JP4510781B2 - ガスセンサのインターフェース装置、ガスセンサシステム - Google Patents

ガスセンサのインターフェース装置、ガスセンサシステム Download PDF

Info

Publication number
JP4510781B2
JP4510781B2 JP2006143282A JP2006143282A JP4510781B2 JP 4510781 B2 JP4510781 B2 JP 4510781B2 JP 2006143282 A JP2006143282 A JP 2006143282A JP 2006143282 A JP2006143282 A JP 2006143282A JP 4510781 B2 JP4510781 B2 JP 4510781B2
Authority
JP
Japan
Prior art keywords
voltage
switching unit
circuit
output
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006143282A
Other languages
English (en)
Other versions
JP2007003515A (ja
Inventor
浩 稲垣
朋典 上村
典和 家田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006143282A priority Critical patent/JP4510781B2/ja
Publication of JP2007003515A publication Critical patent/JP2007003515A/ja
Priority to US11/798,234 priority patent/US7655121B2/en
Application granted granted Critical
Publication of JP4510781B2 publication Critical patent/JP4510781B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、被測定ガス中の特定ガス成分(例えば、酸素)の濃度に対応して出力されるガスセンサの電流出力をインターフェースする、ガスセンサのインターフェース装置およびこのようなインターフェース装置を有するガスセンサシステムに関する。
自動車の排気ガス規制は年々厳しくなっており、これに伴い内燃機関の精密な空燃比制御が求められ、排気ガスセンサや制御装置にもより高い精度が要求されている。一般に、現在多くのガソリン自動車で用いられている三元触媒を用いた内燃機関では、理論空燃比で運転されている場合が最も触媒の効率がよく、有害な排気ガスの浄化効率が高い。よって、いかに理論空燃比に対しずれなく制御できるかが、低公害な排気ガスとする上での鍵となっている。
このような制御のため用いられる排気ガスセンサとしては、一般に、排気ガス中の酸素濃度(空燃比におけるリッチ/リーンに対応する)に対応して2値的なセンシング出力を発するもの(λセンサ)と、酸素濃度の広い範囲に渡ってある程度のリニアリティを保ってセンシング出力を発するもの(全領域酸素センサ)とがある。後者を用いた空燃比制御の方が、精度の高い制御が可能である。さらに、後者の排気ガスセンサを用いることで、空燃比を理論空燃比近傍でフィードバック制御するストイキ燃焼制御以外に、空燃比を所定のリーン領域でフィードバック制御するリーン燃焼制御等を精度よく行うことも可能となる。
全領域酸素センサでは、一般に、排気ガス中の酸素濃度に対応した電流信号としてセンシング出力がされる。そのため、ガスセンサのインターフェース装置では、その初段で電流の値の検出がなされる。電流検出部の具体例として、下記特許文献1、2に開示のものがある。これらの文献に開示された技術では、ガスセンサからの出力電流を抵抗器に流し、この抵抗器の両端電位差を差動増幅して出力電流に対応した電圧を得ている。
特開平1−152356号公報 特開2004−205488号公報
上記のような差動増幅を行う回路(差動増幅部)は、回路中の素子の特性ばらつきやさらにその温度特性などによって回路としての特性変動が避けられない。したがって、空燃比制御を精度よく行うためにはこのような要因による影響も排除する必要がでてくる。また、上記の差動増幅部の特性変動を補正するにあたっては、排気ガスセンサの駆動中(活性中)に差動増幅部のオフセット電圧を検出することが考えられるが、オフセット電圧を検出するためには排気ガスセンサからの出力電流が検出抵抗器に流れないようし、差動増幅部の反転入力端子と非反転入力端子とを同電位にする必要がある。そこで、排気ガスセンサの駆動中に、例えば排気ガスセンサを強制的に非活性の状態にしてその駆動を中断し、検出抵抗器に出力電流が流れないようにすることができるが、そうすると排気ガスセンサを再び活性の状態に戻して駆動させるまでに時間を要するため、精密な空燃比制御をもたらすことができない恐れがある。そのため、排気ガスセンサの駆動中に、その駆動を中断させないように上記差動増幅部の特性変動を補正する手法が望まれる。
本発明は、上記した事情を考慮してなされたもので、ガスセンサに対してその出力(電流信号)のインターフェースを行うインターフェース装置において、被測定ガスの特定ガス成分の濃度に精度よく対応した出力を得ることが可能なガスセンサのインターフェース装置およびそのようなインターフェース装置を有するガスセンサシステムを提供することを目的とする。
上記の課題を解決するため、本発明に係るガスセンサのインターフェース装置は、ガスセンサから出力される特定ガス成分の濃度に対応した電流が流され得る検出抵抗器と、前記検出抵抗器の一端の電圧を伝送するか伝送しないか切り替える第1のスイッチング部と、前記第1のスイッチング部が伝送の状態に切り替えられているときの、前記第1のスイッチング部を介した前記一端の電圧を第1の極性側の入力電圧とし、前記検出抵抗器の他端の電圧を前記第1の極性と逆極性の第2の極性の側の入力電圧として差動増幅する差動増幅部と、前記第1のスイッチング部が非伝送の状態に切り替えられているときにオン状態にすることが可能とされ、かつ該オン状態において前記差動増幅部の前記第1の極性側と前記第2の極性側とを導通させる第2のスイッチング部とを具備することを特徴とする。
この構成では、第1のスイッチング部が伝送の状態でかつ第2のスイッチング部がオフ状態において、通常の電流検出がなされてガスセンサの出力電流(電流信号)に対応する電圧が差動増幅部の出力に得られる。また、第1のスイッチング部が非伝送でかつ第2のスイッチング部がオン状態においては、ガスセンサの出力電流とは無関係に、差動増幅部のオフセット(オフセット電圧)をその出力に得ることができる。これは、第1のスイッチング部を非伝送の状態に切り替えることで、差動増幅部から見た検出抵抗器を含めたガスセンサ側のインピーダンスがハイインピーダンスとなる(すなわち、検出抵抗器と差動増幅部とが電気的に遮断される。)一方で、差動増幅部の第1の極性の入力と第2の極性の入力とが第2のスイッチング部により導通されるからである。このようにして、差動増幅部からの出力電圧がオフセット電圧として得られる。
このようにして得られたオフセット電圧を、通常(ガスセンサが駆動されている最中)の電流検出時における差動増幅部の出力に対して勘案する(より具体的には、電流検出時の差動増幅部の出力からオフセット電圧を減じる)ことで、差動増幅部を構成する素子の特性ばらつきやさらにその温度特性などによる特性変動の影響を排除した特定ガス成分の濃度に対応した信号(出力)を得ることができる。よって、被測定ガスの特定ガス濃度に精度よく対応した出力を得ることができる。
とりわけ、本発明のガスセンサのインターフェース装置によれば、ガスセンサからの出力電流が流れる検出抵抗器の一端の電圧を伝送するか伝送しないか切り替える第1のスイッチング部が差動増幅部の前段に設けられることを特定している。そして、差動増幅部のオフセット電圧を得る際には、第1のスイッチング部を非伝送の状態としつつ、第2のスイッチング部によって差動増幅部の第1の極性側と第2の極性側とを導通させるようにしたので、ガスセンサの駆動を中断せずに、差動増幅部のオフセット電圧を得ることができる。なお、差動増幅部のオフセット電圧を取得するタイミングとしては、後述するように定期的に取得するようにしてもよいし、任意のタイミング(例えば、フューエルカット時)に取得するようにしてもよい。
本発明のガスセンサのインターフェース装置によれば、差動増幅部の特性変動の影響を排除した形で特性ガス成分の濃度に対応した信号(出力)を得ることが可能となる。
本発明の実施態様として、前記第1のスイッチング部が非伝送の状態に切り替えられているときかつ前記第2のスイッチング部がオン状態にあるときの前記差動増幅部の出力をオフセット電圧として記憶するオフセット電圧記憶部と、前記第1のスイッチング部が伝送の状態に切り替えられているときかつ前記第2のスイッチング部がオフ状態にあるときに前記差動増幅部が出力する電圧から前記記憶されたオフセット電圧を減じる減算部とをさらに具備する、としてもよい。インターフェース装置としての機能性を増進させたものである。
また、実施態様として、前記検出抵抗器の前記他端の電圧を伝送するか伝送しないか切り替える第3のスイッチング部をさらに具備し、前記第3のスイッチング部が、前記第1のスイッチング部の伝送、被伝送の状態に同期して、伝送、非伝送の状態が切り替えられ、前記差動増幅部が、前記第3のスイッチング部を介した前記検出抵抗器の前記他端の電圧を、前記第2の極性の側の入力電圧とする、としてもよい。検出抵抗器の他端と差動増幅部との間に、第1のスイッチング部と同期して作動する第3のスイッチン部を設置することで、第1および第3のスイッチング部が非伝送でかつ第2のスイッチング部がオン状態において、差動増幅部のオフセット(オフセット電圧)をその出力に精度よく得ることができる。
さらに、実施態様として、定期的に、前記第1のスイッチング部を非伝送の状態に切り替えかつ前記第2のスイッチング部をオン状態に制御するキャリブレーション指示信号発生部をさらに具備する、としてもよい。このような定期的なキャリブレーション指示信号を発生させることで、温度などの環境の変化にも追従して被測定ガスの特定ガス成分の濃度に精度よく対応した出力を得ることができる。この結果、より精度の高い空燃比制御が可能になる。
また、実施態様として、前記検出抵抗器の一端と前記第1のスイッチング部との間に挿入接続されたバッファ回路をさらに具備し、前記バッファ回路が、演算増幅回路を用いたボルテージフォロア回路からなり、該演算増幅回路が、第1の電源電圧供給端子から供給される電圧で動作する入力段回路と第2の電源電圧供給端子から供給される電圧で動作する出力段回路とを有し、該第1の電源電圧供給端子が該第2の電源電圧供給端子と別個にされている、とすることができる。
このような構成によれば、検出抵抗器の一端に異常な電圧が発生した場合(例えばバッテリ電圧にショートした場合)に、オフ状態の第2のスイッチング部の両端子間に想定外の高電圧が印加される事態を回避することが可能になる。すなわち、例えば上記ショート時にバッファ回路の出力電圧を、第2の電源電圧供給端子に供給の電圧により抑制することができる。よって第2のスイッチング部の破壊を効果的に防止できる。
または、実施態様として、前記検出抵抗器の一端と前記第1のスイッチング部との間に挿入接続されたバッファ回路をさらに具備し、前記バッファ回路が、演算増幅回路を用いたボルテージフォロア回路からなり、該演算増幅回路が、入力段回路と出力段回路とを有し、該出力段回路が、該出力段回路の出力を一定値以下の電圧に保つリミット回路部を備える、としてもよい。
このような構成によっても、検出抵抗器の一端に異常な電圧が発生した場合(例えばバッテリ電圧にショートした場合)に、オフ状態の第2のスイッチング部の両端子間に想定外の高電圧が印加される事態を回避することが可能になる。すなわち、例えば上記ショート時にバッファ回路の出力電圧を、一定値の上記電圧により抑制することができる。よって第2のスイッチング部の破壊を効果的に防止できる。
以上を踏まえ、以下では本発明の実施形態を図面を参照しながら説明する。図1は、本発明の一実施形態に係るインターフェース装置を全領域酸素センサと接続した態様を示す回路・ブロック図である。
図1に示すように、全領域酸素センサ1に、インターフェース装置としてのガスセンサ制御回路4が接続される。固体電解質を用いて構成される全領域酸素センサ1には、これを活性状態に加熱するため、ヒータ電源3により駆動されるヒータ2が近傍に設けられる。ガスセンサ制御回路4は、全領域酸素センサ1を制御するとともに、排気ガス中の酸素濃度(空燃比)に応じた出力信号をエンジンコントロールユニット(以下、ECU)85に出力する回路であり、ECU85は、出力信号に基づいて酸素濃度(空燃比)を求め、エンジン(例えば、ガソリンエンジン)の空燃比制御を行うものである。図1では、全領域酸素センサ1のインターフェース装置としての態様が示される範囲で示されており、通常、図示以外の構成も有するが、その点は公知であるため省略している。
全領域酸素センサ1は、遮蔽板10、固体電解質11、一対の多孔質電極12、13、酸素基準室14、固体電解質15、別の一対の多孔質電極16、17、ガス拡散質18、ガス検出室19を有する。
遮蔽板10の一方の面に隣接して酸素基準室14が位置し、酸素基準室14を挟んでその反対側に固体電解質11が位置し、さらに、固体電解質11を挟んでその反対側に多孔質のガス拡散質18およびガス検出室19が位置し、さらに、ガス拡散質18およびガス検出室19を挟んでその反対側に固体電解質15が位置している。固体電解質11の両面には一対の多孔質電極12、13が設けられ、固体電解質15の両面には一対の多孔質電極16、17が設けられている。
固体電解質11、15は、例えばジルコニア(ZrO)からなり、ヒータにより加熱され活性状態になると内部インピーダンスが小さくなりかつ酸素イオンが移動可能になるという所期の性質を呈する。固体電解質11とその両面の多孔質電極12、13は起電力セルと呼ばれ、多孔質電極12から多孔質電極13の方向に微弱な起電力セル電流(例えば15μA)が、ガスセンサ制御回路4に設けられた起電力セル電流供給電流源40により流される。より詳細には、起電力セル電流は、起電力セル電流供給電流源40、起電力セルの電流路で流される。これにより、ガス検出室19から酸素基準室14に固体電解質11を介して酸素が移動し、酸素基準室14が基準の酸素溜まりとなる。このようにして固体電解質11の両面の酸素濃度が異なると、多孔質電極12、13間には起電力が発生する。
この起電力は、固体電解質11の性質から、ガス検出室19の酸素濃度が理論空燃比に対応したものである場合に約450mVとなり、濃度がそれから外れると上下電圧で飽和する特性を呈する。
ガス検出室19は、ガス拡散質18を介して排気ガス(被測定ガス)の供給空間と隔てられているが、排気ガスが拡散することによりガス検出室19内に導入される。
固体電解質15とその両面の多孔質電極16、17はポンプセルと呼ばれ、それらの電極16、17間には、ポンプセル電流(Ip)が、PID制御回路44、アンプ46により流される。ここでアンプ46は、端子4bの電圧を3.6V(=仮想グラウンド)に保つために設けられている。
ポンプセル電流(Ip)について具体的には、起電力セルの出力電圧(発生電圧)が、演算増幅回路43によるバッファ、抵抗47を介してPID制御回路44に入力されると、PID制御回路44にて、制御目標電圧450mV(=制御目標電圧源42の電圧。この電圧は演算増幅回路48によるバッファ、抵抗49を介してPID制御回路44に導かれている。)と起電力セルの出力電圧との偏差量ΔVsが演算される。この偏差量ΔVsに基づきPID制御回路44から電流が抵抗45を介してポンプセルに流し込まれ(またはポンプセルから電流を引き出し)、これにより、ポンプセル電流が多孔質電極16、17間に流れる。ポンプセルにポンプセル電流が流れると、その向きにより、排気ガスの供給空間とガス検出室19との間に酸素の移動が固体電解質15を介して生じる。
この酸素の移動は、上記説明からわかるように、ガス検出室19の酸素濃度が理論空燃比に対応したものになるようにいずれかの方向になされる。このことから、排気ガスの供給空間の酸素濃度が理論空燃比に対応したものであれば、固体電解質15での酸素移動は必要なく、よってポンプセル電流はゼロになる。排気ガスの供給空間の酸素濃度が理論空燃比から外れるとそれに応じてポンプセル電流がいずれかの方向に流れる。よって、このポンプセル電流は、排気ガスの供給空間の酸素濃度に応じたものになっている。したがって、この電流を検出することにより、排気ガスの酸素濃度をその広い範囲に渡って測定することができる。
ガスセンサ制御回路4は、入出力端子4a、4b、4cを有して全領域酸素センサ1と電気的に接続されている。起電力セル電流供給電流源40、PID制御回路44、アンプ46、演算増幅回路43、48、抵抗47、49の各機能については、上記と重複するので説明省略するが、これらは上記のように全領域酸素センサ1を制御するガスセンサ制御部として機能している。
接続関係をおさらいすると、図1に示すように、アンプ46は、反転入力端子にPID制御回路44の出力側が検出抵抗45を介して接続され、非反転入力端子には基準電圧3.6Vが印加され、また出力端子は入出力端子4cに接続されている。また、PID制御回路44の入力側は、抵抗47、演算増幅回路43を介して入出力端子4aに接続され、出力側は、ポンプセル電流検出抵抗45を介してアンプ46の反転入力端子に接続される。また、制御目標電圧源42は、ポンプ電流を制御する制御目標となる電圧(450mV)を、演算増幅回路48、抵抗49を介してPID制御回路44に供給する。そして、ガスセンサ制御回路4では、ポンプセル電流(Ip)の検出が、PID制御回路44の出力側に直列に挿入され、一端が入出力端子4bに接続されたポンプセル電流検出抵抗45を用いてなされる。
この実施形態では、ポンプセル電流検出抵抗45の両端電圧を検出するため、図示するように、ポンプセル電流検出回路50Aと同50Bの2チャンネルの検出回路を有する。これらの検出回路50A、50Bは、定数など細かい条件を除き同じ構成とすることができる。なお、検出回路50A、50Bは、異なる増幅率に設定されており、検出回路50Aは、酸素濃度の全検出範囲に対応する広範囲出力を増幅率aで増幅して出力するものであり、また検出回路50Bは、理論空燃比近傍の検出範囲(酸素濃度の特定検出範囲)に対応する狭範囲出力を増幅率bで増幅して出力するものであり、a<bの関係を有している。
代表してポンプセル電流検出回路50Aについて述べると、演算増幅回路51、52、スイッチ(第1のスイッチング部)53、54、スイッチ(第2のスイッチング部)55、抵抗56、57、58、59、演算増幅回路60、検出基準電圧源61、演算増幅回路62を有する。
演算増幅回路51、52は、ポンプセル電流検出抵抗45のそれぞれの端子の電圧をバッファリングして次段のスイッチ53、54に導くものである。このため、演算増幅回路51、52は、ボルテージフォロワ回路として使用する。スイッチ53、54は、通常時(全領域酸素センサの駆動時、より詳細には活性状態の時)にオン状態(電圧の伝送される状態)にされ、キャリブレーション時(後述する)にオフ状態にされる。スイッチ53、54の後段(出力側)のスイッチ55は、逆に、通常時にオフ状態にされ、キャリブレーション時にオン状態にされる。なお、スイッチ53、54、55は半導体素子により構成されている。
スイッチ53、54の後段の抵抗56、57、58、59と演算増幅回路60とは、差動増幅部を構成するものである。すなわち抵抗56の一端は一方の極の入力端子であり、抵抗57の一端は他方の極の入力端子である。一方の極からの増幅率は抵抗58/抵抗56で規定され、他方の極からの増幅率は抵抗59/抵抗57で規定される。これらは通常同一の増幅率にされる。検出基準電圧源61と演算増幅回路62とは、上記差動増幅部の出力すなわちポンプセル電流検出回路50Aとしての出力の基準電圧を規定するものであり、検出基準電圧源61の電圧がポンプセル電流検出回路50Aとしての出力基準電圧になる。上記の増幅率や出力基準電圧は、次段で処理される内容に応じて、適宜、設計(設定)することができる。ポンプセル電流検出回路50Aの出力には、ポンプセル電流の値に応じた電圧が、検出基準電圧源61の電圧を基準として出力される。
ポンプセル電流検出回路50A、50Bの出力は、それぞれ、ECU85のAD変換回路71A、71Bに供給されて、ディジタル信号に変換される。変換で得られた信号は、それぞれ、減算部73A、73Bに導かれて、オフセット電圧を減じることによりオフセット電圧の補正がなされる。減算部73A、73Bの出力は、それぞれ、ディジタル信号としての排気ガスの酸素濃度測定出力となる。この後は図示しないが、この測定出力に基づき空燃比の値が算出され、この値がフィードバックされて燃料供給がECU85自身にて制御され空燃比制御がなされる。
以上の説明からわかるように、全領域酸素センサ1のインターフェース装置の一部であるポンプセル電流検出回路50A、50Bは、被測定ガス(排気ガス)中の酸素濃度に精度よく対応した出力を得ることが重要である。ポンプセル電流検出回路50A、50Bの特性のばらつきや変動要因には、回路中の素子の特性ばらつきやさらにその温度特性などがある。
そこで、この実施形態では、このような特性のばらつきや変動を吸収するためキャリブレーションが可能に構成されている。キャリブレーション動作は以下のようになされる。まず、キャリブレーション指示信号発生部81がキャリブレーション指示信号を発生して、これをポンプセル電流検出回路50A(50B)のスイッチ53、54、55に供給する。スイッチ53およびスイッチ54と、スイッチ55とはインバータ82により反転した指示信号が与えられ、この結果、キャリブレーション時においてスイッチ53、54がオフ状態、スイッチ55がオン状態になる(全領域酸素センサの駆動時(活性時)は図示するようにスイッチ53、54がオン状態、スイッチ55がオフ状態)。
これにより、抵抗56、57、58、59と演算増幅回路60とからなる差動増幅部の両極入力がスイッチ55により導通されるので、これから以降のオフセットがポンプセル電流検出回路50A(50B)の出力に発生する。この出力は、AD変換回路71A(71B)でディジタル信号に変換されさらにオフセット電圧記憶部72A(72B)に記憶される。この記憶動作は、キャリブレーション指示信号発生部81からの指示によっている。
なお、この実施形態では、キャリブレーション時にスイッチ53、54がオフ状態とされることで、差動増幅部(60、56、57、58、59にて構成)から見てその前段の回路のインピーダンスは、ハイインピーダンスとなるため、ポンプセル電流検出抵抗45の両端電圧は上記差動増幅部に伝送されなくなる。つまり、この実施形態では、キャリブレーション時にスイッチ53、54を用いてポンプセル電流検出抵抗45と上記差動増幅部との電気的な接続が遮断されることになるため、キャリブレーション時にポンプセル電流検出抵抗45にポンプセル電流が流れていたとしても、ポンプ電流がキャリブレーションに影響を与えることがない。そのため、キャリブレーション時に、ポンプセル電流が流れるのを中断するような処理(例えば、全領域酸素センサ1を強制的に非活性の状態にする処理等)を実行する必要がなく、全領域酸素センサの駆動中に定期的にキャリブレーション(オフセット電圧の補正)を行うことができる。
以上から、キャリブレーションが終わり通常の検出状態に戻ったときには減算部73A(73B)で適切なオフセットの補正がなされる。なお、以上の説明で、AD変換回路71A(71B)の後段の部分は、マイクロプロセッサを用いたソフト的な処理とすることもできる。
図2は、そのようなソフト的な処理を行う場合の、図1に示したインターフェース装置の動作フローの例を示す流れ図である。
まず、オフセット記憶部72A(72B)に初期値を記憶させる(ステップ91)。この初期値は、ポンプセル電流検出回路50A(50B)の検出基準電圧源61の設定電圧値とすることができる。ついで、起電力セルの内部インピーダンスを検出するためにガスセンサ制御回路4を別途設けられるインピーダンス検出回路(不図示)から出力される信号に基づいて全領域酸素センサが活性したか否かを判定する(ステップ91A)。
このステップ91Aにて否定判定される(ステップ91AのN)と、全領域酸素センサが活性したと判定されるまでこのステップを繰り返す。そして、このステップ91Aにて全領域酸素センサが活性したと判定される(ステップ91AのY)と、タイマ(不図示)をスタートさせる(ステップ92)。その状態で回路を動作させ処理を行ない減算部73A(73B)の出力に検出出力を発生させる(ステップ93)。そしてタイマが所定時間経過していなければ(ステップ94のN)、得られる2つの検出出力のいずれを用いるかを選択した上で一方の検出出力より排気ガス中の酸素濃度(即ち、空燃比)を算出し空燃比制御を行う(ステップ95)。以下同様にステップ93から処理する。
ステップ94でタイマが所定時間経過していれば、キャリブレーションの処理に移行する。その最初でキャリブレーションフラグを立てる(ステップ96)。これによりキャリブレーション指示信号がアクティブとなりポンプセル電流検出回路50A(50B)がすでに説明したキャリブレーションの状態となる。なお、「タイマの所定時間」は、どの程度の頻度でキャリブレーションを行うかを決めるもので、例えば5秒程度とすることができる。
ポンプセル電流検出回路50A(50B)がキャリブレーションの状態にされたら、その状態においてオフセット電圧記憶部72A(72B)に供給されているディジタル信号をオフセット電圧記憶部72A(72B)に記憶させて内容を更新する(ステップ97)。内容更新後、キャリブレーションフラグを解消する(ステップ98)。これによりポンプセル電流検出回路50A(50B)は通常の状態に戻る。さらにタイマをリスタートさせ(ステップ99)、ステップ95から以降の処理に戻る。
図2に示したような処理(定期的なキャリブレーション処理)を行えば、温度などの環境の変化に伴うポンプセル電流検出回路50A(50B)の特性変動にも対応して被測定ガス(排気ガス)中の酸素濃度に精度よく検出できる。なお、以上の実施形態では、ポンプセル電流検出回路50A(50B)のスイッチ53、54が連動してオン状態、オフ状態にされているが、その一方のスイッチを設けないとする構成としてもよい。その場合でもその後段の差動増幅部の両極には同一電圧が供給されるのでオフセット電圧の出力を行うことができる。
次に、ポンプセル電流検出回路50A、50B内のひとつの構成要素である演算増幅回路51、52について具体例を以下説明する。演算増幅回路51、52は、すでに言及したように、ポンプセル電流検出回路50A(50B)の初段にバッファ回路(ボルテージフォロア)として設けられることにより、ポンプセル電流検出抵抗45に流れる電流に影響を与えることなくその端子電圧を検出回路50A(50B)内に取り込む機能を有するものである。以下で述べる具体例は、演算増幅回路51、52に工夫を加えることでガスセンサ制御回路4としての電気的な堅牢性向上を図る。
図3は、図1中に示した演算増幅回路51(52)の具体的な一例を示す回路図である。図3中の+入力、−入力、出力は、それぞれ、非反転入力端子、反転入力端子、出力端子である。この回路では、出力段回路の電源電圧供給端子(Vcc2)が入力段回路のそれ(Vcc1)と別にされており、これにより、演算増幅回路51(52)の出力によりスイッチ53(54)を介してスイッチ55の両端間に過大な電圧が印加されるのを防止するようになっている。
図3に示す演算増幅回路46は、構成素子として、電流源I1、トランジスタQ1〜17、抵抗R1、容量C1を有する。電流源I1、トランジスタQ1、Q2、Q5、Q10、Q11はカレントミラー回路になっており、これによりトランジスタQ2、Q5、Q10、Q11の各コレクタから各素子を介してグラウンドに向かって電流が出力される。このうちトランジスタQ11からの電流は、トランジスタQ12、Q13によるカレントミラー回路、さらにトランジスタQ14、Q16によるカレントミラー回路を駆動する。これにより、Q16はQ17からみて負荷となる。
トランジスタQ3、Q4は、それぞれエミッタフォロアによる−入力と+入力のバッファ回路である。バッファされた両入力はトランジスタQ6、Q7からなる差動対に入力される。トランジスタQ6、Q7からなる差動対の両コレクタ出力は、トランジスタQ8、Q9からなるカレントミラー回路に導かれ、これによりQ7、Q9の両コレクタの接続ノードがトランジスタQ6、Q7からなる差動対の電流出力ノードとなる。この出力電流は、Q15のベース電流を増減させる。
この出力電流によりQ15のベース電流が流れる場合は、そのhFE倍の電流がそのエミッタに流れ、このエミッタ電流は、抵抗R1に流れる電流がQ17のオン状態においてほぼ一定であることから、Q17のベース電流を増加させる。これにより、Q17のコレクタ電圧(=出力)は、Q16を負荷として大きく下がろうとする。これが、+入力<−入力の場合の動作である。
また、Q7、Q9の両コレクタの接続ノードが電流をプラス方向に出力しない場合は、Q15にベース電流が供給されずカットオフし、よってQ17もカットオフする。これにより、Q16のコレクタ電圧(=出力)は、Q17を負荷として大きく上がろうとする。これが、+入力>−入力の場合の動作である。
以上により、出力(トランジスタQ16、Q17の両コレクタの接続ノード)には、−入力と+入力との差電圧に応じて大きな利得で電圧が発生する。なお、Q16、Q17の両コレクタの接続ノードとQ15のベースとの間に接続された容量C1は、位相補償用の容量である。
以上の動作によりこの回路は演算増幅回路として動作し、出力と−入力とがフィードバック接続を有することで−入力と+入力とはいわゆるイマジナリショートとなり同電位になる。ここでこの演算増幅回路51(52)では、Vcc2をVcc1より低い値に設定する。このような演算増幅器51によれば、演算増幅器51の出力電圧は高々Vcc2に制限されるので、例えば端子4bがバッテリ電圧にショートした場合に、このバッテリ電圧が演算増幅回路51(バッファ回路)、オン状態のスイッチ53を介してオフ状態のスイッチ55の一端側に印加されてしまう事態が回避される。
したがって、スイッチ55の耐圧内にその両端子間の電圧を抑えることができ、電気的な異常が生じた場合にもスイッチ55の破壊を防止できる。スイッチ55に、耐圧が10V程度しかないMOS型半導体スイッチを用いる場合に特に好適である。少なくとも端子4bに近い演算増幅回路51にこのような出力電圧リミット機能を設けることが好ましい。演算増幅回路52にもこの機能を設けてもよい。
図4は、図1中に示した演算増幅回路51(52)の別の具体的な例を示す回路図である。図4中の+入力、−入力、出力は、それぞれ、非反転入力端子、反転入力端子、出力端子である。この回路では、出力段回路にリミット回路部が設けられ、これにより、演算増幅回路51Aの出力によりスイッチ53(54)を介してスイッチ55の両端間に過大な電圧が印加されるのを防止するようになっている。
この演算増幅回路51Aは、構成素子として、電流源I1、トランジスタQ1〜Q10、Q21〜Q27、容量C1を有する。このうち図3に示した構成要素と同一符号を付したものは同一機能を有する。トランジスタQ21は、電流源I1とトランジスタQ1とを有するカレントミラー回路の一部である。これにより、Q21のコレクタからQ22、Q23、Q24を介してグラウンドに向かって電流が出力される。この構成で、Q21はQ24からみて負荷となる。トランジスタQ25、Q26は出力バッファ回路を兼ねた回路部である。
トランジスタQ7、Q9の両コレクタ接続ノードの出力電流は、Q24のベース電流を増減させる。この出力電流が供給されてQ24にベース電流が流れる場合は、そのhFE倍の電流がそのエミッタに流れ、これにより、Q24のコレクタ電圧は、Q21を負荷として大きく下がろうとする。これが、+入力<−入力の場合の動作である。また、Q7、Q9の両コレクタの接続ノードが電流をプラス方向に出力しない場合は、Q24にベース電流が供給されずカットオフする。これにより、Q21のコレクタ電圧は、Q24を負荷として大きく上がろうとする。これが、+入力>−入力の場合の動作である。
以上により、出力(トランジスタQ25、Q26の両エミッタの接続ノード)には、−入力と+入力との差電圧に応じて大きな利得で電圧が発生する。なお、Q25、Q26の両エミッタの接続ノードとQ24のベースとの間に接続された容量C1は、位相補償用の容量である。
ここで、Q25、Q26の両エミッタの接続ノードがトランジスタQ27のベース電圧(Vl=リミット電圧)より大きくなろうとすると、Q25のベース電位がVl+Vbeより大きくなることができない(∵Q27がオンする)ため、Q25はオフしてしまう。したがって、Q25、Q26の両エミッタの接続ノードはほぼVlが上限電圧となる。すなわち、ここでQ27はリミット回路部として動作している。
このような演算増幅器51Aによれば、演算増幅器51Aの出力電圧は高々Vlに制限されるので、例えば端子4bがバッテリ電圧にショートした場合に、このバッテリ電圧が演算増幅回路51A(バッファ回路)、オン状態のスイッチ53を介してオフ状態のスイッチ55の一端側に印加されてしまう事態が回避される。したがって、スイッチ55の耐圧内にその両端子間の電圧を抑えることができ、電気的な異常が生じた場合にもスイッチ55の破壊を防止できる。
図5は、図1中に示した演算増幅回路51のさらに別の具体的な例を示す回路図である。図5中の+入力、−入力、出力は、それぞれ、非反転入力端子、反転入力端子、出力端子である。この回路も、出力段回路にリミット回路部が設けられ、これにより、演算増幅回路51Aの出力によりスイッチ53(54)を介してスイッチ55の両端間に過大な電圧が印加されるのを防止するようになっている。
この演算増幅回路51Bは、構成素子として、電流源I1、トランジスタQ1〜Q13、Q31〜Q35、容量C1、抵抗R2を有する。このうち図3に示した構成要素と同一符号を付したものは同一機能を有する。Q13のコレクタにはQ32とQ33とからなるカレントミラー回路が接続されている。ここでQ32、Q33の両エミッタはトランジスタQ31のエミッタに接続されており、その電圧はVcc1からリミット電圧Vlに降圧された電圧である。すなわち、トランジスタQ35のベースに印加されたリミット電圧Vlにより、そのエミッタ電圧はVl+Vbeとなり、さらにQ31のエミッタ電圧はVlとなる。
Q7、Q9の両コレクタ接続ノードの出力電流は、Q34のベース電流を増減させる。この出力電流が供給されてQ34にベース電流が流れる場合は、そのhFE倍の電流がそのエミッタに流れ、これにより、Q34のコレクタ電圧(=出力)は、Q33を負荷として大きく下がろうとする。これが、+入力<−入力の場合の動作である。また、Q7、Q9の両コレクタの接続ノードが電流をプラス方向に出力しない場合は、Q34にベース電流が供給されずカットオフする。これにより、Q33のコレクタ電圧(=出力)は、Q34を負荷として大きく上がろうとする。これが、+入力>−入力の場合の動作である。
以上により、トランジスタQ33、Q34の両エミッタの接続ノードには−入力と+入力との差電圧に応じて大きな利得で電圧が発生する。なお、Q33、Q34の両エミッタの接続ノードとQ34のベースとの間に接続された容量C1は、位相補償用の容量である。
以上の動作によりこの回路は演算増幅回路として動作すると同時に、出力にはリミット電圧Vlの制限が課されている。すなわち、トランジスタQ35、Q31、R2がリミット回路部として動作している。このような演算増幅器51Bによれば、演算増幅器51Bの出力電圧は高々Vlに制限されるので、例えば端子4bがバッテリ電圧にショートした場合に、このバッテリ電圧が演算増幅回路51B(バッファ回路)、オン状態のスイッチ53を介してオフ状態のスイッチ55の一端側に印加されてしまう事態が回避される。したがって、スイッチ55の耐圧内にその両端子間の電圧を抑えることができ、電気的な異常が生じた場合にもスイッチ55の破壊を防止できる。
図4、図5に示したような電源を2つに分けない回路によれば、出力段回路用のVcc2を必要としないのでその電流出力能力などに影響されない回路構成とすることができる。Vcc2として必要な低電圧は、通常、バッテリー電圧を降圧して発生させるが、現実のアプリケーションではあまり電流容量がない場合も多い。
以上、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。例えば、上記実施形態では、センサとしてポンプセルと起電力セルを有する2セルタイプのセンサを例に示した。しかし、本発明を、他の形態(例えばポンプセルを含む3セル以上)のセンサに利用することもできる。また、いわゆる限界電流方式で制御する1セルタイプのガスセンサに接続されるインターフェース装置に本発明を適用することもできる。
本発明の一実施形態に係るインターフェース装置を全領域酸素センサと接続した態様を示す回路・ブロック図。 図1に示したインターフェース装置の動作フローの例を示す流れ図。 図1中に示した演算増幅回路51(52)の具体例を示す回路図。 図1中に示した演算増幅回路51(52)の別の具体例を示す回路図。 図1中に示した演算増幅回路51(52)のさらに別の具体例を示す回路図。
符号の説明
1…全領域酸素センサ(ガスセンサ)、2…ヒータ、3…ヒータ電源、4…ガスセンサ制御回路、4a,4b,4c…入出力端子、10…遮蔽板、11…固体電解質、12…多孔質電極(+)、13…多孔質電極(−)、14…酸素基準室、15…固体電解質、16…多孔質電極(+)、17…多孔質電極(−)、18…ガス拡散質、19…ガス検出室、40…起電力セル電流供給電流源、42…制御目標電圧源、43,48…演算増幅回路、44…PID制御回路、45…ポンプセル電流検出抵抗、46…アンプ、47,49…抵抗、50A,50B…ポンプセル電流検出回路、51,52…演算増幅回路、53,54…スイッチ(第1または第3のスイッチング部)、55…スイッチ(第2のスイッチング部)、56,57,58,59…抵抗、60…演算増幅回路、61…検出基準電圧源、62…演算増幅回路、71A,71B…AD変換回路、72A,72B…オフセット電圧記憶部、73A,73B…減算部、81…キャリブレーション指示信号発生部、82…インバータ、85…エンジンコントロールユニット(ECU)。

Claims (7)

  1. ガスセンサから出力される特定ガス成分の濃度に対応した電流が流され得る検出抵抗器と、
    前記検出抵抗器の一端の電圧を伝送するか伝送しないか切り替える第1のスイッチング部と、
    前記第1のスイッチング部が伝送の状態に切り替えられているときの、前記第1のスイッチング部を介した前記一端の電圧を第1の極性側の入力電圧とし、前記検出抵抗器の他端の電圧を前記第1の極性と逆極性の第2の極性の側の入力電圧として差動増幅する差動増幅部と、
    前記第1のスイッチング部が非伝送の状態に切り替えられているときにオン状態にすることが可能とされ、かつ該オン状態において前記差動増幅部の前記第1の極性側と前記第2の極性側とを導通させる第2のスイッチング部と
    を具備することを特徴とするガスセンサのインターフェース装置。
  2. 前記第1のスイッチング部が非伝送の状態に切り替えられているときかつ前記第2のスイッチング部がオン状態にあるときの前記差動増幅部の出力をオフセット電圧として記憶するオフセット電圧記憶部と、
    前記第1のスイッチング部が伝送の状態に切り替えられているときかつ前記第2のスイッチング部がオフ状態にあるときに前記差動増幅部が出力する電圧から前記記憶されたオフセット電圧を減じる減算部と
    をさらに具備することを特徴とする請求項1記載のガスセンサのインターフェース装置。
  3. 前記検出抵抗器の前記他端の電圧を伝送するか伝送しないか切り替える第3のスイッチング部をさらに具備し、
    前記第3のスイッチング部が、前記第1のスイッチング部の伝送、非伝送の状態に同期して、伝送、非伝送の状態が切り替えられ、
    前記差動増幅部が、前記第3のスイッチング部を介した前記検出抵抗器の前記他端の電圧を、前記第2の極性の側の入力電圧とすること
    を特徴とする請求項1または2記載のガスセンサのインターフェース装置。
  4. 定期的に、前記第1のスイッチング部を非伝送の状態に切り替えかつ前記第2のスイッチング部をオン状態に制御するキャリブレーション指示信号発生部をさらに具備することを特徴とする請求項1ないし3のいずれか1項記載のガスセンサのインターフェース装置。
  5. 前記検出抵抗器の一端と前記第1のスイッチング部との間に挿入接続されたバッファ回路をさらに具備し、
    前記バッファ回路が、演算増幅回路を用いたボルテージフォロア回路からなり、該演算増幅回路が、第1の電源電圧供給端子から供給される電圧で動作する入力段回路と第2の電源電圧供給端子から供給される電圧で動作する出力段回路とを有し、該第1の電源電圧供給端子が該第2の電源電圧供給端子と別個にされていること
    を特徴とする請求項1ないし4のいずれか1項記載のガスセンサのインターフェース装置。
  6. 前記検出抵抗器の一端と前記第1のスイッチング部との間に挿入接続されたバッファ回路をさらに具備し、
    前記バッファ回路が、演算増幅回路を用いたボルテージフォロア回路からなり、該演算増幅回路が、入力段回路と出力段回路とを有し、該出力段回路が、該出力段回路の出力を一定値以下の電圧に保つリミット回路部を備えること
    を特徴とする請求項1ないし4のいずれか1項記載のガスセンサのインターフェース装置。
  7. 起電力セルと、該起電力セルに対向して配置された、被測定ガスを導入可能なガス検出室と、該ガス検出室を介して前記起電力セルに対向して配置され、ポンプセル電流に応じて前記ガス検出室内の酸素を汲み出しまたは該ガス検出室内に酸素を汲み入れし、かつ該ポンプセル電流が前記特定ガス成分の濃度に対応した前記電流として出力されるポンプセルとを有するガスセンサと、
    請求項1ないし6のいずれか1項記載のガスセンサのインターフェース装置とを具備し、
    前記インターフェース装置が、前記起電力セルに生じる起電力セル電圧が所定値になるように前記ポンプセル電流を制御するガスセンサ制御部をさらに有すること
    を特徴とするガスセンサシステム。
JP2006143282A 2005-05-24 2006-05-23 ガスセンサのインターフェース装置、ガスセンサシステム Active JP4510781B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006143282A JP4510781B2 (ja) 2005-05-24 2006-05-23 ガスセンサのインターフェース装置、ガスセンサシステム
US11/798,234 US7655121B2 (en) 2006-05-23 2007-05-11 Gas sensor interface device and gas sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005151247 2005-05-24
JP2006143282A JP4510781B2 (ja) 2005-05-24 2006-05-23 ガスセンサのインターフェース装置、ガスセンサシステム

Publications (2)

Publication Number Publication Date
JP2007003515A JP2007003515A (ja) 2007-01-11
JP4510781B2 true JP4510781B2 (ja) 2010-07-28

Family

ID=37689275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143282A Active JP4510781B2 (ja) 2005-05-24 2006-05-23 ガスセンサのインターフェース装置、ガスセンサシステム

Country Status (1)

Country Link
JP (1) JP4510781B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001697A1 (de) * 2008-05-09 2009-11-12 Robert Bosch Gmbh Auswerte- und Steuereinheit für eine Breitband-Lambdasonde
JP5091055B2 (ja) * 2008-08-27 2012-12-05 日本特殊陶業株式会社 ガス濃度検出装置、ガス濃度検出システム
ES2394057T3 (es) 2009-12-23 2013-01-16 Iveco Motorenforschung Ag Método de control mejorado y dispositivo para celdas de bomba de oxígeno de sensores en motores de combustión interna o gas de escape posterior a los sistemas de tratamiento de tales motores
JP7314969B2 (ja) * 2021-03-31 2023-07-26 横河電機株式会社 ジルコニア式酸素濃度計のメンテナンス方法、メンテナンスシステム、及びジルコニア式酸素濃度計

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234352A (ja) * 1985-04-10 1986-10-18 Ngk Spark Plug Co Ltd 空燃比検出装置
JPH11304758A (ja) * 1998-02-20 1999-11-05 Ngk Spark Plug Co Ltd ガスセンサ用制御回路ユニット及びそれを用いたガスセンサシステム
JP2004028925A (ja) * 2002-06-28 2004-01-29 Ngk Spark Plug Co Ltd NOx測定装置及びNOxセンサの出力補正方法
JP2004205488A (ja) * 2002-11-08 2004-07-22 Denso Corp ガス濃度検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234352A (ja) * 1985-04-10 1986-10-18 Ngk Spark Plug Co Ltd 空燃比検出装置
JPH11304758A (ja) * 1998-02-20 1999-11-05 Ngk Spark Plug Co Ltd ガスセンサ用制御回路ユニット及びそれを用いたガスセンサシステム
JP2004028925A (ja) * 2002-06-28 2004-01-29 Ngk Spark Plug Co Ltd NOx測定装置及びNOxセンサの出力補正方法
JP2004205488A (ja) * 2002-11-08 2004-07-22 Denso Corp ガス濃度検出装置

Also Published As

Publication number Publication date
JP2007003515A (ja) 2007-01-11

Similar Documents

Publication Publication Date Title
US5391284A (en) Arrangement for determining the lambda value of an air/fuel mixture
JPH0850115A (ja) 排気ガス酸素監視に用いる電流複製回路および方法
JP4177345B2 (ja) センサ制御装置及び空燃比検出装置
JP4493702B2 (ja) 内燃機関の制御装置
US7655121B2 (en) Gas sensor interface device and gas sensor system
JP4510781B2 (ja) ガスセンサのインターフェース装置、ガスセンサシステム
JP2009133846A (ja) ガスセンサ制御装置およびガスセンサ制御システム
JP4643459B2 (ja) センサ制御装置、センサユニット
US10400699B2 (en) Abnormality determination device
JP4433009B2 (ja) センサ制御装置
JP4872198B2 (ja) ガス濃度検出装置
JP5041488B2 (ja) センサ制御装置
JPH11271265A (ja) ガス濃度センサの素子抵抗検出方法及びガス濃度検出装置
JP4562042B2 (ja) センサ制御装置、センサ制御方法
US9933389B2 (en) Sensor control apparatus and gas detection system
US8166800B2 (en) Gas concentration detection apparatus and gas concentration detection system
JP5067469B2 (ja) ガス濃度検出装置
JPH08507376A (ja) 電流複製回路および排気中の酸素モニタリング
JP2000046791A (ja) ガス濃度検出装置
JP2018185163A (ja) 異常判定装置および制御システム
JP5979165B2 (ja) 酸素濃度センサの素子インピーダンス検出装置
JP4353999B1 (ja) ガスセンサ装置
JP4444520B2 (ja) ガスセンサ
JP2018128354A (ja) センサ制御装置
JP3622619B2 (ja) 酸素濃度センサの素子抵抗検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4510781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250