JP2007084420A - Mortar composition, coating material, and spray material - Google Patents

Mortar composition, coating material, and spray material Download PDF

Info

Publication number
JP2007084420A
JP2007084420A JP2006191330A JP2006191330A JP2007084420A JP 2007084420 A JP2007084420 A JP 2007084420A JP 2006191330 A JP2006191330 A JP 2006191330A JP 2006191330 A JP2006191330 A JP 2006191330A JP 2007084420 A JP2007084420 A JP 2007084420A
Authority
JP
Japan
Prior art keywords
weight
composition
mortar
mortar composition
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006191330A
Other languages
Japanese (ja)
Other versions
JP4854406B2 (en
Inventor
Takayoshi Hirata
隆祥 平田
Ikuo Ozawa
郁夫 小澤
Eiichi Masaki
栄一 正木
Kazuhiko Saito
和彦 斎藤
Nobukazu Futado
信和 二戸
Masaru Kubota
賢 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
DC Co Ltd
Original Assignee
Obayashi Corp
DC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, DC Co Ltd filed Critical Obayashi Corp
Priority to JP2006191330A priority Critical patent/JP4854406B2/en
Publication of JP2007084420A publication Critical patent/JP2007084420A/en
Application granted granted Critical
Publication of JP4854406B2 publication Critical patent/JP4854406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mortar composition having acid resistance and ozone resistance so that it can be used not only in an acid atmosphere such as in sewage treating system but also in an ozone atmosphere such as in an advanced water-purifying system, capable of keeping at least 2 cm coating thickness using a trowel or by spraying, and not liable to generate a crack, and a coating material for a plasterer and a spray material. <P>SOLUTION: This mortar composition is prepared by compounding fine aggregate (S) comprising number 3-8 silica sand to a binder composition (B) containing cement, silica fume, granulated blast furnace slag, fly ash, and an expanding agent, and, if necessary, anhydrous gypsum, and the binder composition (B) contains the cement at 40-50 wt.%, and the weight ratio S/B of the binder composition (B) to the fine aggregate (S) is made to be 2.05-2.15. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐酸性・耐オゾン性を有し、上下水道管の被覆材や高度浄水処理施設における処理槽の被覆材として好適なモルタル組成物、及び該モルタル組成物からなる塗材並びに吹付け材に関する。   The present invention relates to a mortar composition having acid resistance and ozone resistance, and suitable as a coating material for water and sewage pipes or a treatment tank in an advanced water purification treatment facility, and a coating material comprising the mortar composition and spraying Regarding materials.

下水道処理施設や化成品工場における酸性排水処理施設で用いられているコンクリート部材の表面は常に酸性雰囲気に曝されているため劣化が激しい。そのため、従来から劣化の抑制について検討されており、その一つに耐酸性モルタルの被覆による方法がある。   The surface of concrete members used in acid wastewater treatment facilities in sewage treatment facilities and chemical product factories is constantly exposed to an acidic atmosphere, so that deterioration is severe. Therefore, conventionally, suppression of deterioration has been studied, and one of them is a method of covering with acid-resistant mortar.

例えば、特許文献1には、アルミナセメント、アルミナセメントクリンカー骨材及び製鋼ダストからなる耐酸性モルタル組成物をコンクリート成形体の表面に塗着する方法が記載されている。   For example, Patent Document 1 describes a method of applying an acid-resistant mortar composition comprising alumina cement, alumina cement clinker aggregate, and steelmaking dust to the surface of a concrete compact.

また、劣化したコンクリートを補修するのに適した耐酸性モルタルも種々知られている。
例えば、特許文献2には、(A)CaO/SiO2のモル比が0.10〜1.20の溶融スラグ粉末、(B)水ガラス、(C)アルミナセメント、(D)高炉スラグと転炉スラグと脱リンスラグと脱ケイスラグと脱硫スラグから選ばれる結合材を含有する耐酸性モルタルが記載されている。
Various acid-resistant mortars suitable for repairing deteriorated concrete are also known.
For example, Patent Document 2 discloses that (A) molten slag powder having a CaO / SiO 2 molar ratio of 0.10 to 1.20, (B) water glass, (C) alumina cement, (D) blast furnace slag and An acid-resistant mortar containing a binder selected from furnace slag, dephosphorization slag, decalcification slag and desulfurization slag is described.

さらに、特許文献3には、アルミナセメント、化学成分としてCaOとAl23を主成分とする球状粒体を含有する耐酸性モルタル組成物が記載されている。
一方、近年、水道水の水質を向上させるために、オゾン処理工程や生物活性炭吸着処理工程といった工程を新たに加えた工程での高度浄水処理が行われている。このような高度浄水処理は、通常の浄水処理(沈殿、ろ過、消毒)では、十分に対応できないかび臭の原因となる物質やカルキ臭のもととなるアンモニア性窒素などを取り除き、トリハロメタンのもととなる物質などを減少させるために行われる。
Further, Patent Document 3, alumina cement, acid-resistant mortar composition of CaO and Al 2 O 3 containing spherical granules consisting mainly is described as a chemical component.
On the other hand, in recent years, in order to improve the quality of tap water, advanced water purification treatment is performed in a process in which processes such as an ozone treatment process and a biological activated carbon adsorption treatment process are newly added. Such advanced water purification treatment removes substances that cause musty odor and ammoniacal nitrogen that cause odor of odor, which cannot be adequately handled by normal water treatment (precipitation, filtration, disinfection) This is done to reduce the amount of substances.

そして、前記各処理の多くは、普通コンクリートで造られたコンクリート槽内で行われている。しかし、前記のようなオゾン処理や生物活性炭吸着処理をコンクリート製の処理槽内で行うと、これまでの浄水処理による処理でのコンクリートの劣化に比べ、処理槽のコンクリートが早く劣化してしまうといったことが問題となってきている。
一方、上記処理槽に有機物を含む材料を使用すると、オゾン処理や生物活性炭吸着処理の過程で有機物が分解され、水質安全性が確保できないという問題もある。
And most of each said process is performed in the concrete tank made from the ordinary concrete. However, when ozone treatment or biological activated carbon adsorption treatment as described above is performed in a concrete treatment tank, the concrete in the treatment tank will deteriorate faster than the concrete deterioration in the treatment by the conventional water purification treatment. Has become a problem.
On the other hand, when a material containing an organic substance is used in the treatment tank, there is a problem that the organic substance is decomposed in the course of ozone treatment or biological activated carbon adsorption treatment, and water quality safety cannot be ensured.

この劣化を抑制するための対策について鋭意検討した結果、本発明者らは、耐オゾン性、耐炭酸・耐重炭酸性、耐磨耗性を有する水硬性無機材料及びそれを用いた高度浄水処理施設用のコンクリートを開発し、特願2005−179924号として出願している。
この他、前記水硬性無機材料と同様の材料からなるモルタルで被覆して劣化を抑制する方法が考えられる。具体的には、耐酸性と耐オゾン性を有するモルタルを、劣化を抑制したいコンクリート表面に塗布あるいは吹き付けて被覆処理する方法である。
As a result of intensive investigations on measures for suppressing this deterioration, the present inventors have found that a hydraulic inorganic material having ozone resistance, carbonic acid / bicarbonate resistance, wear resistance, and an advanced water purification treatment facility using the same. Has been developed and applied as Japanese Patent Application No. 2005-179924.
In addition, a method of suppressing deterioration by covering with a mortar made of the same material as the hydraulic inorganic material is conceivable. Specifically, it is a method of applying or spraying a mortar having acid resistance and ozone resistance onto a concrete surface where deterioration is to be suppressed.

しかし、この水硬性無機材料を塗材(左官材)として用いるには、コテ仕上げ性が良好かどうか、厚塗りができるかどうか、厚塗りした際のひび割れに対する対策が十分であるかなど、未解決の課題を残していた。また、吹付け材として用いる場合も、上記同様厚みの確保やひび割れに対する未解決の問題を残していた。
特開2004−292245号公報 特開2001−240456号公報 特開2002−97055号公報
However, in order to use this hydraulic inorganic material as a coating material (a plastering material), it is unclear whether the iron finish is good, whether it can be thickly coated, and whether there are sufficient measures against cracks when thickly coated. The problem of solution was left. Moreover, when using as a spraying material, the unsolved problem with respect to securing of a thickness and a crack was left like the above.
JP 2004-292245 A Japanese Patent Laid-Open No. 2001-240456 JP 2002-97055 A

本発明は、前記事情に鑑みてなされたもので、下水道処理施設のような酸性雰囲気下だけでなく高度浄水処理施設のようなオゾン雰囲気下でも使用可能なように耐酸性と耐オゾン性を有するとともに、高度浄水処理においても水質安全性が確保でき、鏝を用いてあるいは吹き付けにより少なくとも2cm程度の厚みが確保でき、ひび割れが発生し難いモルタル組成物と、それによる左官用の塗材及び吹付け材を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has acid resistance and ozone resistance so that it can be used not only in an acidic atmosphere such as a sewerage treatment facility but also in an ozone atmosphere such as an advanced water purification treatment facility. In addition, water quality safety can be secured even in advanced water purification treatment, and a mortar composition that can secure a thickness of at least about 2 cm by using a cocoon or by spraying, and hardly causes cracks, and plastering coating material and spraying thereby. The purpose is to provide materials.

本発明者らは、前記課題について鋭意検討した結果、セメントと、シリカヒュームと、高炉水砕スラグと、フライアッシュと、膨張材を少なくとも含み、更に必要に応じて無水石膏をも含む結合材組成物に特定の細骨材を配合した水硬性無機材料のみからなるモルタル組成物を用いれば、前記目的が達成できることを見出し、本発明を完成させた。   As a result of intensive studies on the above problems, the present inventors have found that the binder composition contains at least cement, silica fume, blast furnace granulated slag, fly ash, and an expansion material, and further contains anhydrous gypsum as necessary. The inventors have found that the above-mentioned object can be achieved by using a mortar composition composed only of a hydraulic inorganic material in which a specific fine aggregate is blended with an object, and the present invention has been completed.

すなわち、前記目的を達成するために、本発明は、セメントと、シリカヒュームと、高炉水砕スラグと、フライアッシュと、膨張材からなり、必要に応じて無水石膏をも含む結合材組成物(B)に、3号〜8号珪砂からなる細骨材(S)を配合してなるモルタル組成物であって、前記結合材組成物(B)中にはセメントを40〜50重量%含み、前記結合材組成物(B)と前記細骨材(S)との重量比S/Bが2.05〜2.15であることを特徴とする。   That is, in order to achieve the above object, the present invention comprises a binder composition comprising cement, silica fume, blast furnace granulated slag, fly ash, and an expansion material, and also containing anhydrous gypsum as necessary. B) is a mortar composition obtained by blending fine aggregate (S) composed of No. 3 to No. 8 silica sand, and the binder composition (B) contains 40 to 50% by weight of cement, A weight ratio S / B between the binder composition (B) and the fine aggregate (S) is 2.05 to 2.15.

また、本発明に係る前記モルタル組成物は、実用的観点からの態様では、20〜30重量%の普通ポルトランドセメントと、シリカヒュームと、高炉水砕スラグと、フライアッシュとからなり、必要に応じて無水石膏をも含む無機組成物(N)100重量部に対し、さらに、早強型ポルトランドセメント又はエコセメント35〜45重量部と、膨張材2.5〜3.5重量部を配合してなる前記結合材組成物(B)、及び3号〜8号珪砂からなる細骨材(S)250〜350重量部を含むことを特徴とする。この実施態様のモルタル組成物では、前記無機組成物(N)が、20〜30重量%の普通ポルトランドセメントと、15〜25重量%のシリカヒュームと、25〜35重量%の高炉水砕スラグと、20〜35重量%のフライアッシュとからなり、必要に応じて無水石膏をも含むことが好ましい。   Further, the mortar composition according to the present invention is composed of 20 to 30% by weight of ordinary Portland cement, silica fume, blast furnace granulated slag, and fly ash in an embodiment from a practical viewpoint. In addition, 100 parts by weight of the inorganic composition (N) containing anhydrous gypsum is further blended with 35 to 45 parts by weight of early-strength Portland cement or eco-cement and 2.5 to 3.5 parts by weight of an expanding material. The binder composition (B) and fine aggregate (S) 250 to 350 parts by weight made of No. 3 to No. 8 silica sand are included. In the mortar composition of this embodiment, the inorganic composition (N) comprises 20 to 30% by weight of ordinary Portland cement, 15 to 25% by weight of silica fume, and 25 to 35% by weight of granulated blast furnace slag. It consists of 20 to 35% by weight of fly ash, and preferably contains anhydrous gypsum as needed.

また、前記結合材組成物(B)は、前記無機組成物(N)100重量部に対し、さらに粘土鉱物を2〜20重量部含むことが好ましい。   Moreover, it is preferable that the said binder composition (B) contains 2-20 weight part of clay minerals further with respect to 100 weight part of said inorganic compositions (N).

本発明に係るモルタル組成物は、前記細骨材(S)の粒度構成で、各ふるいの通過率として、1.2mmふるいが80〜95重量%、0.6mmふるいが45〜60重量%、0.3mmふるいが25〜35重量%、0.15mmふるいが10〜30重量%であることが好ましい。   The mortar composition according to the present invention has a particle size constitution of the fine aggregate (S), and the passage rate of each sieve is as follows: 1.2 mm sieve is 80 to 95% by weight, 0.6 mm sieve is 45 to 60% by weight, The 0.3 mm sieve is preferably 25 to 35% by weight, and the 0.15 mm sieve is preferably 10 to 30% by weight.

曲げ強度の向上、ひび割れ防止効果の更なる向上を図る場合は、本発明に係るモルタル組成物に対し、さらに繊維(F)を0.05〜2体積%含ませることが好ましい。   In order to further improve the bending strength and the crack prevention effect, it is preferable that 0.05 to 2% by volume of the fiber (F) is further contained in the mortar composition according to the present invention.

本発明は、別の側面で左官用の塗材であり、前記モルタル組成物からなることを特徴とする。同様に、本発明は、別の側面で吹付け材であり、前記モルタル組成物からなることを特徴とする。なお、本明細書中で、高度浄水処理施設とは、オゾンを用いて水の処理を行なう工程を含む処理施設をいう。   Another aspect of the present invention is a plaster coating material, which is characterized by comprising the mortar composition. Similarly, in another aspect, the present invention is a spray material and is characterized by comprising the mortar composition. In the present specification, the advanced water purification treatment facility refers to a treatment facility including a step of treating water using ozone.

本発明のモルタル組成物は、耐酸性を維持しつつ、作業性、強度、塗厚、ひび割れ発生等の面から左官用の塗材や吹付け材として好適である。したがって、下水処理施設のような酸性雰囲気下では優れた左官や吹付け等によるコンクリート躯体等のモルタル被覆材として広範な適用範囲を持つ。また、本発明のモルタル組成物は、有機材料を含まず、水硬性無機材料のみからできているので、人体や環境に対する安全性が高く、上水道処理施設や高度浄水処理施設における被覆材へも適用できる。   The mortar composition of the present invention is suitable as a plastering coating material or spraying material from the viewpoints of workability, strength, coating thickness, cracking, etc. while maintaining acid resistance. Therefore, in an acidic atmosphere such as a sewage treatment facility, it has a wide range of applicability as a mortar covering material such as an excellent plasterer or a concrete frame by spraying. In addition, the mortar composition of the present invention does not contain organic materials and is made of only hydraulic inorganic materials, so it is highly safe for the human body and the environment, and can also be applied to coating materials in waterworks treatment facilities and advanced water purification treatment facilities. it can.

以下に、本発明に係るモルタル組成物、塗材、吹付け材について、その実施の形態を参照しながらさらに詳細に説明する。   Hereinafter, the mortar composition, coating material, and spraying material according to the present invention will be described in more detail with reference to embodiments thereof.

本発明に係るモルタル組成物は、大別して結合材組成物(B)と細骨材(S)とからなる。そして、必要に応じて、繊維(F)を含む。
結合材組成物(B)
結合材組成物(B)は、セメントと、シリカヒュームと、高炉水砕スラグと、フライアッシュと、膨張材を少なくとも含む。そして、必要に応じて無水石膏が加えられる。
The mortar composition according to the present invention is roughly divided into a binder composition (B) and a fine aggregate (S). And a fiber (F) is included as needed.
Binder composition (B)
The binder composition (B) includes at least cement, silica fume, blast furnace granulated slag, fly ash, and an expansion material. And anhydrous gypsum is added as needed.

セメントは、普通ポルトランドセメント、早強ポルトランドセメントもしくは超早強ポルトランドセメント等の早強型ポルトランドセメント、あるいはエコセメント、又はこれらを混合したものが使われる。
前記セメント中、早強ポルトランドセメントもしくは超早強ポルトランドセメント等の早強型ポルトランドセメント、又はエコセメントは、主として、初期強度の確保、ひび割れ防止といった観点から必要量用いられる。使用しすぎると、配合によっては耐酸性・耐オゾン性が悪くなる。これら早強型ポルトランドセメント又はエコセメントは、結合材組成物(B)中、後述の無機組成物(N)100重量部に対し、35〜45重量部含むのが好ましい。また、これらセメントと無機組成物(N)中の普通ポルトランドセメントと合わせたセメントの全量は、結合材組成物(B)中に40〜50重量%含まれるのが好ましい。40重量%未満では、十分な強度が得られなくなる場合がある。50重量%を超えると耐酸性・耐オゾン性が不十分となる場合がある。
As the cement, ordinary Portland cement, early-strength Portland cement or ultra-early-strength Portland cement such as Portland cement, eco-cement, or a mixture thereof is used.
Among the cements, early-strength Portland cement such as early-strength Portland cement or ultra-early-strength Portland cement, or eco-cement is used in a necessary amount mainly from the viewpoint of securing initial strength and preventing cracking. If it is used too much, acid resistance and ozone resistance may deteriorate depending on the formulation. These early-strength Portland cement or eco-cement preferably contains 35 to 45 parts by weight in the binder composition (B) with respect to 100 parts by weight of the inorganic composition (N) described later. Moreover, it is preferable that the total amount of the cement combined with the ordinary Portland cement in the inorganic composition (N) is 40 to 50% by weight in the binder composition (B). If it is less than 40% by weight, sufficient strength may not be obtained. If it exceeds 50% by weight, acid resistance and ozone resistance may be insufficient.

シリカヒュームは、必要強度の確保、耐酸性及び耐オゾン性の向上といった観点から必要量用いられる。シリカヒュームの粒度及び粉末度は、特に限定しないが、JIS A 6207に規定される範囲が好ましい。シリカフュームは後述の無機組成物(N)中に15〜25重量%含まれるのが好ましい。使用しすぎると流動性が低下する場合がある。少なすぎると必要強度の確保、耐酸性及び耐オゾン性が不十分となる場合がある。   Silica fume is used in a necessary amount from the viewpoint of ensuring the required strength, improving acid resistance and ozone resistance. The particle size and fineness of silica fume are not particularly limited, but the range specified in JIS A 6207 is preferable. Silica fume is preferably contained in an inorganic composition (N) described later in an amount of 15 to 25% by weight. If it is used too much, fluidity may decrease. If the amount is too small, the required strength, acid resistance and ozone resistance may be insufficient.

高炉水砕スラグは、流動性の確保、化学耐久性及び耐酸性・耐オゾン性の向上といった観点から必要量用いられる。高炉水砕スラグの粉末度は、特には限定しないが、ブレーン値で4000cm2/gから10000cm2/gが好ましい。高炉水砕スラグは後述の無機組成物(N)中に25〜35重量%含まれるのが好ましい。25重量%に満たない場合は、流動性の確保、化学耐久性及び耐酸性・耐オゾン性の向上ができない場合がある。35重量%を超えると、高炉水砕スラグの粉末度が高い場合にひび割れが発生する場合がある。 The required amount of granulated blast furnace slag is used from the viewpoints of ensuring fluidity, improving chemical durability, acid resistance, and ozone resistance. Fineness of granulated blast furnace slag is particularly but not limited to, 10000 cm 2 / g is preferably from 4000 cm 2 / g in Blaine value. Blast furnace granulated slag is preferably contained in an inorganic composition (N) described later in an amount of 25 to 35% by weight. When the amount is less than 25% by weight, fluidity, chemical durability, acid resistance and ozone resistance may not be improved. If it exceeds 35% by weight, cracks may occur when the granulated blast furnace granulated slag has a high degree of fineness.

フライアッシュは、流動性(作業性)の確保、被覆厚の確保、ひび割れ防止、耐酸性・耐オゾン性の向上といった種々の観点から必要量用いられる。フライアッシュの種類は、特に限定しないがJIS A 6201に規定されるものが好ましい。フライアッシュは後述の無機組成物(N)中に25〜35重量%含まれるのが好ましい。25重量%を満たない場合は流動性(作業性)の確保、被覆厚の確保、ひび割れ防止、耐酸性・耐オゾン性の向上ができない場合がある。35重量%を超えると、十分な強度が得られなくなる場合がある。   Fly ash is used in necessary amounts from various viewpoints such as ensuring fluidity (workability), ensuring coating thickness, preventing cracks, and improving acid resistance and ozone resistance. Although the kind of fly ash is not specifically limited, What is prescribed | regulated to JISA6201 is preferable. The fly ash is preferably contained in an inorganic composition (N) described later in an amount of 25 to 35% by weight. If it is less than 25% by weight, fluidity (workability), coating thickness, crack prevention, and acid / ozone resistance may not be improved. If it exceeds 35% by weight, sufficient strength may not be obtained.

膨張材は、ひび割れ防止、乾燥収縮の低減といった観点から必要量用いられる。膨張材は無機系粉末膨張材であり、生石灰系膨張材(例えば、太平洋マテリアル社製ニューエクスパン)、カルシウムスルホアルミネート系膨張材(例えば、電気化学工業社製デンカCSA)を挙げることができる。使用する膨張材の種類は特に限定しない。結合材組成物(B)中、膨張材は後述の無機組成物(N)100重量部に対して2.5〜3.5重量部含むことが好ましい。膨張材の使用量が2.5重量部に満たない場合は、ひび割れ防止、乾燥収縮の低減が不十分となる場合がある。膨張材の使用量が3.5重量部を超えると、耐酸性・耐オゾン性が不十分となる場合があり、ポップアウト現象やおくれ膨張をおこしたりするので好ましくない。   The expansion material is used in a necessary amount from the viewpoint of preventing cracking and reducing drying shrinkage. The expansion material is an inorganic powder expansion material, and examples thereof include a quicklime expansion material (for example, New Expan manufactured by Taiheiyo Materials Co., Ltd.) and a calcium sulfoaluminate expansion material (for example, Denka CSA manufactured by Denki Kagaku Kogyo Co., Ltd.). . The kind of expansion material to be used is not particularly limited. In the binder composition (B), the expansion material preferably contains 2.5 to 3.5 parts by weight with respect to 100 parts by weight of the inorganic composition (N) described later. When the amount of the expanded material used is less than 2.5 parts by weight, cracking prevention and drying shrinkage reduction may be insufficient. If the amount of the expansion material used exceeds 3.5 parts by weight, the acid resistance and ozone resistance may be insufficient, which may cause a pop-out phenomenon or swell expansion, which is not preferable.

結合材組成物(B)には、必要に応じて無水石膏を加える。無水石膏を加えることにより初期強度の増加、流動性の向上が得られる。無水石膏は後述の無機組成物(N)中に5重量%以下含むことが好ましい。添加することによって、初期強度の増加、流動性の向上を図ることができる。5重量%を超えると遅れ膨張を生じる場合があるので好ましくない。   Anhydrous gypsum is added to the binder composition (B) as necessary. By adding anhydrous gypsum, an increase in initial strength and an improvement in fluidity can be obtained. Anhydrous gypsum is preferably contained in an inorganic composition (N) described later in an amount of 5% by weight or less. By adding, the initial strength can be increased and the fluidity can be improved. If it exceeds 5% by weight, delayed expansion may occur, which is not preferable.

細骨材(S)
本発明では、前記目的を達成するために、特定の粒度範囲の珪砂を用いる。このような珪砂を採用するのは、塗材や吹き付け材として用いた場合の作業性や、厚みの確保、ひび割れ防止の観点から良好な特性を獲得するためである。具体的には、細骨材は、3号〜8号、好適には3号〜6号及び8号珪砂を配合してなる細骨材を用いる。3号珪砂は、粒度が1.2〜2.4mm程度の範囲のものである。4号珪砂は、粒度が0.6〜1.2mm程度の範囲のものである。5号珪砂は、粒度が0.3〜0.8mm程度の範囲のものである。6号珪砂は、粒度が0.2〜0.4mm程度の範囲のものである。8号珪砂は、粒度が0.05〜0.2mm程度の範囲のものである。なお、7号珪砂は、0.1〜0.3mm程度の範囲である。7号珪砂は、必要に応じ、6号珪砂又は8号珪砂の一部に代替して用いることができる。
Fine aggregate (S)
In the present invention, in order to achieve the above object, silica sand having a specific particle size range is used. The reason why such silica sand is used is to obtain good characteristics from the viewpoints of workability when used as a coating material or spraying material, securing of thickness, and prevention of cracking. Specifically, the fine aggregate is a fine aggregate formed by blending No. 3 to No. 8, preferably No. 3 to No. 6 and No. 8 silica sand. No. 3 silica sand has a particle size in the range of about 1.2 to 2.4 mm. No. 4 silica sand has a particle size in the range of about 0.6 to 1.2 mm. No. 5 silica sand has a particle size in the range of about 0.3 to 0.8 mm. No. 6 silica sand has a particle size in the range of about 0.2 to 0.4 mm. No. 8 silica sand has a particle size in the range of about 0.05 to 0.2 mm. In addition, No. 7 silica sand has a range of about 0.1 to 0.3 mm. No. 7 silica sand can be used in place of part of No. 6 silica sand or No. 8 silica sand as required.

なお、前記細骨材(S)の好適な粒度構成は、各ふるいの通過率として、1.2mmふるいが80〜95重量%、0.6mmふるいが45〜60重量%、0.3mmふるいが25〜35重量%、0.15mmふるいが10〜30重量%である。この範囲の粒度構成にすることにより、塗材や吹き付け材として用いた場合、作業性が良好であるとともに、厚みの確保やひび割れ防止が容易となる。例えば、細骨材(S)中、3号珪砂を30〜40重量%、4号珪砂を5〜25重量%、5号珪砂を5〜25重量%、6号珪砂を15〜25重量%、8号珪砂を10〜20重量%とすれば、前記ふるいの通過率の範囲をほぼ満たすことができる。   In addition, as for the suitable particle size structure of the said fine aggregate (S), 1.2 mm sieve is 80 to 95 weight%, 0.6 mm sieve is 45 to 60 weight%, and 0.3 mm sieve as a passage rate of each sieve. 25-35 wt%, 0.15 mm sieve is 10-30 wt%. When the particle size is in this range, when used as a coating material or a spraying material, workability is good, and securing of thickness and prevention of cracking are facilitated. For example, in fine aggregate (S), No. 3 silica sand is 30 to 40% by weight, No. 4 silica sand is 5 to 25% by weight, No. 5 silica sand is 5 to 25% by weight, No. 6 silica sand is 15 to 25% by weight, If the No. 8 silica sand is 10 to 20% by weight, the range of the sieve passing rate can be substantially satisfied.

したがって、細骨材(S)中の各号珪砂のより好ましい割合は、例えば、細骨材中、3号珪砂は35重量%程度、4号珪砂は15重量%程度、5号珪砂は15重量%程度、6号珪砂は20重量%程度、8号珪砂は15重量%程度である。   Therefore, a more preferable ratio of each No. silica sand in the fine aggregate (S) is, for example, about 35 wt% for No. 3 silica sand, about 15 wt% for No. 4 silica sand, and 15 wt. %, No. 6 silica sand is about 20% by weight, and No. 8 silica sand is about 15% by weight.

細骨材(S)は、前記結合材組成物(B)に対し重量比S/Bが2.05〜2.15となるように配合する必要がある。2.05未満では単位容積あたりのセメント量が多くなり、乾燥収縮等によるひび割れが生じやすくなる場合がある。また、2.15を超えると単位容積あたりのセメント量が少なくなり、十分な強度が得られない場合がある。十分な強度が得られなくなると、壁等の下地の拘束によってひび割れが発生する場合がある。   The fine aggregate (S) needs to be blended so that the weight ratio S / B is 2.05 to 2.15 with respect to the binder composition (B). If it is less than 2.05, the amount of cement per unit volume increases, and cracking due to drying shrinkage or the like may occur easily. On the other hand, if it exceeds 2.15, the amount of cement per unit volume decreases, and sufficient strength may not be obtained. If sufficient strength cannot be obtained, cracks may occur due to restraint of the base such as walls.

モルタル組成物のより実用的な配合
前記の通り、本発明のモルタル組成物は、基本的には結合材組成物(B)と細骨材(S)からなるものである。
一方、前記したように、主としてコンクリート躯体に用いる耐酸性・耐オソン性を備えた水硬性無機材料として、特願2005−179924号に係るものを開発している。本発明のモルタル組成物の発明は該水硬性無機材料を塗材(左官材)や吹付け材へも適用できるように検討した結果なされたものである。したがって、本願明細書では、該水硬性無機材料の関係、モルタル組成物の位置づけを明確にするために無機組成物(N)という概念を導入し説明を行った。また、本発明のモルタル組成物を調合する場合は、係る水硬性無機材料を無機組成物(N)として調製し、該無機組成物に、さらに早強ポルトランドセメント等の早強型ポルトランドセメント又はエコセメントと膨張材と細骨材(S)等を外割で配合することが実用面から好適である。無機組成物(N)を調製しておけば、コンクリートだけではなくこれをベースに別配合したものを塗材や吹付け材等の用途にも用いることもできるからである。
More practical as compounding the mortar composition of the present invention the mortar composition is basically made of a binder composition (B) and the fine aggregate (S).
On the other hand, as described above, a hydraulic inorganic material having acid resistance and osson resistance mainly used for a concrete frame has been developed according to Japanese Patent Application No. 2005-179924. The invention of the mortar composition of the present invention has been made as a result of studying the application of the hydraulic inorganic material to a coating material (a plastering material) or a spraying material. Therefore, in this specification, in order to clarify the relationship with the hydraulic inorganic material and the positioning of the mortar composition, the concept of the inorganic composition (N) was introduced and explained. Further, when preparing the mortar composition of the present invention, such a hydraulic inorganic material is prepared as an inorganic composition (N), and an early-strength Portland cement such as early-strength Portland cement or eco-friendly is further added to the inorganic composition. It is preferable from a practical aspect to mix cement, an expansion material, fine aggregate (S), and the like in an external ratio. This is because, if the inorganic composition (N) is prepared, not only concrete but also a mixture separately based on this can be used for applications such as coating materials and spraying materials.

本発明のモルタル組成物を製造する上では、例えば、20〜30重量%の普通ポルトランドセメントを含み、シリカヒュームと、高炉水砕スラグと、フライアッシュとからなり、必要に応じて無水石膏を含むものを無機組成物(N)とし、この無機組成物(N)100重量部に対し、さらに、早強型ポルトランドセメント又はエコセメント35〜45重量部、膨張材2.5〜3.5重量部、3号〜6号及び8号珪砂からなる細骨材(S)を250〜350重量部含んでなるものとして配合することが、より実用的な手法である。細骨材(S)が250重量部未満であると施工方法によってはひび割れが発生しやすくなる。また、350重量部を超えると施工方法によっては作業性が悪くなる。   In producing the mortar composition of the present invention, for example, it contains 20 to 30% by weight of ordinary Portland cement, is composed of silica fume, blast furnace granulated slag, and fly ash, and optionally contains anhydrous gypsum. An inorganic composition (N) is used, and with respect to 100 parts by weight of the inorganic composition (N), 35 to 45 parts by weight of early-strength Portland cement or eco-cement, and 2.5 to 3.5 parts by weight of an expanding material It is a more practical technique to mix the fine aggregate (S) made of No. 3 to No. 6 and No. 8 silica sand as containing 250 to 350 parts by weight. If the fine aggregate (S) is less than 250 parts by weight, cracks are likely to occur depending on the construction method. Moreover, when it exceeds 350 weight part, workability | operativity will worsen depending on the construction method.

無機組成物(N)の内訳は前述の通り、好適にはシリカヒュームは15〜25重量%、高炉水砕スラグは25〜35重量%、フライアッシュは25〜35重量%であり、必要に応じて添加される無水石膏は5重量%以下である。この範囲のものであれば耐酸性・耐オゾン性を有する塗材や吹付け材が得られやすい。   As described above, the breakdown of the inorganic composition (N) is preferably 15 to 25% by weight of silica fume, 25 to 35% by weight of granulated blast furnace slag, and 25 to 35% by weight of fly ash. Anhydrous gypsum added is 5% by weight or less. If it is the thing of this range, the coating material and spraying material which have acid resistance and ozone resistance will be easy to be obtained.

また、前記結合材組成物(B)中には、前記無機組成物(N)100重量部に対し粘土鉱物を2〜20重量部含ませることが好ましい。2重量部未満では十分な効果が得られない。20重量部を超えると混練水量を高くしないと作業性が悪くなる。好ましい粘土鉱物としては、セピオライト、メタカオリン(焼成カオリン)、アロフェン、ベントナイト等を挙げることができる。   Moreover, it is preferable that 2-20 weight part of clay minerals are contained in the binder composition (B) with respect to 100 weight part of the inorganic composition (N). If it is less than 2 parts by weight, a sufficient effect cannot be obtained. When the amount exceeds 20 parts by weight, workability is deteriorated unless the amount of kneading water is increased. Preferred examples of the clay mineral include sepiolite, metakaolin (calcined kaolin), allophane and bentonite.

セピオライトは保水性に優れる性質を有するので、セピオライトを添加することによって、ひび割れがより発生し難くなる。メタカオリン(焼成カオリン)やアロフェンを添加することによって、硫酸イオンや塩化物イオン等の浸透に対する抵抗性が増加されるので耐酸性が向上する。ベントナイトは膨潤性を持つので、ベントナイトを添加することによって、ダレが生じることがなく、より厚塗りが可能となる。   Since sepiolite has a property of excellent water retention, the addition of sepiolite makes cracks less likely to occur. By adding metakaolin (calcined kaolin) or allophane, resistance to permeation of sulfate ions, chloride ions and the like is increased, so that acid resistance is improved. Since bentonite has swelling properties, the addition of bentonite does not cause sagging and enables thicker coating.

曲げ強度の向上、ひび割れ防止効果の更なる向上を図る場合は、前記モルタル組成物に対して0.05〜2体積%の繊維(F)を含ませることが好ましい。0.05体積%を満たないと十分な効果が得られない。2体積%を超えると混練水量を多くしないと作業性が悪くなる。繊維の種類は、ビニロン、ポリプロピレン、ナイロン等の有機繊維やガラスなどの無機繊維が挙げられる。曲げ強度の向上、ひび割れ防止等の効果が得られれば、繊維の種類は、特に限定されない。繊維長は、3〜30mmが好ましい。3mm未満では十分な曲げ強度の向上、ひび割れ防止効果の更なる向上を得ることができない。30mmを超えると、混練水量を多くしないと作業性が悪くなる。また、高度浄水処理施設に使用する場合はガラスなどの無機繊維が好ましいが、有機繊維でも厚生省令第15号に基づく45項目の溶出試験における溶出量が、いずれも基準値以下であれば使用できる。   In order to further improve the bending strength and the crack prevention effect, it is preferable to include 0.05 to 2% by volume of the fiber (F) with respect to the mortar composition. If it is less than 0.05% by volume, a sufficient effect cannot be obtained. If it exceeds 2% by volume, the workability is deteriorated unless the amount of kneading water is increased. Examples of the fiber include organic fibers such as vinylon, polypropylene and nylon, and inorganic fibers such as glass. The type of fiber is not particularly limited as long as effects such as improvement in bending strength and prevention of cracks can be obtained. The fiber length is preferably 3 to 30 mm. If it is less than 3 mm, sufficient improvement in bending strength and further improvement in crack prevention effect cannot be obtained. When it exceeds 30 mm, workability will deteriorate unless the amount of kneading water is increased. In addition, inorganic fibers such as glass are preferred for use in advanced water purification treatment facilities, but organic fibers can be used as long as the elution amount in the 45 items elution test based on the Ministry of Health and Welfare Ordinance No. 15 is less than the reference value. .

モルタル組成物の製造
本発明のモルタル組成物は、プレミックスモルタルとして製造されることが好ましい。この場合は、従来のプレミックスモルタルを製造するのと同様の方法で、前記構成材料が混合され製造される。また、前記無機組成物(N)のみをプレミックス材として製造しておき、後でこのプレミックス材と早強型ポルトランドセメント又はエコセメントと膨張材と細骨材を混合することがより好ましい。これらの他、早強型ポルトランドセメントと膨張材と細骨材を別のプレミックス材としておき、現場でこのプレミックス材と前記無機組成物(N)のプレミックス材とを混合しても良い。また、結合材組成物(B)をプレミックス材としておき、現場でこのプレミックス材と所定の配合割合の細骨材(S)とを混合して良い。
Production of mortar composition The mortar composition of the present invention is preferably produced as a premixed mortar. In this case, the said constituent material is mixed and manufactured by the method similar to manufacturing the conventional premix mortar. More preferably, only the inorganic composition (N) is produced as a premix material, and this premix material and early-strength Portland cement or eco-cement, an expansion material and a fine aggregate are mixed later. In addition to these, early-strength Portland cement, expansion material and fine aggregate may be used as separate premix materials, and this premix material and the premix material of the inorganic composition (N) may be mixed on site. . Alternatively, the binder composition (B) may be used as a premix material, and the premix material and a fine aggregate (S) having a predetermined blending ratio may be mixed on site.

繊維を含む本発明のモルタル組成物は、従来の繊維モルタル製造と同様の方法で行えば良い。繊維を混合する場合は、事前にカットした繊維をプレミックス材に混合しても良く、混練時にモルタル組成物と繊維と水とを混合しても良い。   What is necessary is just to perform the mortar composition of this invention containing a fiber by the method similar to the manufacture of the conventional fiber mortar. When mixing the fibers, the fibers cut in advance may be mixed with the premix material, or the mortar composition, the fibers and water may be mixed during kneading.

塗材
本発明のモルタル組成物は、下水道処理施設、上水道処理施設、高度浄水処理施設等におけるコンクリート劣化防止用モルタル被覆材、劣化したコンクリートを補修する際の断面修復材として好適に用いることができるが、使い方は、一つとして左官用塗材として用いるのが良い。本発明のモルタル組成物を用いることによって、ひび割れが発生したりダレが生ずることなく良好な作業性で2cmの厚塗りができる。また、施工した塗材は、耐酸性・耐オゾン性を有するものとなる。なお、塗材を製造する際の混練水量は、モルタル組成物に対し13〜15重量%が良い。本発明の塗材は、例えば、施工現場で前記プレミックス材等に混練水を添加し、混練することによって得ることができる。
施工は、例えば、メッシュ状に織り上げたネットを施工箇所に設置してから本発明の塗材を所定厚に左官ゴテを用いて塗っても良い。
Mortar composition of the coating material the invention, sewage treatment facilities, water supply treatment plant, advanced water treatment concrete deterioration preventing mortar covering material in facilities, can be suitably used as cross restorative material when repairing a degraded concrete However, it is better to use it as a plastering material. By using the mortar composition of the present invention, a thick coating of 2 cm can be performed with good workability without generating cracks or sagging. The applied coating material has acid resistance and ozone resistance. In addition, the amount of kneading water at the time of producing the coating material is preferably 13 to 15% by weight with respect to the mortar composition. The coating material of the present invention can be obtained, for example, by adding kneaded water to the premix material or the like at the construction site and kneading.
For the construction, for example, a net woven in a mesh shape may be installed at a construction location, and then the coating material of the present invention may be applied to a predetermined thickness using a plastering iron.

吹付け材
本発明のモルタル組成物は、前記塗材の他に吹付け材としても用いることができる。本発明のモルタル組成物を用いることによって、ひび割れが発生したり吹付けた際にダレが生ずることなく2cmの吹付厚が確保できる。また、施工した吹付け材は、耐酸性・耐オゾン性を有するものとなる。なお、吹付け材を製造する際の混練水量は、塗材と同様、モルタル組成物に対し13〜15重量%が良い。本発明の吹付け材は、例えば、施工現場で前記プレミックス材等に混練水を添加し、混練することによって得ることができる。吹付け方法は、常法に従って行えば良い。吹付け機も通常のものを用いれば良い。
施工は、上記同様、メッシュ状に織り上げたネットを施工箇所に設置してから本発明の吹き付け材を吹き付け機を用いて吹き付けても良い。
Spray Material The mortar composition of the present invention can be used as a spray material in addition to the coating material. By using the mortar composition of the present invention, a spraying thickness of 2 cm can be ensured without cracking or sagging when sprayed. Moreover, the applied spraying material has acid resistance and ozone resistance. In addition, the amount of kneading | mixing water at the time of manufacturing a spraying material is good to 13 to 15 weight% with respect to a mortar composition like a coating material. The spray material of the present invention can be obtained, for example, by adding kneaded water to the premix material or the like at the construction site and kneading. The spraying method may be performed according to a conventional method. A normal spraying machine may be used.
The construction may be carried out by installing the net woven into a mesh shape at the construction site and spraying the spraying material of the present invention using a spraying machine as described above.

以下に本発明に係る実施例及び比較例を示す。
実施例1〜11及び比較例1〜7として、表1のモルタル組成物を調製した。これらの実施例1〜11及び比較例1〜7のモルタル組成物を用いて試験体を作製し、以下の各種試験を行った。なお、表2に各実施例及び比較例における細骨材(S)の粒度分布を示す。
Examples and comparative examples according to the present invention are shown below.
As Examples 1 to 11 and Comparative Examples 1 to 7, mortar compositions shown in Table 1 were prepared. Test bodies were prepared using the mortar compositions of Examples 1 to 11 and Comparative Examples 1 to 7, and the following various tests were performed. Table 2 shows the particle size distribution of the fine aggregate (S) in each example and comparative example.

Figure 2007084420
Figure 2007084420

なお、表1中、比以外の単位は、重量部である。
また、表中の記号は、以下の原料を示す。
記号NC: 普通ポルトランドセメント(太平洋セメント社製)
記号BS: 高炉水砕スラグ(デイ・シイ社製ブレーン4000級)
記号FA: フライアッシュ(電源開発社製、II種相当品)
記号SF: シリカヒューム(ノルウェー産)
記号AG: 無水石膏(タイ産天然無水石膏)
記号HC: 早強ポルトランドセメント(太平洋セメント社製)
記号EC: エコセメント(太平洋セメント社製)
記号EX: 膨張材(太平洋マテリアル社製ニューエクスパン)
記号3Q: 3号珪砂(ニッチツ社製珪砂N30)
記号4Q: 4・5号珪砂の混合砂(前田建材工業社製山形珪砂ミックス)
記号6Q: 6号珪砂(東海サンド社製遠州珪砂)
記号8Q: 8号珪砂(ニッチツ社製ニッチツ秩父珪砂8号)
記号SE: セピオライト(商品名:セピオライト粗目)
記号ME: メタカオリン(バーゲス社製イスバーグ)
記号GF: ガラス繊維(日本電気硝子社製チョップドスラストACS6H−103)
記号W: 水道水
記号C: セメント
記号B: 結合材組成物
記号N: 無機組成物
記号S: 細骨材
In Table 1, units other than the ratio are parts by weight.
Moreover, the symbol in a table | surface shows the following raw materials.
Symbol NC: Normal Portland cement (manufactured by Taiheiyo Cement)
Symbol BS: Blast Furnace Granulated Slag (Brain 4000 grade manufactured by Day Shi)
Symbol FA: Fly Ash (manufactured by Power Supply Development Company, Class II equivalent)
Symbol SF: Silica fume (Norway)
Symbol AG: anhydrous gypsum (Thai natural anhydrous gypsum)
Symbol HC: Early strong Portland cement (manufactured by Taiheiyo Cement)
Symbol EC: Ecocement (made by Taiheiyo Cement)
Symbol EX: Expansion material (New Expan made by Taiheiyo Materials Co., Ltd.)
Symbol 3Q: No. 3 quartz sand (silica sand N30 manufactured by Nichetsu)
Symbol 4Q: Mixed sand of No. 4 and 5 silica sand (Yamagata silica sand mix manufactured by Maeda Construction Materials Co., Ltd.)
Symbol 6Q: No. 6 quartz sand (Toshu Sand Co., Ltd. Enshu quartz sand)
Symbol 8Q: No. 8 silica sand (Niche Tsuchibu silica sand No. 8 made by Nichetsu)
Symbol SE: Sepiolite (trade name: Sepiolite coarse)
Symbol ME: Metakaolin (Burges Isberg)
Symbol GF: Glass fiber (Nippon Electric Glass Co., Ltd. chopped thrust ACS6H-103)
Symbol W: Tap water Symbol C: Cement Symbol B: Binder composition Symbol N: Inorganic composition Symbol S: Fine aggregate

Figure 2007084420
Figure 2007084420

さらに、前記実施例1〜11及び比較例1〜7に係るモルタル組成物を用いた塗材に水道水(W)を配合して塗材を調製した。同様に吹付け材も調整した。これらにおける結合材組成物(B)と細骨材(S)の合計に対する水道水(W)の比を、以下の表3に示す。   Furthermore, tap water (W) was mix | blended with the coating material using the mortar composition which concerns on the said Examples 1-11 and Comparative Examples 1-7, and the coating material was prepared. Similarly, the spray material was adjusted. The ratio of tap water (W) to the total of the binder composition (B) and fine aggregate (S) in these is shown in Table 3 below.

Figure 2007084420
Figure 2007084420

A.基本的性能の確認試験
前記実施例1〜11及び比較例1〜7に係るモルタル組成物を用いて、まず、耐酸性の試験、耐オゾン性の試験、及び溶出試験を行った。
A. Basic Performance Confirmation Test Using the mortar compositions according to Examples 1 to 11 and Comparative Examples 1 to 7, first, an acid resistance test, an ozone resistance test, and an elution test were performed.

A−1.耐酸性試験
JISR5201で規定される供試体に成形し、材齢28日まで水中養生した後5%硫酸溶液に30日間浸漬し、供試体の質量変化率を測定した。
A-1. Acid resistance test A specimen specified in JIS R5201 was molded, cured in water until the age of 28 days, immersed in a 5% sulfuric acid solution for 30 days, and the mass change rate of the specimen was measured.

耐酸性試験の結果を、以下の表4に示す。   The results of the acid resistance test are shown in Table 4 below.

Figure 2007084420
Figure 2007084420

実施例1〜11、比較例1、3〜6に係るモルタル組成物においては、硫酸溶液浸漬による質量の減少がなく耐酸性に優れた結果となった。早強ポルトランドセメントを無機組成物(N)100重量部に対して55重量部使用し、C/Bが0.54(結合材組成物中のセメント量が54重量%)である比較例2においては硫酸溶液浸漬後の供試体の質量減少が大きくなり、耐酸性に劣る結果となった。結合材組成物(B)が普通セメントのみである比較例7では、硫酸溶液浸漬後の供試体の質量減少が著しい結果となった。優れた耐酸性を持つためには無機組成物(N)が必要不可欠である。比較例7については以降の試験を行わないことにした。   In the mortar compositions according to Examples 1 to 11 and Comparative Examples 1 and 3 to 6, there was no decrease in mass due to immersion in the sulfuric acid solution, and the acid resistance was excellent. In Comparative Example 2 where 55 parts by weight of early strength Portland cement is used with respect to 100 parts by weight of the inorganic composition (N) and C / B is 0.54 (the amount of cement in the binder composition is 54% by weight) Resulted in a large decrease in the mass of the specimen after immersion in the sulfuric acid solution, resulting in poor acid resistance. In Comparative Example 7 in which the binder composition (B) was only ordinary cement, the mass reduction of the specimen after immersion in the sulfuric acid solution was significant. In order to have excellent acid resistance, the inorganic composition (N) is indispensable. For Comparative Example 7, the subsequent test was not performed.

A−2.硫酸浸透深さ
上記A−1.耐酸性試験で、質量変化率を測定した供試体を曲げ強さ試験装置で切断し、現れた断面にフェノールフタレイン溶液を塗布し、非呈色部分の表面からの深さを測定した。結果を以下の表5に示す。
実施例1〜11の供試体は、いずれも硫酸浸透深さが5mm程度であり、良好な特性を示した。特に、メタカオリンを添加した実施例5から実施例7は2mm程度と更に良好な結果となった。
A-2. Sulfuric acid penetration depth A-1. In the acid resistance test, the specimen whose mass change rate was measured was cut with a bending strength test device, a phenolphthalein solution was applied to the cross section that appeared, and the depth from the surface of the non-colored portion was measured. The results are shown in Table 5 below.
The specimens of Examples 1 to 11 each had a sulfuric acid penetration depth of about 5 mm, and exhibited good characteristics. In particular, Examples 5 to 7 to which metakaolin was added had a better result of about 2 mm.

Figure 2007084420
Figure 2007084420

A−3.耐オゾン性試験
モルタル供試体を材齢28日まで水中養生後に、水道水に溶存オゾンガス濃度2ppm、温度20℃に保った試験槽に2、4、10週間浸漬後の質量変化率を測定した。
A-3. Ozone Resistance Test After the mortar specimen was cured under water until the age of 28 days, the mass change rate after immersion for 2, 4 and 10 weeks in a test tank maintained at a dissolved ozone gas concentration of 2 ppm and a temperature of 20 ° C. in tap water was measured.

耐オゾン性試験の結果を、以下の表6に示す。   The results of the ozone resistance test are shown in Table 6 below.

Figure 2007084420
Figure 2007084420

実施例1〜11、比較例1、3〜6に係るモルタル組成物において、耐オゾン性の安定性試験ですべて良好な結果が得られた。耐酸性の結果と同様に、早強ポルトランドセメントを無機組成物(N)100重量部に対して55重量部使用し、C/Bが0.54(結合材組成物中のセメント量が54重量%)である比較例2においては酸浸漬後の供試体の質量減少が大きくなり、耐オゾン性に劣る結果となった。   In the mortar compositions according to Examples 1 to 11 and Comparative Examples 1 and 3 to 6, all good results were obtained in the ozone resistance stability test. Similarly to the acid resistance result, 55 parts by weight of early strong Portland cement is used with respect to 100 parts by weight of the inorganic composition (N), and C / B is 0.54 (the amount of cement in the binder composition is 54 weights). %), The decrease in the mass of the specimen after acid immersion was large, resulting in poor ozone resistance.

A−4.溶出試験
平成12年厚生省令第15号(改正 平成12年厚生省令第127号、平成14年厚生労働省令第139号、平成16年厚生労働省令第5号)に基づく、平成12年厚生省告示第45号(資機材等の材質に関する試験)による45項目の溶出試験を行った。
A-4 . Dissolution Test 2000 Ministry of Health and Welfare Decree No. 15 (Revised 2000 Ministry of Health and Welfare Ordinance No. 127, 2002 Ministry of Health, Labor and Welfare Ordinance No. 139, 2004 Ministry of Health, Labor and Welfare Ordinance No. 5) A 45-item elution test was conducted according to No. 45 (test on materials such as materials and equipment).

実施例1〜11、比較例1〜6に係るモルタル組成物において、45項目の溶出試験における溶出量が、いずれも基準値以下であったため、人体や環境に対する安全性に優れ、上水施設への適用に有効であることが確認された。   In the mortar compositions according to Examples 1 to 11 and Comparative Examples 1 to 6, since the elution amount in the 45 items of the elution test was less than the standard value, the safety to the human body and the environment is excellent, and the water supply facility It was confirmed that it is effective for the application.

B.塗材としての性能確認試験
次いで、前記実施例1〜11及び比較例1〜6に係るモルタル組成物を用いて、圧縮強さ、接着強度、長さ変化率、及び塗材として用いた場合のひび割れ発生状況の確認、作業性・ダレの有無について試験を行った。
B. Performance Confirmation Test as Coating Material Next, using the mortar compositions according to Examples 1 to 11 and Comparative Examples 1 to 6, the compression strength, the adhesive strength, the rate of change in length, and the case of being used as a coating material Tests were conducted to confirm the occurrence of cracks, workability, and whether or not there was sag.

B−1.圧縮強さ
JIS R 5201で規定される方法で行った。材齢は1、3、7、28日で行った。
圧縮強さ試験の結果を以下の表7に示す。
B-1. Compressive strength The compressive strength was measured by the method specified in JIS R 5201. The age was 1, 3, 7, 28 days.
The results of the compressive strength test are shown in Table 7 below.

Figure 2007084420
Figure 2007084420

C/Bの低い比較例1,6及びS/Bの高い比較例4では、圧縮強さが低い結果となった。早強ポルトランドセメント又はエコセメントを無機組成物100重量部に対して35重量部以上を用いた実施例1〜11では初期の段階から良好な強度発現を得られた。   In Comparative Examples 1 and 6 having a low C / B and Comparative Example 4 having a high S / B, the compression strength was low. In Examples 1 to 11 in which 35 parts by weight or more of early-strength Portland cement or eco-cement was used with respect to 100 parts by weight of the inorganic composition, good strength expression was obtained from the initial stage.

B−2.接着強度
ハンドミキサーで10リットルのモルタル組成物から調製した塗材を練り混ぜた後、壁にモルタルを塗布したあと、材齢7日で接着強度を測定した。接着試験方法は、JSCE−K 531−1999に従って実施した。
塗厚2.0cmでの測定結果を以下の表8に示す。
B-2. Adhesive strength A coating material prepared from 10 liters of a mortar composition was kneaded with a hand mixer, and after the mortar was applied to the wall, the adhesive strength was measured at a material age of 7 days. The adhesion test method was carried out according to JSCE-K 531-1999.
The measurement results at a coating thickness of 2.0 cm are shown in Table 8 below.

Figure 2007084420
Figure 2007084420

C/Bの低い比較例1,6及びS/Bの高い比較例4では、接着強度の発現が低い結果となった。早強ポルトランドセメント又はエコセメントを無機組成物100重量部に対して35重量部以上を用いた実施例1〜11では良好な接着強度の発現が得られた。   In Comparative Examples 1 and 6 having a low C / B and Comparative Example 4 having a high S / B, the expression of adhesive strength was low. In Examples 1 to 11 in which 35 parts by weight or more of early-strength Portland cement or eco-cement was used with respect to 100 parts by weight of the inorganic composition, good adhesion strength was obtained.

B−3.長さ変化率
JIS A 1129で規定される方法で行った。材齢7日まで水中養生後7、14、28日で行った。
長さ変化率を測定した結果を以下の表9に示す。
B-3. Length change rate It was performed by the method prescribed in JIS A 1129. It was carried out 7, 14, 28 days after underwater curing until the age of 7 days.
The results of measuring the length change rate are shown in Table 9 below.

Figure 2007084420
Figure 2007084420

比較例2以外の比較例では、長さ変化率が大きい結果となった。早強ポルトランドセメント又はエコセメントを無機組成物100重量部に対して35重量部以上を用いた実施例1〜11では比較例に対して小さい長さ変化率が得られた。   In Comparative Examples other than Comparative Example 2, the length change rate was large. In Examples 1 to 11 using 35 parts by weight or more of early-strength Portland cement or eco-cement with respect to 100 parts by weight of the inorganic composition, a small rate of change in length was obtained compared to the comparative example.

B−4.ひび割れ発生状況の確認
壁にモルタル組成物を用いて調製した塗材を塗厚0.5cm、1cm、2cm、2.5cmで鏝を用いて塗布したあと目視にてひび割れ発生状況を観察した。
結果を以下の表10に示す。
B-4. Confirmation of the crack generation state The coating material prepared using the mortar composition on the wall was applied with a lacquer with a coating thickness of 0.5 cm, 1 cm, 2 cm, and 2.5 cm, and then the crack generation state was visually observed.
The results are shown in Table 10 below.

Figure 2007084420
Figure 2007084420

C/Bの低い比較例1では、塗厚0.5cmのとき3日後、それ以外のときは10日後にひび割れが発生した。S/Bの低い比較例3では、塗厚0.5cmのとき1日後、それ以外のときは3日後、S/Bの高い比較例4では3日後ひび割れが発生した。膨張材を用いない比較例5では、10日後、ひび割れが発生した。早強ポルトランドセメント、エコセメント、膨張材のいずれも用いない比較例6では、1日後ひび割れが発生した。一方、早強ポルトランドセメント又はエコセメントと膨張材を用い、かつC/Bが0.40〜0.50、S/Bの値を2.05〜2.15である実施例1〜11ではいずれもひび割れの発生が認められなかった。特にセピオライト、実施例1、実施例4、実施例9、ガラス繊維を用いた実施例10、実施例11では良好であった。   In Comparative Example 1 having a low C / B, cracks occurred after 3 days when the coating thickness was 0.5 cm, and after 10 days in other cases. In Comparative Example 3 with low S / B, cracks occurred after 1 day when the coating thickness was 0.5 cm, after 3 days in other cases, and in Comparative Example 4 with high S / B after 3 days. In Comparative Example 5 in which no expansion material was used, cracks occurred after 10 days. In Comparative Example 6 in which none of early-strength Portland cement, eco-cement, or expansion material was used, cracks occurred after one day. On the other hand, in Examples 1 to 11 in which early strength Portland cement or eco cement and an expansion material are used, C / B is 0.40 to 0.50, and S / B is 2.05 to 2.15. No cracks were observed. In particular, it was good in Sepiolite, Example 1, Example 4, Example 9, Example 10 and Example 11 using glass fiber.

B−5.作業性、ダレの有無
B−4の試験と同様に壁にモルタルを塗厚0.5cm、1cm、2cm、2.5cmで鏝を用いて塗布したときの作業性、ダレの有無を目視にて評価した。
結果を以下の表11に示す。
B-5. Workability, presence / absence of sagging As with the test of B-4, mortar was applied to the wall with a thickness of 0.5cm, 1cm, 2cm, 2.5cm using a scissors to visually confirm the workability and sagging evaluated.
The results are shown in Table 11 below.

Figure 2007084420
Figure 2007084420

3号珪砂を用いない比較例6では、モルタルに粘りがあり作業性が悪くなり、ダレが生じた。その他のモルタルはいずれも作業性が良く、ダレが生じなかった。   In Comparative Example 6 in which No. 3 silica sand was not used, the mortar was sticky, the workability deteriorated, and sagging occurred. All other mortars had good workability, and no sagging occurred.

C.吹付け材としての性能確認試験
以下に説明するような吹付け試験機を用い、実施例1〜11のモルタル組成物を吹付け材として用いた場合の性能確認試験を行った。
0.75KW、容量0.08m3のモルタルミキサで混練を行い、3.7KW、吐出量70リットル/分のスクイズポンプで吸い上げ、及び直径50mm、40mmのテーパ管を用い吹き付け、さらにインバータを使用して、吐出量を調節した。
C. Performance confirmation test as a spraying material Using a spraying test machine as described below, a performance confirmation test was performed when the mortar compositions of Examples 1 to 11 were used as a spraying material.
Kneading with a mortar mixer of 0.75 KW and capacity of 0.08 m 3 , sucking up with a squeeze pump of 3.7 KW and discharge volume of 70 liters / minute, spraying using a taper tube with a diameter of 50 mm and 40 mm, and using an inverter The discharge amount was adjusted.

壁に実施例1〜11のモルタルを塗厚0.5cm、1cm、2cm、2.5cmで吹付けしたときのひび割れ、作業性、ダレの有無を目視にて評価した。付着厚さ2.0cmにおいて材齢7日で接着強度を測定した。接着試験方法は、JSCE−K 531−1999に従って実施した。
結果を表12に示す。
Cracks, workability, and the presence or absence of sagging when the mortars of Examples 1 to 11 were sprayed onto the wall at a coating thickness of 0.5 cm, 1 cm, 2 cm, and 2.5 cm were visually evaluated. The adhesive strength was measured at a material age of 7 days at an adhesion thickness of 2.0 cm. The adhesion test method was carried out according to JSCE-K 531-1999.
The results are shown in Table 12.

Figure 2007084420
Figure 2007084420

実施例1〜11に係るモルタル組成物を用いた吹付け材はいずれも接着強度及び作業性が良く、ダレが生じなかった。また、材齢28日においていずれのモルタルもひび割れが発生しなかった。   The spray materials using the mortar compositions according to Examples 1 to 11 all had good adhesive strength and workability, and no sagging occurred. Also, no cracks occurred in any mortar at the age of 28 days.

以上の実施例1〜11及び比較例1〜7の結果から了解されるように、耐酸性、耐オゾン性及び塗材及び吹付け材として要求される圧縮強さ、接着強度、長さ変化率、ひび割れの発生、作業性、ダレ等に関して、すべて満足できる特性を得られたのは、本発明の範囲に入る実施例1〜11であった。   As understood from the results of Examples 1 to 11 and Comparative Examples 1 to 7 above, acid resistance, ozone resistance, and compression strength, adhesive strength, and length change rate required as a coating material and spraying material Examples 1 to 11 that fall within the scope of the present invention were able to obtain satisfactory characteristics with respect to the occurrence of cracks, workability, sagging, and the like.

Claims (8)

セメントと、シリカヒュームと、高炉水砕スラグと、フライアッシュと、膨張材からなり、必要に応じて無水石膏をも含む結合材組成物(B)に、3号〜8号珪砂からなる細骨材(S)を配合してなるモルタル組成物であって、前記結合材組成物(B)中には前記セメントを40〜50重量%含み、前記結合材組成物(B)と前記細骨材(S)との重量比S/Bが2.05〜2.15であることを特徴とするモルタル組成物。   Fine bone made of No. 3 to No. 8 silica sand to a binder composition (B) made of cement, silica fume, blast furnace granulated slag, fly ash, and expandable material, and optionally also containing anhydrous gypsum. A mortar composition comprising a material (S), wherein the binder composition (B) contains 40 to 50% by weight of the cement, and the binder composition (B) and the fine aggregate A mortar composition having a weight ratio S / B to (S) of 2.05 to 2.15. 20〜30重量%の普通ポルトランドセメントと、シリカヒュームと、高炉水砕スラグと、フライアッシュとからなり、必要に応じて無水石膏をも含む無機組成物(N)100重量部に対し、さらに早強型ポルトランドセメント又はエコセメント35〜45重量部と、膨張材2.5〜3.5重量部を配合してなる前記結合材組成物(B)、及び3号〜8号珪砂からなる細骨材(S)250〜350重量部を含むことを特徴とする請求項1に記載のモルタル組成物。   20 to 30% by weight of ordinary Portland cement, silica fume, blast furnace granulated slag, and fly ash, and if necessary, 100 parts by weight of an inorganic composition (N) containing anhydrous gypsum, even faster. Fine bone made of 35 to 45 parts by weight of strong Portland cement or eco-cement and 2.5 to 3.5 parts by weight of the expansion material (B) and 3 to 8 silica sand The mortar composition according to claim 1, comprising 250 to 350 parts by weight of the material (S). 前記無機組成物(N)が、20〜30重量%の普通ポルトランドセメントと、15〜25重量%のシリカヒュームと、25〜35重量%の高炉水砕スラグと、20〜35重量%のフライアッシュとからなり、必要に応じて無水石膏をも含むことを特徴とする請求項2に記載のモルタル組成物。   The inorganic composition (N) contains 20 to 30% by weight of ordinary Portland cement, 15 to 25% by weight of silica fume, 25 to 35% by weight of blast furnace granulated slag, and 20 to 35% by weight of fly ash. The mortar composition according to claim 2, further comprising anhydrous gypsum as necessary. 前記結合材組成物(B)は、前記無機組成物(N)100重量部に対し、さらに粘土鉱物を2〜20重量部含むことを特徴とする請求項2又は3に記載のモルタル組成物。   The mortar composition according to claim 2 or 3, wherein the binder composition (B) further comprises 2 to 20 parts by weight of clay mineral with respect to 100 parts by weight of the inorganic composition (N). 前記細骨材(S)の粒度構成で、各ふるいの通過率として、1.2mmふるいが80〜95重量%、0.6mmふるいが45〜60重量%、0.3mmふるいが25〜35重量%、0.15mmふるいが10〜30重量%であることを特徴とする請求項1〜4のいずれかに記載のモルタル組成物。   The fine aggregate (S) has a particle size constitution, and the passing rate of each sieve is 80 to 95% by weight for 1.2 mm sieve, 45 to 60% by weight for 0.6 mm sieve, and 25 to 35% by weight for 0.3 mm sieve. %, 0.15 mm sieve is 10-30% by weight, mortar composition according to any one of claims 1-4. 請求項1〜5のいずれかに記載のモルタル組成物に対して0.05〜2体積%の繊維(F)を含むことを特徴とするモルタル組成物   A mortar composition comprising 0.05 to 2% by volume of fibers (F) with respect to the mortar composition according to any one of claims 1 to 5. 前記請求項1〜6のいずれかに記載のモルタル組成物からなる塗材。   A coating material comprising the mortar composition according to any one of claims 1 to 6. 前記請求項1〜6のいずれかに記載のモルタル組成物からなる吹付け材。   The spray material which consists of a mortar composition in any one of the said Claims 1-6.
JP2006191330A 2005-08-26 2006-07-12 Mortar composition, coating material and spraying material Active JP4854406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191330A JP4854406B2 (en) 2005-08-26 2006-07-12 Mortar composition, coating material and spraying material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005245451 2005-08-26
JP2005245451 2005-08-26
JP2006191330A JP4854406B2 (en) 2005-08-26 2006-07-12 Mortar composition, coating material and spraying material

Publications (2)

Publication Number Publication Date
JP2007084420A true JP2007084420A (en) 2007-04-05
JP4854406B2 JP4854406B2 (en) 2012-01-18

Family

ID=37971799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191330A Active JP4854406B2 (en) 2005-08-26 2006-07-12 Mortar composition, coating material and spraying material

Country Status (1)

Country Link
JP (1) JP4854406B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030968A (en) * 2006-07-26 2008-02-14 Sumitomo Osaka Cement Co Ltd Acid-resistant cement material
JP2010189834A (en) * 2009-02-13 2010-09-02 Nippon Steel Composite Co Ltd Method for repairing concrete structure in acid corrosion environment
CN102019118A (en) * 2010-11-02 2011-04-20 宁波大学 Granular-bed gas filtering device and filtering dust removing method thereof
JP2012106905A (en) * 2010-10-29 2012-06-07 Asuo Yonekura Acid resistant cement composition, and acid resistant mortar or concrete containing the same
JP2012171806A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp Mortar composition
CN102690070A (en) * 2012-06-06 2012-09-26 江苏大峘集团有限公司 Device for feeding desulfurization ash into slag micro powder, and method for feeding desulfurization ash by using device
JP2013112583A (en) * 2011-11-30 2013-06-10 Taiheiyo Materials Corp Mortar composition for repair
JP2013173630A (en) * 2012-02-23 2013-09-05 Ube Industries Ltd Instantly demolded lightweight block and method for manufacturing the same
KR101357799B1 (en) * 2012-01-30 2014-02-04 주식회사 실크로드시앤티 Quick-setting high-durable mortar composition, floor structure comprising the same, and method of construction thereof
JP2014129208A (en) * 2012-12-28 2014-07-10 Taiheiyo Material Kk Adhesive for tile
JP2014533645A (en) * 2011-11-18 2014-12-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Self-curing mortar, its production method and its use
JP5898350B1 (en) * 2015-03-09 2016-04-06 フジタ道路株式会社 Paving material
US9435321B2 (en) * 2013-06-04 2016-09-06 Kolon Global Corporation Seawater resistant grout material composition and method for constructing offshore wind turbine structure using same
JP2016211160A (en) * 2015-04-30 2016-12-15 株式会社大林組 Spray method for fiber-reinforced material
JP2017114735A (en) * 2015-12-25 2017-06-29 太平洋マテリアル株式会社 Mortar for finishing
JP2017226556A (en) * 2016-06-20 2017-12-28 宇部興産株式会社 Sulfuric acid-resistant cement composition, sulfuric acid-resistant mortar, and sulfuric acid-resistant mortar cured body
JP2021028280A (en) * 2019-08-09 2021-02-25 宇部興産株式会社 concrete
JP2021155292A (en) * 2020-03-27 2021-10-07 住友大阪セメント株式会社 Covering material, manufacturing method of covering material, concrete molded body, tubular molded body, manufacturing method of tubular molded body, and, slurry

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206485A (en) * 1994-01-24 1995-08-08 Mitsubishi Materials Corp Grouting material
JPH08217514A (en) * 1995-02-13 1996-08-27 Stylite Kogyo Kk Mortar composition
JPH11240743A (en) * 1998-02-26 1999-09-07 Taiheiyo Cement Corp Concrete material, concrete block, and production of concrete block
JP2000128618A (en) * 1998-10-20 2000-05-09 Kumagai Gumi Co Ltd Corrosion-resistant mortar
JP2001019528A (en) * 1999-07-09 2001-01-23 Showa Mining Co Ltd Grout material composition, hardened product and application thereof
JP2002097055A (en) * 2000-09-19 2002-04-02 Taiheiyo Cement Corp Acid resistant mortar composition
JP2002128559A (en) * 2000-10-16 2002-05-09 Denki Kagaku Kogyo Kk Cement composite and acid resistant cement concrete using it
JP2003306360A (en) * 2002-04-11 2003-10-28 Denki Kagaku Kogyo Kk Fine aggregate for cement concrete, cement composition, and cement concrete using the cement composition
JP2004051425A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2005008460A (en) * 2003-06-17 2005-01-13 Taiheiyo Material Kk Mortar concrete
JP2005035877A (en) * 2003-06-27 2005-02-10 Shinichi Numata Acid resistant concrete

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206485A (en) * 1994-01-24 1995-08-08 Mitsubishi Materials Corp Grouting material
JPH08217514A (en) * 1995-02-13 1996-08-27 Stylite Kogyo Kk Mortar composition
JPH11240743A (en) * 1998-02-26 1999-09-07 Taiheiyo Cement Corp Concrete material, concrete block, and production of concrete block
JP2000128618A (en) * 1998-10-20 2000-05-09 Kumagai Gumi Co Ltd Corrosion-resistant mortar
JP2001019528A (en) * 1999-07-09 2001-01-23 Showa Mining Co Ltd Grout material composition, hardened product and application thereof
JP2002097055A (en) * 2000-09-19 2002-04-02 Taiheiyo Cement Corp Acid resistant mortar composition
JP2002128559A (en) * 2000-10-16 2002-05-09 Denki Kagaku Kogyo Kk Cement composite and acid resistant cement concrete using it
JP2003306360A (en) * 2002-04-11 2003-10-28 Denki Kagaku Kogyo Kk Fine aggregate for cement concrete, cement composition, and cement concrete using the cement composition
JP2004051425A (en) * 2002-07-19 2004-02-19 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2005008460A (en) * 2003-06-17 2005-01-13 Taiheiyo Material Kk Mortar concrete
JP2005035877A (en) * 2003-06-27 2005-02-10 Shinichi Numata Acid resistant concrete

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030968A (en) * 2006-07-26 2008-02-14 Sumitomo Osaka Cement Co Ltd Acid-resistant cement material
JP2010189834A (en) * 2009-02-13 2010-09-02 Nippon Steel Composite Co Ltd Method for repairing concrete structure in acid corrosion environment
JP2012106905A (en) * 2010-10-29 2012-06-07 Asuo Yonekura Acid resistant cement composition, and acid resistant mortar or concrete containing the same
CN102019118A (en) * 2010-11-02 2011-04-20 宁波大学 Granular-bed gas filtering device and filtering dust removing method thereof
JP2012171806A (en) * 2011-02-17 2012-09-10 Ohbayashi Corp Mortar composition
JP2014533645A (en) * 2011-11-18 2014-12-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Self-curing mortar, its production method and its use
JP2013112583A (en) * 2011-11-30 2013-06-10 Taiheiyo Materials Corp Mortar composition for repair
KR101357799B1 (en) * 2012-01-30 2014-02-04 주식회사 실크로드시앤티 Quick-setting high-durable mortar composition, floor structure comprising the same, and method of construction thereof
JP2013173630A (en) * 2012-02-23 2013-09-05 Ube Industries Ltd Instantly demolded lightweight block and method for manufacturing the same
CN102690070A (en) * 2012-06-06 2012-09-26 江苏大峘集团有限公司 Device for feeding desulfurization ash into slag micro powder, and method for feeding desulfurization ash by using device
CN102690070B (en) * 2012-06-06 2013-12-18 江苏大峘集团有限公司 Device for feeding desulfurization ash into slag micro powder, and method for feeding desulfurization ash by using device
JP2014129208A (en) * 2012-12-28 2014-07-10 Taiheiyo Material Kk Adhesive for tile
US9435321B2 (en) * 2013-06-04 2016-09-06 Kolon Global Corporation Seawater resistant grout material composition and method for constructing offshore wind turbine structure using same
JP5898350B1 (en) * 2015-03-09 2016-04-06 フジタ道路株式会社 Paving material
JP2016166456A (en) * 2015-03-09 2016-09-15 フジタ道路株式会社 Pavement material
JP2016211160A (en) * 2015-04-30 2016-12-15 株式会社大林組 Spray method for fiber-reinforced material
JP2017114735A (en) * 2015-12-25 2017-06-29 太平洋マテリアル株式会社 Mortar for finishing
JP2017226556A (en) * 2016-06-20 2017-12-28 宇部興産株式会社 Sulfuric acid-resistant cement composition, sulfuric acid-resistant mortar, and sulfuric acid-resistant mortar cured body
JP2021028280A (en) * 2019-08-09 2021-02-25 宇部興産株式会社 concrete
JP2021155292A (en) * 2020-03-27 2021-10-07 住友大阪セメント株式会社 Covering material, manufacturing method of covering material, concrete molded body, tubular molded body, manufacturing method of tubular molded body, and, slurry

Also Published As

Publication number Publication date
JP4854406B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4854406B2 (en) Mortar composition, coating material and spraying material
KR101709240B1 (en) Mortar composition for recovering cross section of eco-friendly cement with sulphate resistance
JP5442249B2 (en) Acid resistant cement composition
JP5856442B2 (en) Cement admixture and cement composition
KR102173957B1 (en) Mortar composition for reparing and reinforcing concrete structure using acid resistant microorganism and high-sulfate cement and method for reparing and reinforcing concrete structure
JP6392553B2 (en) Method for producing hardened cement and hardened cement
JP2013103849A (en) Cement admixture and cement composition
JP2020019658A (en) Grout mortar composition, grout mortar, concrete structure, and production method for the same
WO2019172349A1 (en) Acid-resistant concrete, precast concrete, and method for producing acid-resistant concrete
JP2007176740A (en) Thickening mortar
JP2003261372A (en) Mortar composition for facility in corrosive environment, and construction method for inhibiting corrosion of concrete structure
JP5345821B2 (en) Cement admixture and cement composition
JP7005719B1 (en) Repair mortar material, repair mortar composition and cured product
JP5069073B2 (en) Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe
JP2003192422A (en) Inorganic hydraulic composition, hardened body thereof and operation method therefor
JP4516530B2 (en) Explosion resistant hardened cement and method for producing the same
JP7465451B2 (en) Cement composition, mortar composition, and method for repairing concrete structure
JP4681359B2 (en) High-strength mortar, high-strength concrete, method for producing high-strength mortar hardened body, method for improving durability of structure, and premix material for high-strength mortar
JP2005008486A (en) Fiber-reinforced cement composition, concrete structure, and method for producing concrete base material
JP4388250B2 (en) Hydraulic composition and cured body thereof
JP5255240B2 (en) Cement concrete hardened body, method for producing the same, and cement concrete used therefor
JP4516531B2 (en) Explosion resistant hardened cement and method for producing the same
KR102412570B1 (en) Acid-resistant injection mortar composition
JP2004105783A (en) Solidification material and solidification method for soil
JP2011132106A (en) Hydraulic composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250