JP4511956B2 - 燃料処理装置、前記燃料処理装置を用いた燃料処理方法、燃料処理装置を備えた燃料電池および燃料処理装置を備えた燃料電池への燃料供給方法 - Google Patents

燃料処理装置、前記燃料処理装置を用いた燃料処理方法、燃料処理装置を備えた燃料電池および燃料処理装置を備えた燃料電池への燃料供給方法 Download PDF

Info

Publication number
JP4511956B2
JP4511956B2 JP2005012201A JP2005012201A JP4511956B2 JP 4511956 B2 JP4511956 B2 JP 4511956B2 JP 2005012201 A JP2005012201 A JP 2005012201A JP 2005012201 A JP2005012201 A JP 2005012201A JP 4511956 B2 JP4511956 B2 JP 4511956B2
Authority
JP
Japan
Prior art keywords
fuel
gas
liquid
section
desulfurizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005012201A
Other languages
English (en)
Other versions
JP2006202581A (ja
Inventor
俊雄 篠木
秀規 小関
佳秀 言上
光昭 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005012201A priority Critical patent/JP4511956B2/ja
Publication of JP2006202581A publication Critical patent/JP2006202581A/ja
Application granted granted Critical
Publication of JP4511956B2 publication Critical patent/JP4511956B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

この発明は、炭化水素系のガスやアルコール系燃料、液相LPG等を改質して水素ガスを得る燃料処理装置、前記燃料処理装置を用いた燃料処理方法、および前記燃料処理装置を備えた燃料電池、さらには前記燃料処理装置を備えた燃料電池への燃料供給方法に関するものである。
燃料電池は環境に与える影響が少なく、エネルギー変換効率が高いことから民生用、産業用の発電装置として開発が盛んである。この燃料電池の燃料として、入手が容易で、輸送や貯蔵が比較的簡便な灯油、軽油、ガソリン等の炭化水素系液体燃料を原料として生成した水素ガスを用いる方法が検討されている。この炭化水素系液体燃料から水素ガス生成過程における脱硫する方法として、脱硫反応器で生成した脱硫反応生成物を抜き出して改質反応系に供給する技術が示されている(例えば特許文献1参照)。
特開2003−151608号公報
前記特許文献1には、脱硫反応器で液体燃料を液相と気相の共存下で脱硫し、生成された反応生成物を脱硫反応器内の気液界面の部位より抜き出して改質反応系に供給するために、反応生成物抜き出し管を反応器頂部から反応器内部に延伸し、前記抜き出し管の反応生成物の吸入口に相当する開口端が、脱硫反応器内の気液界面に位置するように設けた構成であるので、この従来の技術を実機レベルに適用すると、脱硫反応器内の気液界面位置と抜き出し位置を一致させることが困難な上、特に起動時、負荷変動時ならびに停止時等には、過渡的にも界面の大きな上下変動を伴う。この結果、脱硫された燃料の気相と液相の割合が変動し、燃料供給における流量の脈動を増加させる等の問題がある。
この発明は、前記のような課題を解決するためになされたものであり、脱硫器から排出された燃料を気液分離して、液相の燃料で水素生成を安定に実現した液体燃料処理装置と、この液体燃料処理装置を備えた燃料電池を提供することを目的としている。
第1の発明に係る燃料処理装置は、燃料供給部と脱硫器と気液分離器と改質器とを備えた脱硫器は、燃料供給部から供給される液体燃料を脱硫するものであり、
気液分離器は、脱硫器で脱硫された液体燃料を、液相燃料と気相燃料に分離するものであり、
改質器には、気化部と改質反応部と燃焼部とが設けられていて、気液分離器で分離された気相燃料は、経路に設けられたポンプの吐出する空気によって、改質器の燃焼部に送られ燃焼されて、気化部と改質反応部を加熱するものであり、気液分離器で分離された液相燃料は、改質器の気化部に送られ、水と混合されて気化後改質反応部に送られ、水素に変換されるものである。
第2の発明に係る燃料処理装置を備えた燃料電池は、燃料処理装置で生成される水素を利用して電池反応を行うものであり、
燃料処理装置には、燃料供給部と脱硫器と気液分離器と改質器とが備えられていて、
脱硫器は、燃料供給部から供給される液体燃料を脱硫するものであり、
気液分離器は、脱硫器で脱硫された液体燃料を、液相燃料と気相燃料に分離するものであり、
改質器には、気化部と改質反応部と燃焼部とが設けられていて、気液分離器で分離された気相燃料は、燃料電池から排出されるオフガスによって改質器の燃焼部に送られ燃焼されて、気化部と改質反応部を加熱するものであり、気液分離器で分離された液相燃料は、改質器の気化部に送られ、水と混合されて気化後改質反応部に送られ、水素に変換され、この水素は前記燃料電池に供給されるものである。
第1の発明に係る燃料処理装置は、燃料供給部から供給される液体燃料を脱硫する脱硫器と、脱硫器で脱硫された液体燃料を液相燃料と気相燃料とに分離する気液分離器を設け、気液分離器で分離された気相燃料は燃焼されて改質器の気化部と改質反応部を加熱し、液相燃料を水素に変換するので、脱硫器から送出される液体燃料のうち水素生成に利用される燃料は液体リッチとなり、所定の燃料流量が安定に供給可能となり、また気相燃料が改質反応に必要な熱源を燃焼部にて有効利用されるので、効率のよい燃料処理装置となる効果がある。
第2の発明に係る燃料処理装置を備えた燃料電池は、前記第1の発明の燃料処理装置から供給される水素ガスで電池反応を行った後、燃料電池から排出されるオフガスを燃焼部で燃焼する構成であるので燃料を無駄なく有効に利用できるという効果がある。
実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1は実施の形態1による燃料処理装置100を示すブロック図である。図において、燃料処理装置100は、燃料供給部10、脱硫器20、気液分離器30、改質器40を主要構成要素としている。燃料供給部10に内蔵するところの後述する燃料は、ポンプ1aによって、第1の配管2aを通り脱硫器20に供給され、また第2の配管2bを通り後述の改質器40に設けられた燃焼部41に供給される。脱硫器20と気液分離器30との間には第3の配管2cが設けられ、さらにこの第3の配管2cには、圧力調整弁3、熱交換器4が設けられている。気液分離器30には逆止弁5が設けられ、この気液分離器30と改質器40の間には、気相燃料が通る第4の配管2dと液相燃料が通る第5の配管2eが設けられ、気相燃料送出用ポンプ1b、液相燃料送出用ポンプ1dがそれぞれ備えられている。改質器40は、燃焼部41と気化部42、改質反応部43とが設けられており、燃焼部41には燃料供給部10からの第2の配管2bが接続されているとともに、気液分離器30からの第4の配管2dが接続されている。気化部42には気液分離器30からの第5の配管2eが接続され、さらに第6の配管2f、ポンプ1cが設けられ外部より水が供給される。
次に燃料を処理して水素に変換する仕組みの概要を述べる。
燃料供給部10には、大気圧下、常温で液相であるもの、たとえば、ナフサ、ガソリン、灯油、軽油などの炭化水素系燃料、メタノール、エタノールなどのアルコール系燃料、又は比較的低圧の加圧(1MPa未満)により液相になるLPG(液化石油ガス)、DME(ジメチルエーテル)などの炭化水素もしくはエーテル系の燃料が投入される。ここでは、入手がし易く安価である灯油を一例として以下を説明する。
脱硫器20にて、改質器40内に充填された改質触媒の硫黄被毒を防止するため、原燃料中の硫黄成分を例えば0.05ppm程度以下まで除去する。このときの脱硫触媒は、例えば、Ni系やCu系の触媒や活性炭やゼオライト系等の触媒がある。このとき、脱硫器20内の触媒反応温度については、液体燃料留分の沸点以下の反応温度状態に圧力設定された条件で行うことが効率的である。
次に、例えば水蒸気改質反応にて水素生成を行う場合、改質器40の気化部42でポンプ1c、第6の配管2fから供給される水と原燃料を気化させて加熱する。このときの気化方法は、水と原燃料を混合後気化させて加熱する方法、それぞれを気化させた後に混合して加熱する方法、また一部気化した状態で混合させ、さらに気化させて加熱する方法などがある。気化・加熱された原燃料は、改質触媒が充填された改質反応部43にて触媒反応させる。このとき、スチームと原燃料中の炭素成分のモル比であるS/C比は、カーボン析出防止とシステム効率の関係から約2〜4程度に設定される。つまり、S/Cが低いと効率は良いが、カーボンが析出し易い状態になり、高いとその逆である。また、反応温度は例えば650〜800℃程度に加熱される。その結果、改質ガスは乾燥ガス換算で約70%以上の水素が得られる。ここで、使用する触媒は、例えばRu系、Ph系、Pt系や、Ni系、Co系などがあり、これらの単独もしくは組合せによって使用する。
なお、ここでは水蒸気改質反応を示したが、それ以外にも部分酸化方式やオートサーマル方式などもある。
このようにした脱硫器20において、原燃料中の硫黄分が除去されるとき、内部で液体燃料が一部気化状態であったり、また脱硫器20から排出された燃料の圧力が低下した配管内で気化したり、また原燃料の一部が分解してガス化することによって、脱硫器20から排出される配管内に気相と液相が混在する。この状態のまま改質器40に供給されると、供給された燃料の流量が時間に対して一定にならず、脈動の要因や、S/Cの局所的な濃度差が生じ、カーボンが析出したりする。
実際に脱硫器20の特性を調べるために、図1に準ずる構成で予備試験を実施した。つまり、円筒形容器にφ3mmのアルミナ球を入れて、灯油を満たした状態で容器を加熱し、内圧を650kPaGになるように圧力調整弁3を調節した。また同時に、その燃料は圧力調整弁3の手前では約30℃になるように冷却した。このとき排出される気相と液相の体積流量比を調べた結果、円筒容器内の温度が250℃では約2、200℃では約0.3、150℃では約0.1であった。次にこの燃料を気化部42に供給してその圧力を測定すると、250℃では、気化部42の入口の平均圧力に対して±約35%の変動が見られた。また、150℃でも約±20%の変動が見られた。すなわち、液体燃料から効率よく脱硫反応をさせて、安定に水素を生成するには、この気相成分の処理が重要である。
次に、本実施形態1にかかる燃料処理装置100の動作について具体的に説明する。
液体原燃料である灯油は、燃料供給部10からポンプ1aによって第1の配管2aを通り脱硫器20に供給される。脱硫触媒が充填された脱硫器20では、脱硫剤の脱硫機能が発揮できる温度にすることが必要である。たとえば、Ni系脱硫触媒3では、150℃〜300℃以下に加温される。脱硫触媒に効率よく硫黄を吸着させるには、原燃料と脱硫触媒の接触時間を長くすればよく、原燃料の一部又は全部が、液相の状態で行うことが望ましい。原燃料の一部又は全部を液相にするには、上記の脱硫触媒の性能が発揮できる温度において、原燃料の気化を抑制するため、脱硫器20内を0.1MPa〜1.0MPa未満に加圧する。脱硫器20から排出され、約50ppb程度まで脱硫された原燃料は、熱交換器4にて大気温度付近まで冷却された後、圧力調整弁3にて大気圧付近まで減圧され第3の配管2cを通り気液分離器30に導入される。
そして、気液分離器30によって分離された液相燃料はポンプ1dによって第5の配管2eを通って改質器40に送られるとともにポンプ1cによって第6の配管2fから供給された水と改質器40の気化部42にて混合・気化された後、改質反応部43へ導入されて、水素に変換される。このとき、改質反応部43ならびに気化部42には、燃焼部41より必要な熱量を受ける。一方、気液分離器30にて分離された気相燃料は、改質器40の燃焼部41にポンプ1b、第4の配管2dを通って供給され、燃焼ガスは第7の配管2gより排出される。なお、気液分離器30の吸引口には逆止弁5が設けられ、気相燃料は外部には出ないようにされている。また前記燃焼部41には、燃料供給部10から第2の配管2bを通り燃料が供給されている。
ここで、気化部42については、燃料ならびに水の気化方法や混合方法に特に順序や状態ならびに手法を限定するものではない。なお、図示省略している熱交換器4に供給する低温側の流体は改質反応に利用する水を供給してもよい。例えば第6の配管2fより熱交換器4を経由する構成としてもよい。
これによって、脱硫器20から排出された燃料のうち、水素生成に利用される燃料は、液体リッチとなるために、所定の燃料流量が安定に供給することができる。実際、前記予備試験を実施した結果、気化部42の入口の圧力変動は約±10%程度以下に抑制された。一方、気相燃料は、改質反応に必要な熱源を生み出す燃焼部41にて、第4の配管2dを通して供給され、有効利用されることから、熱損失が少ない効率のよい燃料処理装置100が実現できる。
図2は、本実施の形態1の別の構成を示すものである。前記図1では気相燃料を送出するポンプ1bが気液分離器30と改質器40との間に設けた例を示したが、これに替わりポンプ1bを気液分離器30の上流側に設けポンプ1bから吐出された空気が、気液分離器30に導入されるようにしたものである。その他は、図1と同様である。この結果、逆止弁5がなくとも同等の効果が実現できる。
実施の形態2.
図3は実施の形態2による燃料処理装置100のブロック図である。この実施の形態2は、前記実施の形態1で説明した改質器40の構成から、燃焼部41を不必要とするよく知られているオートサーマル式の改質器40aとしたものである。この改質器40aに供給される気液分離器30からの液体燃料は、実施の形態1と同様である。改質器40aに供給された液体燃料と水が気化部42aで気化されて改質反応部43aに供給される。またポンプ1bから排出され、気液分離器30の気相燃料を含んだ空気が第4の配管を通って改質反応部43aに供給され、ここで気化部42aを通過してきた燃料と酸化反応および改質反応を行って水素を生成する。水素生成に必要な反応熱は、この空気と燃料の酸化反応熱から供給される。
ここで、オートサーマル式については、特に本実施例に限定されるものではない。つまり、水の供給方法が異なる形式や水の供給そのものが無い部分酸化法についても同様で、改質反応部43aへ供給する空気系統が気液分離器30を通過しておればよい。このようにこの実施の形態2によれば、改質器に燃焼部を必要とせず、また燃料供給部からの燃焼用燃料の供給を不要とするので、安価でかつランニングコストの低減がはかれるという効果がある。
また、改質反応の異なる燃料処理装置にも同様の効果が実現できる。
実施の形態3.
図4は実施の形態3による燃料処理装置100を備えた燃料電池200を示すブロック図である。この実施の形態3は、前記実施の形態1による燃料処理装置100によって生成された水素が第12の配管2mによって燃料電池200に供給される構成を示す。すなわち改質器40によって生成された水素が第12の配管2mを通り燃料電池200に供給され、また燃料電池200から排出されたオフガスが第8の配管2hを通り気液分離器30を経由して改質器40の燃焼部41に供給されるように構成されたものである。そして実施の形態1に設けている第4の配管2dのポンプ1bは設けてない。またこの実施の形態3では燃焼部41に外部よりポンプ1eから空送管2を介し送気している。その他の構成は実施の形態1と同様である。
燃料電池200において、通常供給された水素のうち約70〜85%が電池反応に使用される。一方、残りの燃料は燃料電池200よりオフガスとして排出される。このオフガスが、第8の配管2hを通って気液分離器30における気相燃料を随伴しながら第4の配管2dを通って改質器40の燃焼部41に供給される。これによって、燃料電池200からのオフガスの有効利用のみならず、燃料供給部10から燃焼部41へ送出される燃料を低減できるという効果がある。
図5は、この実施の形態3における気液分離器30の別の構成を示す図である。図において気液分離器30には、気液分離部30aとドレン分離部30bが設けてある。これによりオフガスに含まれる約7〜18%程度の水蒸気が結露してドレン分離室30bに分離され液相燃料と混合しないようにし、第9の配管2j(ドレン配管)より排出している。 なお、このドレン分離室30bはオフガスを送出する第8の配管2h系統中に分離して設けてもよく、また、ドレン分離室30bまたはその上流側にドレン分離を積極的にするようにオフガスの冷却部を設けてもよい。もちろん、冷却部からの回収熱は、水や燃料等の予熱に利用してもよい。
実施の形態4.
図6は実施の形態4による燃料処理装置100を備えた燃料電池200を示すブロック図である。この実施の形態4は前記実施の形態3に脱硫部20から排出された燃料を冷却するために除去する熱を、原燃料の予熱に利用する機能を追加したものである。つまり、前記実施の形態3で示した図4における燃料供給部10と脱硫器20との間に設けた第1の配管2aに替わり、前記燃料供給部10から熱交換器4に至る第10の配管2kを設け、熱交換器4を介して加温された燃料供給部10からの原燃料を、脱硫器20に送出する第11の配管2lを設けたものである。その他の構成は、実施の形態3の図4と同様である。このように原燃料は、熱交換器4によって加温されて脱硫器20に供給されるので、脱硫器20内部の温度分布を均一化にすることができ、内部温度差によって発生する気液比率の変動を抑制することができ、より脈動が少なく熱効率のよい燃料処理装置100が実現できる。なおこの実施の形態4では燃料処理装置100を備えた燃料電池200の例を示しているが燃料処理装置100単独の場合であっても適用可能である。なお熱交換器4に供給する低温側の流体は、燃料電池200の図示省略の冷却用流体や燃料電池システムの熱回収用の流体を供給してもよい。この場合燃料電池システムの熱の有効利用がはかれる。
実施の形態5.
図7は実施の形態5による燃料処理装置100を備えた燃料電池200を示すブロック図である。この実施の形態5は、前記実施の形態4に脱硫器20の加熱を燃焼器40から排出された燃焼排ガスを利用して形成する機能を追加したものである。つまり前記実施の形態4で示した図6における脱硫部20に脱硫部20aと加熱部20bを分けて設けるとともに、燃焼部41からの放出燃焼ガスを導く第6の配管2gを前記加熱部20bに接続したものである。また、燃料供給部10からの原燃料は、第11の配管2lを通して前記脱硫部20aに導入される。その他の構成は、実施の形態4の図6と同様である。このように燃料電池200のオフガスは気液分離器30の気相燃料を随伴しながら燃焼部41に導入され、さらに燃焼部41から排出された燃焼排ガスは、第7の配管2gを通じて脱硫器20の加熱部20bに供給される。これによって、脱硫器20に設けられた脱硫部20aを所定の温度に加温するものである。なお、脱硫器20の温度を一定にするために、起動時や負荷変化時等に燃焼部41からの燃焼排ガスを高めになるように設定し、燃焼排ガス系統である第7の配管2gに冷却ガス(例えば空気)を混入して温度制御をしてもよい。
このように、燃焼部41の燃焼ガスを脱硫器20の加熱源に有効利用でき、脱硫器20が所定の温度に加温されるので水素を高い信頼性でかつ安定に生成できるとともに、より効率的な燃料処理装置100を備えた燃料電池200が実現できる。なお、この実施の形態5も燃料処理装置100を備えた燃料電池200の例を示しているが、燃料処理装置100単独の場合であっても適用可能である。
また、前記実施の形態1〜4の気液分離器としてサイクロン装置を利用し、サイクロン装置の下部から液相を、上部から気相を分離してもよい。また、前記実施の形態1〜4では放熱防止のための保温材等は図示省略しているが本発明はなんらこれに限定されるものではない。
この発明は炭化水素系のガスや、アルコール系燃料等を改質する燃料処理装置と、その燃料処理装置を備えた燃料電池に適用できる。
この発明の実施の形態1による燃料処理装置を示すブロック図である。 この発明の実施の形態1の別の例による燃料処理装置を示すブロック図である。 この発明の実施の形態2による燃料処理装置を示すブロック図である。 この発明の実施の形態3による燃料処理装置を備えた燃料電池を示すブロック図である。 この発明の実施の形態3の気液分離器を示す断面図である。 この発明の実施の形態4の燃料処理装置を備えた燃料電池を示すブロック図である。 この発明の実施の形態5の燃料処理装置を備えた燃料電池を示すブロック図である。
符号の説明
1a〜1e ポンプ、2a〜2m 第1〜第12の配管、4 熱交換器、
10 燃料供給部、20 脱硫器、20a 脱硫部、20b 加熱部、
30 気液分離器、40,40a 改質器、41 燃焼部、
42,42a 気化部、43,43a 改質反応部、100 燃料処理装置、
200 燃料電池。

Claims (10)

  1. 燃料供給部と脱硫器と気液分離器と改質器とを備えた燃料処理装置であって、
    前記脱硫器は、前記燃料供給部から供給される液体燃料を脱硫するものであり、
    前記気液分離器は、前記脱硫器で脱硫された液体燃料を、液相燃料と気相燃料に分離するものであり、
    前記改質器には、気化部と改質反応部と燃焼部とが設けられていて、前記気液分離器で分離された気相燃料は、経路に設けられたポンプの吐出する空気によって、前記改質器の燃焼部に送られ燃焼されて、前記気化部と改質反応部を加熱するものであり、前記気液分離器で分離された液相燃料は、前記改質器の気化部に送られ、水と混合されて気化後前記改質反応部に送られ、水素に変換されることを特徴とする燃料処理装置。
  2. 燃料供給部と脱硫器と気液分離器と改質器とを備えた燃料処理装置であって、
    前記脱硫器は、前記燃料供給部から供給される液体燃料を脱硫するものであり、
    前記気液分離器は、前記脱硫器で脱硫された液体燃料を、液相燃料と気相燃料に分離するものであり、
    前記改質器には、気化部と改質反応部とが設けられていて、前記気液分離器で分離された液相燃料は、前記改質器の気化部に送られ、水と混合されて気化後前記改質反応部に送られ、前記気液分離器で分離された気相燃料は、経路に設けられたポンプの吐出する空気によって、前記改質反応部に送られて、前記気化部から送られてきた液相燃料と酸化反応および改質反応を行って水素を生成することを特徴とする燃料処理装置。
  3. 燃料処理装置を備えた燃料電池であって、
    前記燃料電池は、前記燃料処理装置で生成される水素を利用して電池反応を行うものであり、
    前記燃料処理装置には、燃料供給部と脱硫器と気液分離器と改質器とが備えられていて、
    前記脱硫器は、前記燃料供給部から供給される液体燃料を脱硫するものであり、
    前記気液分離器は、前記脱硫器で脱硫された液体燃料を、液相燃料と気相燃料に分離するものであり、
    前記改質器には、気化部と改質反応部と燃焼部とが設けられていて、前記気液分離器で分離された気相燃料は、前記燃料電池から排出されるオフガスによって前記改質器の燃焼部に送られ燃焼されて、前記気化部と改質反応部を加熱するものであり、前記気液分離器で分離された液相燃料は、前記改質器の気化部に送られ、水と混合されて気化後前記改質反応部に送られ、水素に変換され、該水素は前記燃料電池に供給されることを特徴とする燃料処理装置を備えた燃料電池。
  4. 燃料処理装置を備えた燃料電池であって、
    前記燃料電池は、前記燃料処理装置で生成される水素を利用して電池反応を行うものであり、
    前記燃料処理装置には、燃料供給部と脱硫器と気液分離器と改質器と、前記脱硫器と前記気液分離器とをつなぐ配管に設けられた熱交換器とが備えられていて、
    前記燃料供給部から供給される液体燃料は前記熱交換器を通過して加温されて前記脱硫器に送られた後に脱硫され、前記気液分離器は、前記脱硫器で脱硫された液体燃料を、液相燃料と気相燃料に分離するものであり、
    前記改質器には、気化部と改質反応部と燃焼部とが設けられていて、前記気液分離器で分離された気相燃料は、前記燃料電池から排出されるオフガスによって前記改質器の燃焼部に送られ燃焼されて、前記気化部と改質反応部を加熱するものであり、前記気液分離器で分離された液相燃料は、前記改質器の気化部に送られ、水と混合されて気化後前記改質反応部に送られ、水素に変換され、該水素は前記燃料電池に供給されることを特徴とする燃料処理装置を備えた燃料電池。
  5. 前記気液分離器で分離された気相燃料は、前記燃料電池から排出されるオフガスによって前記改質器の燃焼部に送られて燃焼され、前記気化部と改質反応部を加熱するとともに、前記燃焼部から排出される燃焼ガスは、前記脱硫器に設けられた加熱部に送られて、前記脱硫器に設けられた脱硫部を加熱することを特徴とする請求項3または請求項4のいずれか1項に記載の燃料処理装置を備えた燃料電池。
  6. 前記気液分離器には、気液分離部とドレン分離部とが設けられていることを特徴とする請求項3〜請求項5のいずれか1項に記載の燃料処理装置を備えた燃料電池。
  7. 前記燃料供給部から供給される液体燃料は、ナフサ、ガソリン、灯油、軽油などの炭化水素系燃料、メタノール、エタノールなどのアルコール系燃料、あるいは1MPa未満の加圧により液相となる液化石油ガス、ジメチルエーテルなどの水素もしくはエーテル系の燃料であることを特徴とする請求項1、請求項2のいずれか1項に記載の燃料処理装置。
  8. 前記燃料供給部から供給される液体燃料は、ナフサ、ガソリン、灯油、軽油などの炭化水素系燃料、メタノール、エタノールなどのアルコール系燃料、あるいは1MPa未満の加圧により液相となる液化石油ガス、ジメチルエーテルなどの水素もしくはエーテル系の燃料であることを特徴とする請求項3、請求項4のいずれか1項に記載の燃料処理装置を備えた燃料電池。
  9. 請求項1あるいは請求項2のいずれか1項に記載の燃料処理装置を用いて、液体燃料の処理がなされることを特徴とする液体燃料の処理方法。
  10. 請求項3あるいは請求項4のいずれか1項に記載の燃料処理装置を用いて生成された燃料が燃料電池に供給されることを特徴とする燃料処理装置を備えた燃料電池への燃料供給方法。
JP2005012201A 2005-01-20 2005-01-20 燃料処理装置、前記燃料処理装置を用いた燃料処理方法、燃料処理装置を備えた燃料電池および燃料処理装置を備えた燃料電池への燃料供給方法 Expired - Fee Related JP4511956B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012201A JP4511956B2 (ja) 2005-01-20 2005-01-20 燃料処理装置、前記燃料処理装置を用いた燃料処理方法、燃料処理装置を備えた燃料電池および燃料処理装置を備えた燃料電池への燃料供給方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012201A JP4511956B2 (ja) 2005-01-20 2005-01-20 燃料処理装置、前記燃料処理装置を用いた燃料処理方法、燃料処理装置を備えた燃料電池および燃料処理装置を備えた燃料電池への燃料供給方法

Publications (2)

Publication Number Publication Date
JP2006202581A JP2006202581A (ja) 2006-08-03
JP4511956B2 true JP4511956B2 (ja) 2010-07-28

Family

ID=36960398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012201A Expired - Fee Related JP4511956B2 (ja) 2005-01-20 2005-01-20 燃料処理装置、前記燃料処理装置を用いた燃料処理方法、燃料処理装置を備えた燃料電池および燃料処理装置を備えた燃料電池への燃料供給方法

Country Status (1)

Country Link
JP (1) JP4511956B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159059B2 (ja) * 2006-08-04 2013-03-06 コスモ石油株式会社 気液混合流動体の送給方法及び送給装置
JP4843427B2 (ja) * 2006-09-07 2011-12-21 東芝燃料電池システム株式会社 液体燃料脱硫システムとその運転方法
JP2008218227A (ja) * 2007-03-05 2008-09-18 Toshiba Fuel Cell Power Systems Corp 液体燃料の燃料電池システム
JP4924152B2 (ja) * 2007-03-30 2012-04-25 株式会社Ihi 脱硫処理設備
JP2009076392A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 液体燃料電池発電システム
JP5171384B2 (ja) * 2008-05-14 2013-03-27 Jx日鉱日石エネルギー株式会社 脱硫装置及び燃料電池システム
JP5340765B2 (ja) * 2009-03-05 2013-11-13 Jx日鉱日石エネルギー株式会社 脱硫システム
JP5266103B2 (ja) * 2009-03-10 2013-08-21 Jx日鉱日石エネルギー株式会社 改質方法および改質システム
JP5340782B2 (ja) * 2009-03-30 2013-11-13 Jx日鉱日石エネルギー株式会社 送液システム及び燃料電池システム
KR101095666B1 (ko) * 2009-07-31 2011-12-19 주식회사 삼천리 흡착식 탈황기
JP2011204484A (ja) * 2010-03-25 2011-10-13 Jx Nippon Oil & Energy Corp 燃料電池システム
JP5939858B2 (ja) * 2012-03-26 2016-06-22 Jxエネルギー株式会社 燃料電池モジュール
KR101835061B1 (ko) 2016-04-29 2018-03-08 삼성중공업 주식회사 선박의 전력 공급 시스템 및 이를 이용한 선박의 전력 공급 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188406A (ja) * 1988-01-22 1989-07-27 Nippon Oil Co Ltd 灯油留分から水素を製造する方法
JPH0765853A (ja) * 1993-08-20 1995-03-10 Yamaha Motor Co Ltd 燃料電池用原料改質装置のメタノールバーナ
JPH09320622A (ja) * 1996-05-30 1997-12-12 Toshiba Corp 燃料電池発電システム
JP2002106798A (ja) * 2000-09-29 2002-04-10 Honda Motor Co Ltd 液体水素貯蔵装置
JP2002201478A (ja) * 2000-12-28 2002-07-19 Idemitsu Kosan Co Ltd 灯油の脱硫及び改質方法
WO2003025096A1 (fr) * 2001-09-12 2003-03-27 Cosmo Oil Co., Ltd. Procede de desulfuration et de reformation d'une charge d'hydrocarbure
JP2003151608A (ja) * 2001-11-15 2003-05-23 Idemitsu Kosan Co Ltd 液体燃料の脱硫・改質方法
JP2004288434A (ja) * 2003-03-20 2004-10-14 Nippon Oil Corp 水素製造装置および燃料電池システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188406A (ja) * 1988-01-22 1989-07-27 Nippon Oil Co Ltd 灯油留分から水素を製造する方法
JPH0765853A (ja) * 1993-08-20 1995-03-10 Yamaha Motor Co Ltd 燃料電池用原料改質装置のメタノールバーナ
JPH09320622A (ja) * 1996-05-30 1997-12-12 Toshiba Corp 燃料電池発電システム
JP2002106798A (ja) * 2000-09-29 2002-04-10 Honda Motor Co Ltd 液体水素貯蔵装置
JP2002201478A (ja) * 2000-12-28 2002-07-19 Idemitsu Kosan Co Ltd 灯油の脱硫及び改質方法
WO2003025096A1 (fr) * 2001-09-12 2003-03-27 Cosmo Oil Co., Ltd. Procede de desulfuration et de reformation d'une charge d'hydrocarbure
JP2003151608A (ja) * 2001-11-15 2003-05-23 Idemitsu Kosan Co Ltd 液体燃料の脱硫・改質方法
JP2004288434A (ja) * 2003-03-20 2004-10-14 Nippon Oil Corp 水素製造装置および燃料電池システム

Also Published As

Publication number Publication date
JP2006202581A (ja) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4511956B2 (ja) 燃料処理装置、前記燃料処理装置を用いた燃料処理方法、燃料処理装置を備えた燃料電池および燃料処理装置を備えた燃料電池への燃料供給方法
JP5970076B2 (ja) 石油燃料を使用した水素および電気の複合生産のための方法およびシステム
EP1864350B1 (en) A fuel processor for a fuel cell arrangement and a method of operating a fuel processor for a fuel cell arrangement
US6984372B2 (en) Dynamic sulfur tolerant process and system with inline acid gas-selective removal for generating hydrogen for fuel cells
US20050229491A1 (en) Systems and methods for generating hydrogen from hycrocarbon fuels
US9917320B2 (en) Sweep membrane separator and fuel processing systems
JP5103236B2 (ja) 改質装置
JP5347330B2 (ja) 水素生成装置
JP2006111766A (ja) 脱硫装置および水素製造装置
US10833341B2 (en) Non-catalytic hydrogen generation process for delivery to a hydrodesulfurization unit and a solid oxide fuel cell system combination for auxiliary power unit application
JP2004323285A (ja) 水素製造システム
JP5809049B2 (ja) 燃料電池用水蒸気改質触媒の使用方法及び水素製造システム
JP2006008418A (ja) 水素製造装置及び燃料電池システム
JP2011204484A (ja) 燃料電池システム
KR20140104476A (ko) 연료 전지 용도를 위한 액체 연료 탈황을 위한 방법 및 시스템
JP5159059B2 (ja) 気液混合流動体の送給方法及び送給装置
JP5266103B2 (ja) 改質方法および改質システム
JP2005060172A (ja) 水素製造装置、水素製造方法及び燃料電池システム
TW201438329A (zh) 包含燃料加工裝置及燃料電池單元組合之燃料電池系統
Gittleman Gittleman (45) Date of Patent: Oct. 21, 2003
JP2014123468A (ja) 燃料電池システムにおけるアンモニア除去方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees