来のコンクリート製のインターロッキングブロックについて比較試験した。試験方法は、試験体を加熱炉で80℃x8時間乾燥し製品重量(w1)を測定する。次に水槽へ12時間浸漬し水槽より取りだし30分間自然乾燥後製品重量(w2)を測定する。その後、施工現場を想定した状態にして(製品の表面のみ大気とふれる状態で他の面は砂に埋もれた状態)炉内にて加熱した。炉内温度は80℃x10時間加熱し1時間ごとの製品表面温度測定と80℃x10時間後の製品重量(w3)を測定した。その結果、表3に示す様に従来のインターロッキングブロックに比べ本発明のコンクリートブロックは約5〜7℃の温度低下が確認された。また夏季に屋外へ放置し1時間ごとの製品表面温度を測定したが、同様に従来のインターロッキングブロックに比べ約6〜8℃の温度低下効果が確認された。また保水率及び吸水率は表4に示す様に従来品と比較し大巾に高い数値を示しているため太陽熱の蓄積をコンクリートブロックへ受けた場合は長時間に渡り水分が気化し低温化がはかれる。この効果はコンクリートへ使用している骨材が、多数の微細孔隙を保有している為そこに雨水等が吸水及び保水し、保水力が高いバーミキュライト相俟って保水性能が高まる。しかも連続空隙を持った構造となっているためたやすく吸水出来る結果である。
【0016】
試験体の曲げ試験はJASS7 M−101に従った試験方法で試験体NO1〜4の曲げ強度を測定した。その結果は、6.1〜6.5N/mm2でインターロッキングブロックの規定値4.9N/mm2以上を満足していた。透水係数は0.3〜0.6cm/sで(社)日本道路建設業協会が規定している0.1cm/s以上を満足している。
【0017】
【表3】
Figure 0004138398
【表4】
Figure 0004138398
【0018】
敷き砂は保水性能が優れていることは前述で示されているが、修正CBR値を測定すると従来品の敷き砂の修正CBR値は10〜25に対し本発明の敷き砂は90〜100になり非常に大きな効果がある。これはスラグの形状が角ばっている為、クサビ状になっていることと、スラグの粒度が大きいスラグ1.2〜2.5mmの間に小さいスラグ0.15〜0.3mmが入り、締め固め性が向上した結果である。またスラグは水硬性を保有している為、施工後水分を吸水すると硬化する為、コンクリートブロックが安定する。しかも雨水侵入による敷き砂の移動もなくコンクリートブロックの敷設が長期安定して固定される。
【図面の簡単な説明】
【図1】 コンクリートブロックの2層構造を説明する斜視図である。
【図2】 コンクリートブロックによる舗装の構成を説明する側面図である。
【図3】 コンクリート舗装の構造を模式的に示す部分断面図である。
【図4】 2層型コンクリートブロックの製造工程図を示す。
【図5】 コンクリート舗装の製造工程図を示す。
【符号の説明】
1 表層部
2 基層部
3 コンクリートブロック
4 敷き砂
5 路盤
6 路床
7 舗装
10 高炉徐冷スラグ
11 微小孔隙
12 高炉水砕軟質スラグ
13 セメントペースト
13a セメント
13b 水
13cポリマーエマルジョン
13dセルロースエーテル
14 連続空隙[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing the temperature of pavement surfaces such as sidewalks, roads, parks, and parking lots from rising due to heat storage of solar heat.
[0002]
[Prior art]
The heat storage of solar heat from paved roads such as asphalt and concrete rises to near 60 ° C in the summer when the pavement surface rises in temperature. Particularly in large urban areas, the proportion of paved surfaces is high due to the erection of buildings, and the urban heat island phenomenon is occurring due to insufficient greening. Therefore, in recent years, there is a method of using a ceramic plate having fine voids in the pavement as a method of lowering the temperature of the pavement, but there are problems in terms of durability, workability and cost of the ceramic plate. In addition, there is a method in which cement and water-absorbing resin are permeated into existing asphalt or concrete pavement in a slurry state, but the water retention performance is low.
[0003]
[Problems to be solved by the invention]
The present invention provides a concrete pavement and a concrete block that lowers the temperature of a paved road and has an inexpensive water retention function.
[0004]
Furthermore, it provides a laying sand having a water retaining function and hydraulic property, which is excellent in compaction, instead of using natural sand as laying sand for the purpose of ensuring the flatness and stability of the concrete block.
[0005]
[Means for solving the problems]
The concrete pavement of the method for preventing temperature rise of the paved road according to the present invention has the following configuration. That is, the concrete pavement aggregate used in the present invention is porous, strong, has many fine pores, mixed with an appropriate amount of granulated blast furnace granulated soft slag and blast furnace annealed slag with high water permeability, Vermiculite (meteorite) with high water retention is added to this. Cement and polymer emulsion resin are added to this aggregate as a binder, and cellulose ether is added to increase the water retention required for the hydration reaction of the cement, and the concrete pavement is processed to a porosity of 5 to 20% by volume. It is characterized by. According to this structure, concrete pavement absorbs and retains water in the blast furnace granulated soft slag and blast furnace slow-cooled slag, in which rainwater permeates quickly into the concrete, and the permeated water is porous and has many micropores. Water is retained in combination with high vermiculite (meteorite) aggregate, so moisture is retained on the concrete pavement for a long time. Therefore, when the temperature of concrete pavement rises due to solar heat, the retained water is gradually vaporized, so that the pavement is maintained at a low temperature for a long period of time. In addition, the water permeability is adjusted by adjusting the aggregate particle size and the water ratio, ensuring the required water permeability, allowing rainwater to penetrate into the concrete pavement, and supplying the water necessary for water retention to the concrete pavement. Since it penetrates underground, it has a structure with good water retention efficiency.
[0006]
In the case of paving with a concrete block, if the particle size of the above-mentioned aggregate blast furnace granulated soft slag is adjusted and used as an alternative to the sand for the concrete block, the water retention effect is further improved by the effects of both the concrete block and the sand.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The material used for the concrete pavement according to the first aspect of the present invention is a mixture of aggregate, cement, polymer emulsion, cellulose ether and water, and if necessary, a pigment or a decorative aggregate. Aggregate is porous, strong, and has a structure in which fine water is easy to absorb rainwater etc. in the micropores. Granularity of 0.15 to 2.36mm is 43 to 60% by weight, and granulated with blast furnace slow cooling slag. A mixture of 1.2 to 4.75 mm with 13 to 30 wt% and vermiculite (meteorite) 0.15 to 2.36 mm with a high water holding capacity mixed with 0.3 to 3.0 wt% is used. As the cement, 20 to 25% by weight of ordinary Portland cement, blast furnace cement, and white Portland cement is used. When the amount of cement exceeds 25% by weight, the fine pores held in the aggregate are covered with cement to block rainwater that enters the aggregate, and the water retention of the concrete pavement decreases. In order to improve the viscosity of concrete and increase the concrete strength by adhering the cement paste to the aggregate, the polymer emulsion improves the strength of the concrete by using styrene / acrylic copolymer emulsion (manufactured by Clariant Polymer Co., Ltd .: Mobile LDM6880) or acrylic emulsion (Asahi Kasei: A-1500) is added at 2% by weight of cement. In addition, since the aggregate itself has selected a material with good absorbability, the water used for the hydration reaction of concrete is absorbed into the aggregate and the water retention capacity of cement water is used to prevent water shortage necessary for the hydration reaction. A cellulose ether having a high weight is added at a cement ratio of 0.4% by weight. Water required for the hydration reaction is 40 to 44% by weight of cement. Water affects the strength and water permeability of concrete pavement. If there is little water, strength will fall, and if too much, water permeability will fall and water retention will also fall. The manufacturing method is the method shown in the manufacturing process of concrete pavement shown in FIG. First, aggregate, cement and cellulose ether are put into a kneading mixer and kneaded for about 2 minutes, and then water and a polymer emulsion are added and kneaded for about 3 minutes, and concrete is poured into a predetermined site. The curing is naturally dry and the prescribed strength is achieved after 4 weeks.
[0008]
The material used for the concrete block according to claim 2 is the same as the material used in claim 1. However, when coloring concrete blocks, pigment is added in an amount of 1 to 5% by weight. An appropriate amount of cosmetic aggregate is mixed depending on the degree of coloring on the decorative surface. In addition, in order to improve the appearance of the concrete block surface, it is possible to add processing such as shot blasting, polishing, and washing out as surface processing. The two-layer concrete block is manufactured by the method shown in FIG. First, the aggregate of the surface layer, cement, and cellulose ether are put into a kneading mixer and air-kneaded for about 2 minutes. At this time, when it is desired to color the surface layer portion, an appropriate amount of pigment or decorative aggregate is mixed. Thereafter, water and a polymer emulsion are added and kneaded for about 3 minutes, and then quantitatively filled into a mold, and a vibration of 4000 to 8000 rpm is applied. Next, the aggregate, cement, and cellulose ether of the base layer portion are put into a kneading mixer and kneaded for about 2 minutes, and then water and a polymer emulsion are added and kneaded for about 3 minutes. The kneaded base layer material is quantitatively filled on the surface layer material already filled in the mold and subjected to a vibration of 4000 to 8000 rpm, and then press-pressed to finish to a predetermined product thickness. The molded product is removed immediately from the formwork and the surface is finished after curing. The concrete block surface is finished by washing out, polishing, and shot blasting , but the finishing may be omitted.
[0009]
In addition, the single-layer concrete block is obtained by eliminating the base layer portion of the two-layer concrete block and manufacturing the entire surface layer portion.
[0010]
In concrete pavements and concrete blocks, the surface layer and base layer have a two-layer structure to further improve the surface wear resistance, and the aggregate of the surface layer has high wear resistance such as meteorite and low thermal conductivity. When other materials are used and the materials shown in claims 1 and 2 are manufactured, the wear resistance of the surface is improved, and even if solar heat is radiated to the concrete surface, the heat is not easily transmitted, and the moisture retained in the base layer portion It is vaporized and the aggregate on the surface is cooled to lower the temperature.
[0011]
The material used for the laying sand is blast furnace granulated soft slag mixed with 50% by weight of 0.15-0.3 mm particle size and 50% by weight of 1.2-2.36 mm particle size.
[0012]
【Example】
Examples will be described below. In the examples, concrete blocks shown in claim 2 were prepared. The materials shown in Table 1 were used, and the mixing ratio of the materials was NO1 concrete pave A, NO2 concrete pave B, concrete block A, and concrete block B shown in Table 2, and the size was 200 × 100 × 60 mm. The production method was a single-layer concrete block having a composition of only the surface layer portion and no composition of the base layer portion as shown in the production process of the two-layer concrete block shown in FIG.
[0013]
[Table 1]
Figure 0004138398
[Table 2]
Figure 0004138398
[0014]
【The invention's effect】
In order to measure the water absorption, water retention, and heat insulating functions of the concrete block, the test specimens were tested by the following method.
[0015]
The test body was subjected to a comparative test on the above-described NO1-NO4 concrete block and a conventional concrete interlocking block. In the test method, the specimen is dried in a heating furnace at 80 ° C. for 8 hours, and the product weight (w1) is measured. Next, it is immersed in a water tank for 12 hours, taken out from the water tank, naturally dried for 30 minutes, and then the product weight (w2) is measured. After that, it was heated in the furnace in a state that assumed the construction site (only the surface of the product was in contact with the atmosphere and the other surface was buried in sand). The furnace temperature was 80 ° C. × 10 hours, and the product surface temperature was measured every hour and the product weight (w3) after 80 ° C. × 10 hours was measured. As a result, as shown in Table 3, it was confirmed that the concrete block of the present invention had a temperature drop of about 5 to 7 ° C. as compared with the conventional interlocking block. In addition, the product surface temperature was measured every hour by leaving it outdoors in the summer. Similarly, a temperature lowering effect of about 6 to 8 ° C. was confirmed as compared with the conventional interlocking block. In addition, as shown in Table 4, the water retention rate and water absorption rate are significantly higher than those of the conventional products. Therefore, when solar heat is accumulated in the concrete block, the moisture will evaporate for a long time and the temperature will be lowered. It is peeled off. This effect is due to the fact that the aggregate used in the concrete has a large number of fine pores, so that rainwater absorbs and retains water, and in combination with vermiculite having a high water retention capability, the water retention performance is enhanced. Moreover, since the structure has continuous voids, it is easy to absorb water.
[0016]
In the bending test of the test body, the bending strength of the test bodies NO1 to 4 was measured by a test method according to JASS7 M-101. As a result, the specified value of the interlocking block of 4.9 N / mm 2 or more was satisfied from 6.1 to 6.5 N / mm 2 . The water permeability coefficient is 0.3 to 0.6 cm / s, which satisfies 0.1 cm / s or more specified by the Japan Road Construction Industry Association.
[0017]
[Table 3]
Figure 0004138398
[Table 4]
Figure 0004138398
[0018]
Although it has been shown above that the spread sand is excellent in water retention performance, when the corrected CBR value is measured, the corrected CBR value of the conventional spread sand is 10 to 25 and the spread sand of the present invention is 90 to 100 It has a very big effect. This is because the shape of the slag is square, so that it is wedge-shaped and a small slag of 0.15 to 0.3 mm enters between 1.2 to 2.5 mm of the slag with a large particle size of the slag. This is a result of the improvement of the setting property. Moreover, since slag possesses hydraulic properties, the concrete block is stabilized because it hardens when water is absorbed after construction. Moreover, there is no movement of the sand due to rainwater intrusion, and the concrete block laying is stably fixed for a long time.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a two-layer structure of a concrete block.
FIG. 2 is a side view illustrating the configuration of pavement using concrete blocks.
FIG. 3 is a partial cross-sectional view schematically showing the structure of a concrete pavement.
FIG. 4 is a manufacturing process diagram of a two-layer concrete block.
FIG. 5 shows a manufacturing process diagram of concrete pavement .
[Explanation of symbols]
1 Surface layer
2 Base layer
3 concrete blocks
4 Laying sand
5 Roadbed
6 Roadbed
7 Paving
10 Blast furnace slow cooling slag
11 Micropores
12 Blast Furnace Granulated Soft Slag
13 Cement paste
13a cement
13b water
13c polymer emulsion
13d cellulose ether
14 Continuous gap

Claims (2)

多孔質で強度がある高炉徐冷スラグと多孔質である高炉水砕軟質スラグに保水性の高いバーミキュライトを骨材とセメントの合計重量に対して0.3〜3.0重量%で混合した骨材に、セメント、ポリマーエマルジョン、セルロースエーテル及び水を加えた材料から製造されるコンクリート舗装であって、空隙率が5〜20容積%で多数の連続気泡が形成された保水機能を有するコンクリート舗装Bone prepared by mixing porous and strong blast furnace slow-cooled slag and porous blast furnace granulated soft slag with high water retention vermiculite in an amount of 0.3 to 3.0% by weight based on the total weight of aggregate and cement. wood, a cement, a polymer emulsion, a concrete pavement produced from a material added to the cellulose ether and water, concrete pavement having a porosity multiple holding water continuous bubbles were formed in 5 to 20 volume%. 多孔質で強度がある高炉徐冷スラグと多孔質である高炉水砕軟質スラグに保水性の高いバーミキュライトを骨材とセメントの合計重量に対して0.3〜3.0重量%で混合した骨材に、セメント、ポリマーエマルジョン、セルロースエーテル及び水を加えた材料を成型型枠内に充填して成型されるコンクリートブロックであって、空隙率が5〜20容積%で多数の連続気泡が形成された保水機能を有するコンクリートブロック。 Bone prepared by mixing porous and strong blast furnace slow-cooled slag and porous blast furnace granulated soft slag with high water retention vermiculite in an amount of 0.3 to 3.0% by weight based on the total weight of aggregate and cement. A concrete block formed by filling a material with cement, polymer emulsion, cellulose ether and water into a molding mold, and forming a large number of open cells with a porosity of 5 to 20% by volume. Concrete block with water retention function.
JP2002240366A 2002-08-21 2002-08-21 Concrete pavement and concrete block with water retention function Expired - Fee Related JP4138398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240366A JP4138398B2 (en) 2002-08-21 2002-08-21 Concrete pavement and concrete block with water retention function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240366A JP4138398B2 (en) 2002-08-21 2002-08-21 Concrete pavement and concrete block with water retention function

Publications (2)

Publication Number Publication Date
JP2004076482A JP2004076482A (en) 2004-03-11
JP4138398B2 true JP4138398B2 (en) 2008-08-27

Family

ID=32023181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240366A Expired - Fee Related JP4138398B2 (en) 2002-08-21 2002-08-21 Concrete pavement and concrete block with water retention function

Country Status (1)

Country Link
JP (1) JP4138398B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241803A (en) * 2005-03-02 2006-09-14 Ehime Prefecture Water-absorbing pavement, and aggregate for use therein
US7931952B2 (en) 2005-05-31 2011-04-26 Shinsei Techno Co. Ltd. Water-retainable molding and method for manufacturing the same
JP6119278B2 (en) * 2013-02-08 2017-04-26 宇部興産株式会社 High water retention block and method for producing high water retention block
CN104058698B (en) * 2014-05-29 2016-02-10 蚌埠华东石膏有限公司 A kind of blast furnace water quenching dreg concrete and preparation method thereof
JP6914682B2 (en) * 2017-03-17 2021-08-04 東洋工業株式会社 Laying block
JP6646777B1 (en) * 2019-03-05 2020-02-14 太平洋セメント株式会社 Cement-based porous pavement material
CN112030654A (en) * 2020-07-01 2020-12-04 中电建十一局工程有限公司 Exposed aggregate pervious concrete construction method for water environment treatment
CN112279566A (en) * 2020-09-22 2021-01-29 浙江忠信新型建材股份有限公司 Special bonding mortar for stainless steel plate for fabricated building and preparation method thereof
CN112321264B (en) * 2020-10-21 2022-07-15 江苏新路德建设有限公司 Pervious concrete and preparation method and application thereof
CN114369979A (en) * 2022-01-10 2022-04-19 中交一公局第八工程有限公司 Exposed aggregate permeable concrete pavement and construction process thereof

Also Published As

Publication number Publication date
JP2004076482A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
KR100953212B1 (en) Mortar composition of polymer cement and paving method using the same
JP4138398B2 (en) Concrete pavement and concrete block with water retention function
KR100985465B1 (en) Polymer cement mortar composite, manufacturing method of block and constructing method of water retainabel and permeable pavement using the composite
KR20120108688A (en) Polymer cement mortar composite and manufacturing method of water retainable and permeable block using the composite
JP3535862B2 (en) Water retention block
KR100471989B1 (en) Method for paving of a road and paving materials
JP4030790B2 (en) Pavement and its construction method
KR100954341B1 (en) Composite for soil pavement and construction method of soil pavement using the composite
KR20110049403A (en) Concrete water-permeable block using pore generator and manufacturing method thereof
JP4456984B2 (en) Water-retaining concrete member
KR100938936B1 (en) Cement composition for soil concrete, soil concrete including the same and pavement method of soil concrete using the same
JP5898350B1 (en) Paving material
JP3446409B2 (en) Method for producing water-permeable ceramic block
JP6283214B2 (en) Cement composition for heat insulation and laminate for heat insulation
KR100924765B1 (en) Road pavement composition of enhanced retentiveness and drainage, and constructing method using the composition
CN112979249A (en) Composite doped silica fume and nano SiO2Antifreezing water-permeable recycled concrete and preparation method thereof
JP2002180410A (en) Paving material and method of manufacturing its mold
JP4005759B2 (en) Method for forming water retentive pavement and water retentive pavement
KR101041549B1 (en) Composite of polymer cement paste and method for paving and reparing of semi-rigid road using the composite
JP4263385B2 (en) Molded concrete pavement made from recycled concrete
JP2004225283A (en) Concrete block
JP2008215039A (en) Water-retention/permeation pavement block and its manufacturing method
JP2003064607A (en) Water-retentive concrete block and its manufacturing method
WO2006022417A1 (en) Cement composition and pavement structure
JP4479330B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060904

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees