JP4510219B2 - 符号生成器の線形フィードバック・シフトレジスタを更新する方法と符号生成器 - Google Patents

符号生成器の線形フィードバック・シフトレジスタを更新する方法と符号生成器 Download PDF

Info

Publication number
JP4510219B2
JP4510219B2 JP2000101174A JP2000101174A JP4510219B2 JP 4510219 B2 JP4510219 B2 JP 4510219B2 JP 2000101174 A JP2000101174 A JP 2000101174A JP 2000101174 A JP2000101174 A JP 2000101174A JP 4510219 B2 JP4510219 B2 JP 4510219B2
Authority
JP
Japan
Prior art keywords
state
temporary
result
value
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000101174A
Other languages
English (en)
Other versions
JP2000332728A (ja
JP2000332728A5 (ja
Inventor
ニエミネン エスコ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Publication of JP2000332728A publication Critical patent/JP2000332728A/ja
Publication of JP2000332728A5 publication Critical patent/JP2000332728A5/ja
Application granted granted Critical
Publication of JP4510219B2 publication Critical patent/JP4510219B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70756Jumping within the code, i.e. masking or slewing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • G06F7/582Pseudo-random number generators
    • G06F7/584Pseudo-random number generators using finite field arithmetic, e.g. using a linear feedback shift register
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Error Detection And Correction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、符号生成器の線形フィードバック・シフトレジスタを更新する方法と、その方法を使用する符号生成器に関する。「符号」という術語は、例えば、符号分割多元接続(CDMA)を利用する無線システムの拡散符号またはスクランブル符号といった、無線システムで使用される疑似雑音系列、または(例えば暗号化システムで使用される)別の符号を指す。
【0002】
【従来の技術】
符号分割多元接続を利用する無線システムでは、無線資源は符号分割によって複数の異なったユーザ間で分割される。各ユーザのペイロードは、ペイロードに拡散符号を乗算することで広い周波数帯域(例えば5メガヘルツ)に拡散される。受信機は、受信された信号を使用された拡散符号で乗算することで受信したい信号を分離することができる。拡散符号の部分はチップと呼ばれ、実際それらは複数ビットである。チップ値は0と1によって表されるか、または1と−1によって実数として表される。チップ・レートは典型的には、ペイロード・レートより、非常に高速で、例えば数百倍以上もある。
【0003】
拡散符号に加えて、スクランブル符号として知られる符号が使用される。それは必ずしも信号をさらに拡散するために使用されるのではなく、信号中の各ビットを対応するスクランブル符号ビットで乗算することで拡散信号のビットにスクランブルをかけるために使用される。スクランブル符号は極めて長いことがあり、例えば241−1チップである。
【0004】
使用される拡散符号は典型的には互いにできる限り直交している。拡散符号は例えばアダマール行列から得られる。アダマール行列Mn は、任意の行列の行が他の行列の行と正確にn/2の位置で異なるようなやり方で、0と1から構成されたn×n行列(nは偶数の整数)である。その結果、1つの行列の行は0だけを含み、残りの行は等しい数の0と1から構成される。n=2の時、次のアダマール行列が得られる。
【0005】
【数1】
Figure 0004510219
【0006】
アダマール行列M2nは、次の関係によってアダマール行列Mn から生成される。
【0007】
【数2】
Figure 0004510219
【0008】
ここで行列 cn は行列Mn の補数であり、すなわち0が1で置換され、1が0で置換されている。すなわち、行列1は次の行列を提供する。
【0009】
【数3】
Figure 0004510219
【0010】
さらに、行列3は次の行列を提供する。
【0011】
【数4】
Figure 0004510219
【0012】
上記で説明されたアダマール行列の要素、すなわち0と1が1と−1で表されるならば、アダマール行列中の行は互いに直交する。望ましい場合、値を逆転する、すなわち、0を1で置換し1を0で置換することができるが、それによって行列の特性は変化しない。従って、行列1は次のような形式で示すこともできる。
【0013】
【数5】
Figure 0004510219
【0014】
各行列の行は1つの拡散符号を形成する。拡散符号の長さは望ましい拡散係数によって変化する。拡散符号は、例えば拡散符号の符号クラスと関連する符号クラス中のその序数を示すことで番号付けされる。符号クラスは次の等式によって得られる。すなわち、2の符号クラス乗は拡散符号の長さに等しい、別言すれば、符号クラスは拡散符号の長さの2を底とする対数である。すなわち、例えば行列4には、次の拡散符号(下付き数字は符号クラスを示し、かっこ内の数は序数である)が含まれる。
【0015】
【数6】
Figure 0004510219
【0016】
従来技術によれば、短い拡散符号は全て送受信機のメモリに保存される。例えばクラス8の符号の場合、これは256チップの256の異なった符号がメモリに保存されることを意味し、必要なメモリ空間は256×256ビット、すなわち加算65536ビットとなる。保存された長い符号からもっと短い拡散符号を生成することができるので、低い符号クラスの拡散符号を別に保存する必要はない。
【0017】
拡散符号は、例えば241−1チップと、著しく長いことがある。ここで発生する技術的問題は、どうやって符号を実時間で生成するかということであるが、それは1つの同じ系列が典型的には使用され、異なった段階でその系列を使用するのは異なった送受信機だけだからである。理想的には生成される符号系列は完全な乱数であるべきだが、これは、送信機と受信機の両方が使用される符号系列を同じタイミング、すなわち位相を適用して生成しなければならないため現実的でない。
【0018】
符号は符号生成器、例えば線形フィードバック・シフトレジスタを使用する生成器によって生成される。WO公報96/36137は、符号として使用される疑似雑音系列を提供するm系列(最大長系列)として知られるものを生成するために使用される線形フィードバック・シフトレジスタを説明しているが、この系列は、Nが線形フィードバック・シフトレジスタ中の要素の数を表す時2N −1の系列の後反復される。線形フィードバック・シフトレジスタでは初期状態は常に既知であるが、どうやって既知の初期状態から、既知のオフセットにある新しい未知の目標状態にシフトするかということから問題が生じる。上記の公報で説明された解決法では、各シフト、または少なくとも2の累乗に対応する各シフトに対応する変換行列が保存されるが、この変換行列は目標状態要素を提供するためには各初期状態要素をどのように変換する必要があるかを示す。その結果、例えば241−1チップの拡散符号のために保存されるビットの量は41×41×41ビット(2の様々な累乗の数×線形フィードバック・シフトレジスタ要素の数×線形フィードバック・シフトレジスタの長さ)、すなわち加算68921ビットである。
【0019】
米国特許第5,835,528号は既知の現在の状態から既知のオフセットにある新しい状態に更新する方法を開示している。この解決法は更新のために使用される事前に計算された状態を保存する必要がある。この解決法は前もって計算された状態を保存するためのメモリを必要とし、更新できるのはこの状態によって決定されたオフセットにある状態だけである。
【0020】
【発明が解決しようとする課題】
本発明の目的は、線形フィードバック・シフトレジスタを更新する方法を提供することであるが、その際本方法はごく少量のメモリを利用し効率的な計算を提供する。
【0021】
【課題を解決するための手段】
これは、符号生成器のガロア形線形フィードバック・シフトレジスタを単位状態から既知のオフセットにある目標状態に更新する方法によって達成される。本方法は、オフセットを示す二進オフセット数を生成するステップと、二進オフセット数のビットの数を示すカウンタを生成するステップと、単位状態によって一時的状態を初期化するステップと、カウンタ値が0より大きい限り、(1)一時的状態をそれ自体で乗算するためガロア体乗算を適用するステップ、(2)カウンタによって示される二進オフセット数のビットの値が1である場合一時的状態を現在の一時的状態から1状態先にシフトするステップ、および(3)カウンタ値を1減らすステップを反復するステップと、最後に、カウンタが0の値に達した時、一時的状態を目標状態として設定するステップとを含む。
【0022】
本発明はまた、符号生成器のガロア形線形フィードバック・シフトレジスタを、既知の現在の状態から既知のオフセットにある新しい状態に更新する方法に関する。本方法は、オフセットを示す二進オフセット数を生成するステップと、二進オフセット数中のビットの数を示すカウンタを生成するステップと、単位状態によって一時的状態を初期化するステップと、カウンタ値が0より大きい限り、(1)一時的状態をそれ自体で乗算するためガロア体乗算を適用するステップ、(2)カウンタによって示される二進オフセット数のビットの値が1である場合一時的状態を現在の一時的状態から1状態先にシフトするステップ、および(3)カウンタ値を1減らすステップを反復するステップと、最後に、カウンタが0の値に達した時一時的状態と現在の状態の間でガロア体乗算を行うステップと、乗算の結果として得られた状態を新しい状態として設定するステップとを含む。
【0023】
本発明はさらに、符号生成器のフィボナッチ形(Fibonacci−type)線形フィードバック・シフトレジスタを、既知の現在の状態から既知のオフセットにある新しい状態に更新する方法に関する。この方法は、オフセットを示す二進オフセット数を生成するステップと、二進オフセット数のビットの数を示すカウンタを生成するステップと、単位状態によってガロア形一時的状態を初期化するステップと、カウンタ値が0より大きい限り、(1)一時的状態をそれ自体で乗算するためガロア体乗算を適用するステップ、(2)カウンタによって示される二進オフセット数のビットの値が1である場合一時的状態を現在の一時的状態から1状態先にシフトするステップ、および(3)カウンタ値を1減らすステップを反復するステップと、最後に、カウンタが0の値に達した時ガロア形一時的状態とフィボナッチ形現在の状態の間でガロア体乗算を行うステップと、乗算の結果として得られた状態をフィボナッチ形の新しい状態として設定するステップとを含む。
【0024】
本発明はまたさらに、無線システムにおける符号生成器に関するが、この符号生成器は、ガロア形線形フィードバック・シフトレジスタの単位状態から目標状態への既知のオフセットを示す二進オフセット数を生成する手段と、二進オフセット数中のビットの数を示すカウンタを生成する手段と、単位状態によって一時的状態を初期化する手段と、カウンタ値が0より大きい限り以下の手段、(1)一時的状態をそれ自体で乗算するためガロア体乗算を適用する手段、(2)カウンタによって示される二進オフセット数のビットの値が1である場合一時的状態を現在の一時的状態から1状態先にシフトする手段、および(3)カウンタ値を1減らす手段の動作を反復する手段と、最後に、カウンタが0の値に達した時一時的状態を目標状態として設定する手段とを備えている。
【0025】
本発明はまた、無線システムにおける符号生成器に関するが、この符号生成器は、符号生成器のガロア形線形フィードバック・シフトレジスタの既知の現在の状態から新しい状態への既知のオフセットを示す二進オフセット数を生成する手段と、二進オフセット数のビットの数を示すカウンタを生成する手段と、単位状態によって一時的状態を初期化する手段と、カウンタ値が0より大きい限り以下の手段、(1)一時的状態をそれ自体で乗算するためガロア体乗算を適用する手段、(2)カウンタによって示される二進オフセット数ビットの値が1である場合、一時的状態を現在の一時的状態から1状態先にシフトする手段、および(3)カウンタ値を1減らす手段の動作を反復する手段と、ガロア体乗算を適用することで一時的状態と現在の状態を乗算し、カウンタが0の値に達した時乗算の結果として得られた状態を新しい状態として設定する手段とを備えている。
【0026】
本発明はまたさらに、無線システムにおける符号生成器に関するが、この符号生成器は、フィボナッチ形線形フィードバック・シフトレジスタの既知の現在の状態から新しい状態への既知のオフセットを示す二進オフセット数を生成する手段と、二進オフセット数のビットの数を示すカウンタを生成する手段と、単位状態によってガロア形一時的状態を初期化する手段と、カウンタ値が0より大きい限り以下の手段、(1)一時的状態をそれ自体で乗算するためガロア体乗算を適用する手段、(2)カウンタによって示される二進オフセット数のビットの値が1である場合一時的状態を現在の一時的状態から1状態先にシフトする手段、および(3)カウンタ値を1減らす手段の動作を反復する手段と、ガロア体乗算を適用することでガロア形一時的状態とフィボナッチ形現在の状態を乗算し、カウンタが0の値に達した時乗算の結果として得られた状態をフィボナッチ形の新しい状態として設定する手段とを備えている。
【0027】
従属請求項は本発明の好適実施形態に関する。
本発明は、フィードバック・シフトレジスタを処理する効率的な計算を提供するためにガロア体の数学的特性を利用することと、異なった種類のフィードバック・シフトレジスタ間の接続を考慮することに基づいている。
以下、本発明は好適実施形態に関連し、添付の図面を参照してより詳細に説明される。
【0028】
【発明の実施の形態】
本発明は、線形フィードバック・シフトレジスタを使用して様々な種類の符号を発生する、符号分割多元接続(CDMA)を利用するような移動電話システムで使用される。以下の例では、本発明はユニバーサル移動電話システム(UMTS)で使用されるが、本発明をそれに限定しようとするものではない。
【0029】
図1及び図2を参照すると、ユニバーサル移動電話システムの構成が説明される。図2は本発明の説明に必要なブロックだけを含むが、当業者には一般的な移動電話システムが他の機能と構造をも含むことが明らかであるので、それらを以下さらに詳細に論じる必要はない。移動電話システムの主要部分は、コア・ネットワークCN、UMTS地上無線アクセス・ネットワークUTRAN及びユーザ機器UEである。CNとUTRANの間のインタフェースはIuインタフェースと呼ばれ、UTRANとUEの間のインタフェースはUuインタフェースと呼ばれる。
【0030】
UTRANは無線ネットワーク・サブシステムRNSから構成される。RNS間のインタフェースはIurインタフェースと呼ばれる。RNSは無線ネットワーク制御装置RNCと1つかそれ以上のノードBから構成される。RNCとノードBの間のインタフェースはIubインタフェースと呼ばれる。ノードBの受信範囲、すなわちセルは図2でCによって示される。
【0031】
図1の表示は非常に抽象的であるので、図2ではUMTSの部分に対応するGMSシステムの部分を示すことで明らかにされる。UMTSの様々な部分の責任と機能はまだ計画中であるので、表示された配置は決して拘束的なものではなく近似的なものであることが明らかである。
図2は、インターネット102を経由してコンピュータ100から移動電話システムに接続され、ユーザ機器UEに接続された携帯型コンピュータ122へ至るパケット交換伝送を示す。ユーザ機器UEは、例えば固定設置型端末、車載型端末、またはハンドヘルド携帯型端末である。無線ネットワークUTRANのインフラストラクチャは無線ネットワーク・サブシステムRNS、すなわち基地局サブシステムから構成されている。無線ネットワーク・サブシステムRNSは、無線ネットワーク制御装置RNC、すなわち基地局制御装置と、RNCの制御下にある少なくとも1つのノードB、すなわち基地局から構成されている。
【0032】
ノードBは、多重化装置114、送受信機116と、多重化装置114及び送受信機116の動作を制御する制御ユニット118を備えている。多重化装置114は、伝送接続Iubで複数の送受信機116が使用するトラフィックと制御チャネルを配置する。
ノードBの送受信機114は、ユーザ機器UEへの双方向無線接続Uuを提供するために使用されるアンテナ・ユニット120への接続を有する。双方向無線接続Uu上で伝送されるフレームの構成が詳細に決定される。
【0033】
無線ネットワーク制御装置RNCは、グループ交換フィールド110と制御ユニット112を備えている。グループ交換フィールド110は音声及びデータを交換しシグナリング回路を接続するために使用される。ノードBと無線ネットワーク制御装置RNCは基地局サブシステムを形成するが、これはさらにトランスコーダ108を備えている。無線ネットワーク制御装置RNCとノードBの機能と物理的構成の分割は実際の実現によって異なる。典型的には、ノードBは上記で説明されたような無線経路を実現する。無線ネットワーク制御装置RNCは典型的には、無線資源管理、セル間ハンドオーバ制御、電力制御、タイミングと同期、及びユーザ機器のページングを管理する。
【0034】
トランスコーダ108は普通、移動交換センタ106のできる限り近くに設置されるが、これはそうすることでトランスコーダ108と無線ネットワーク制御装置RNCの間で音声をセルラ無線ネットワーク形式で伝送することができ、伝送容量の節約になるからである。トランスコーダ108は、公衆交換電話ネットワークとセルラ無線ネットワークの間で使用される異なったデジタル音声符号化モードを変換し、例えば64kビット/秒固定ネットワーク形式から別の形式(13kビット/秒といった)のセルラ無線ネットワークへ、または逆の方向に互換可能とする。必要な機器はこの文脈ではより詳細には説明されないが、音声以外のデータはトランスコーダ108では変換されないことが示される。制御ユニット112は呼制御、移動管理、統計データ収集及び信号を実行する。
【0035】
コア・ネットワークCNは、UTRANの一部ではない移動電話システムに属するインフラストラクチャから構成されている。図2は、コア・ネットワークCNに属する2つの機器、すなわち移動交換センタ106と、外側の世界に向って、この例ではインターネット102の方向への移動電話システム・インタフェースを処理するゲートウェイ移動交換センタ104を示す。
【0036】
ユーザ機器は、例えば携帯型移動電話、車載型電話、無線加入者端末またはコンピュータ一体型データ伝送機器である。
図3は、無線送信機/無線受信機の対の機能を示す。無線送信機はノードBまたはユーザ機器UEに配置される。それに対応して、無線受信機はユーザ機器UEまたはノードBに配置される。
【0037】
図3の上部は無線送信機の必須の機能を示す。物理的チャネルに配置された様々なサービスには、音声、データ、動画または静止ビデオ画像、及びシステムの制御チャネルが含まれる。図は制御チャネルとデータの処理を示す。異なったサービスは異なった情報源符号化機器を必要とする。例えば音声は音声コデックを必要とする。しかし、わかりやすくするために、情報源符号化機器は図3では表示されていない。
【0038】
制御チャネル214には、チャネル推定の際受信機によって使用されるパイロット・ビットも配置されている。データ・チャネルにはユーザ・データ200が配置されている。
次に異なったチャネルはブロック202A及び202Bで異なったチャネル符号化の対象になる。チャネル符号化には、巡回冗長検査CRCのような様々なブロック符号が含まれる。さらに、畳み込み符号化と、パンクチャード畳み込み符号化またはターボ符号化といったその様々な変形が典型的には使用される。しかし、パイロット・ビットは、チャネルが信号中に発生する歪みを発見することを目的とするためにチャネル符号化されない。
【0039】
異なったチャネルはチャネル符号化された後、インタリーバ202A、204Bでインタリーブされる。インタリーブは誤り訂正を容易とすることを目的とする。インタリーブの際、異なったサービスのビットはあらかじめ決められた方法で互いに混合されるので、無線経路上の瞬間的なフェージングは必ずしも転送される情報を識別不能にすることはない。次にインタリーブされたビットはブロック206A、206Bで拡散符号を使用して拡散される。次に得られたチップはブロック208でスクランブル符号によってスクランブルをかけられ変調されるが、別個の信号はブロック208で結合され、1つの同じ送信機によって送信される。結合は例えば時分割多重化またはIQ(同相直交)多重化である。
【0040】
最後に、結合された信号は、様々な電力増幅器と、帯域幅を制限するフィルタとを備える無線周波数部分210に伝えられる。送信電力制御で使用される閉ループ制御は、普通このブロックに配置された送信電力制御増幅器を制御する。次にアナログ無線信号はアンテナ212によって無線経路Uuに送信される。
図3の下部は無線受信機の本質的な機能を示す。無線受信機は典型的にはRAKE受信機である。アナログ無線周波数信号は無線経路Uu上を越えてアンテナ232によって受信される。信号は、望ましい周波数帯域外の周波数を阻止するフィルタを備える無線周波数部分230に転送される。
【0041】
次に信号はブロック228で中間周波数か、または直接ベースバンドに変換され、この形式で信号はサンプリングされ量子化される。当該の信号はマルチパス伝播信号であるので、従来技術により、受信機の実際のRAKEフィンガを備えるブロック228では、異なった経路を通じて伝播した信号成分を結合することが目的である。すなわち、ブロック228で行われる動作は異なったチャネルの分離、スクランブル符号の復号化、逆拡散及び復調を含む。
【0042】
次に得られたチャネルはデインタリーブ手段226A、226Bでデインタリーブされる。チャネルは各々固有のチャネル復号化ブロック222A、222Bに向けられ、そこで送信時に使用されたブロック符号化または畳み込み符号化といったチャネル符号化が復号化される。畳み込み符号化は好適にはビタビ復号器を使用することで復号化される。次に制御チャネル及びデータチャネル236、220は各々その後の必要な処理の対象になり、例えばデータ220はユーザ機器UEに接続されたコンピュータ122に転送される。システムの制御チャネルは無線受信機の制御部分236に伝えられる。
【0043】
図4は拡散符号によるチャネルの拡散とチャネルの変調をより詳細に示すが、図3に示される拡散にとって必須でない処理は省略されている。図では、チャネル・ビット・ストリーム250Aが左から乗算器254Aに入るが、そこではビット・ストリーム250Aを拡散符号252Aで乗算することで拡散が実行される。得られた拡散チャネルは搬送波256Aによって伝送されるため乗算器258Aで乗算される。それに対応して、受信側で受信される信号は搬送波256Bによって乗算器258Bで乗算される。受信され、復調された信号を、使用される拡散符号252Bと乗算器254Bで乗算することで逆拡散が実行される。受信ビット250Bが結果として得られるが、このビットはその後図3に示されるようにデインタリーブされ復号化される。
【0044】
従来技術によれば、拡散符号生成器260A、260Bは、拡散符号をメモリに保存することによってか、または各シフト、または少なくとも2の累乗に対応する各シフトに対応する変換行列をメモリに保存することによって実現されるが、この変換行列は、新しい状態の要素を得るためには各初期状態要素をどのように変換しなければならないかを示すものである。拡散符号の序数、または拡散符号の符号クラスといった、制御データ262A、262Bに基づいて、望ましい短い拡散符号252A、252Bがメモリからフェッチされるか、またはある特定のフエーズ(phase)以降に望ましい長い拡散符号を生成するために線形フィードバック・シフトレジスタが使用される。
【0045】
本発明では、必要な拡散符号は制御データ262A、262Bに基づいて生成される。制御データ262A、262Bは、線形フィードバック・シフトレジスタの初期状態要素の値と、初期状態からの望ましい目標状態のオフセットを提供する。
図5は簡単なガロア形線形フィードバック・シフトレジスタを示すが、この原理は例えば31または41の要素を備えるさらに長いフィードバック・シフトレジスタにも応用されることが明らかである。図5の線形フィードバック・シフトレジスタは5つの要素272、274、276、278、280を備えている。これらの要素は「段」とも呼ばれる。要素は全て次のような形で相互接続される。すなわち、第1要素272の出力は第2要素274の入力に接続され、第2要素274の出力は加算器284(以下説明される)に接続され、加算器284の出力は第3要素276の入力に接続され、第3要素276の出力は第4要素278の入力に接続され、第4要素278の出力は第5要素280の入力に接続される。当該の線形フィードバック・シフトレジスタの出力290は実際には第1要素272の出力290である。第5要素280は加算器284へのフィードバック結合を有し、第5要素280はまた第1要素272へのフィードバック結合288をも有する。加算器284ではXOR演算が実行されるが、これは「排他的論理和」演算を意味する。XOR演算の真理値表は次の通りである。
【0046】
【表1】
Figure 0004510219
【0047】
XOR演算をフィードバック結合286と第2要素274の出力に適用することによって加算器284で得られた結果は第3要素276の入力として接続される。
図5に示されるフィードバック・シフトレジスタは、長さが25 −1=31であるm系列を生成する。当該フィードバック・シフトレジスタの内容の多項式形式はa4 4 +a3 3 +a2 2 +a1 x+a0 1であり、フィードバック・シフトレジスタの生成多項式はx5 +x2 +1である。図11は、各々異なった31の段階、または状態での図5のフィードバック・シフトレジスタの内容を示す。時点0ではフィードバック・シフトレジスタはガロア体乗算のニュートラル要素(neutral element)、すなわち単位状態を含むが、その値は00001である。図11では、フィードバック・シフトレジスタ中の要素は、第1要素が番号0、第2要素が1、第3が2、第4が3、及び第5が4になるように番号付けされている。
【0048】
時点1では、図5に関連して説明された接続規則により状態00010が生成される。1つの時点から次の時点に進みながら、フィードバック・シフトレジスタはそこに含まれる31状態全てを経由して進む。時点31でフィードバック・シフトレジスタは再び時点0と同じ状態を受信し、そのサイクルが再び開始される。説明されたフィードバック・シフトレジスタは、例えば長い拡散符号を生成するために使用される。例えば、I分岐(I branch)の241−1のゴールド符号が、41要素の2つのフィードバック・シフトレジスタによって生成されるが、この2つのフィードバック・シフトレジスタの生成多項式はx41+x3 +1とx41+x20+1であり、その出力の間では、やはり符号チップを得るためにXOR演算が行われる。
【0049】
図7は、符号生成器の線形フィードバック・シフトレジスタを、単位状態から既知のオフセットに位置する目標状態に更新する本発明の方法を示す。本方法の実現を示す図11及び図12を同時に検討しよう。
本方法の実現は最初のブロック300で開始され、既知のオフセットが得られる。図11の右から2番目の列は、単位状態UNIT STATEからの既知のオフセットOFFSETに、未知の目標状態TARGET STATEがあることを示す。既知のオフセットOFFSETは21である。
【0050】
ブロック302ではオフセット、すなわち図12に示されるOFFSETを示す二進オフセット数が生成されるが、その値は10101である。
ブロック304では二進オフセット数のビットの数を示すカウンタが生成されるが、図12に示される例ではカウンタは値5を受け取る。
ブロック306では、単位状態を使用して一時的状態が初期化される、すなわち、一時的状態の値が00001に設定される。
【0051】
次に、ブロック308ではカウンタ値が0より大きい限りブロック310、312、314の動作が反復される。別言すれば、ブロック308ではカウンタの値が0より大きいかが検査される。カウンタ値が0の値に達するとルーチンはブロック316に進むが、そうでない場合はブロック310に進む。
ブロック308では、以下さらに詳細に説明されるガロア体乗算を適用することで一時的状態がそれ自体によって乗算される。一時的状態は単位状態を使用することで初期化されているため、単位状態は第1サイクルで2の累乗に上げられており、ガロア体乗算のニュートラル要素が関連しているので、その値は変化しない。別言すれば、結果はやはり序数0を伴う単位状態である。図12の表の第2行がこれを表している。
【0052】
ブロック310では、カウンタによって示される二進オフセット数のビットの値が1である場合、一時的状態は現在の一時的状態から1状態先にシフトされる。カウンタ値は5であり、即ち二進オフセット数OFFSETでは、その数0101の右から5番目のビット、即ち一番左のビット1を示す。図12の表の第3行に従ってシフトが行われ(SHIFT)、一時的状態は状態00010にシフトされる。
【0053】
ブロック312ではカウンタ値が1だけ減らされ、カウンタ値4が得られる。
第2の反復では、内容00010を有する一時的状態がブロック310でそれ自体によって乗算され(SQUARE)、行4に示される状態00100が得られる。カウンタ値は4であるので、二進オフセット数OFFSETでは、その数10101の右から4番目のビット、すなわちビット0を示す。図12の表の第4行に従って、ブロック312ではシフトは行われない(NO SHIFT)。ブロック312ではカウンタ値が1だけ減らされ、カウンタ値3が得られる。
【0054】
第3の反復では、一時的状態は再び、ガロア体乗算を使用することでそれ自体によって乗算される。すなわち、ガロア体乗算SQUAREは行4の一時的状態00100から行6の新しい状態10000を生じる。カウンタは、二進オフセット数1001で、値1を有する第3ビットを示すので、行6の一時的状態は1状態先、すなわち行7に示される状態00101にシフトされる(SHIFT)。カウンタは値2を受け取る。
【0055】
第4の反復では、一時的状態は再び、ガロア体乗算を使用することでそれ自体によって乗算される。ガロア体乗算SQUAREによって乗算された行7の一時的状態は、行8に示される新しい一時的状態10001を生じる。カウンタは、二進オフセット数1011で、値0を有する第2ビットを示すので、表の行9に従って、一時的状態はシフトされない(NO SHIFT)。カウンタは値1を受け取る。
【0056】
第5の反復では、一時的状態は再び、ガロア体乗算を使用することでそれ自体によって乗算される。行8の一時的状態10001をガロア体乗算SQUAREによって乗算することで、行10の新しい一時的状態01100が生じる。カウンタは、二進オフセット数1010で、値1を有する第1ビットを示すので、行10の一時的状態は1状態先、すなわち行11の状態11000にシフトされる(SHIFT)。カウンタは値0を受け取る。
【0057】
カウンタが値0に達したので、反復はこれ以上行われない。従って処理は一時的状態を目標状態として設定することでブロック316で完了する。別言すれば、目標状態は、図12の表の行11に示される一時的状態11000である。
図7に関連して、既知の距離にある目標状態のフィードバック・シフトレジスタの状態を単位状態から生成する方法が説明された。図8に示される方法は、図7に示される方法を使用して、符号生成器の線形フィードバック・シフトレジスタを既知の現在の状態から既知のオフセットにある新しい状態に更新する。図11の表の一番右の列は、「単位状態」、「現在の状態」及び「新しい状態」という概念間の関係を示す。単位状態UNIT STATEの意味は図7の方法におけるものと同じである。現在の状態CURRENT STATEという術語は、フィードバック・シフトレジスタの現在の既知の状態を意味する。新しい状態NEW STATEという術語は、現在の状態から既知のオフセットOFFSETにある未知の状態を指す。
【0058】
2つの状態とそれらの序数がガロア体において既知である時、ガロア体乗算を適用することで状態を乗算することによって、序数の加算に一致する状態が得られることは周知である。本発明では、状態が以下説明される方法で単位状態に関して検査されることが必須である。
図11の一番右の列に示される例によれば、現在の状態CURRENT STATEの序数は9である。既知のオフセットOFFSETの長さは18である。図11で点線で書かれた矢印によって示されるように、現在の状態と新しい状態の間の既知のオフセットOFFSETは、単位状態と未知の状態TEMP STATEの間でシフトできる。その時未知の状態TEMP STATEは単位状態から既知のオフセットOFFSETにあるので、この例の未知の状態TEMP STATEは序数18を有する。現在の状態CURRENT STATEと未知の状態TEMP STATEの序数の加算は9+18=27を生じる。従って、状態27のフィードバック・シフトレジスタの要素の値を知る必要がある場合、状態9と18の間でガロア体乗算を行わなければならない。
【0059】
図8に示されるように、本方法はまずブロック350の現在の状態CURRENT STATEと、現在の状態CURRENT STATEからこれまで未知の新しい状態NEW STATEへの既知のオフセットOFFSETを作る。
図8のブロック352、354、356、358、360、362、364の意味は、図7のブロック302、304、306、308、310、312、314と同じである。従ってこれらはこの文脈では再び説明されない。当該ブロックが使用され、単位状態UNIT STATEから既知のオフセットOFFSETにある上記で説明された未知の状態TEMP STATEを生成する。ルーチンがブロック364からブロック366に進む時、一時的状態は図7で説明された値TEMP STATEを受け取る。
【0060】
ブロック366では、カウンタが値0を得た後、一時的状態TEMP STATEと現在の状態CURRENT STATEがガロア体乗算を適用することで乗算される。すなわち、この例では一時的状態TEMP STATEが状態18で、現在の状態CURRENT STATEが状態9である。ブロック368では、乗算の結果として得られた状態が新しい状態NEW STATE、すなわちこの例では状態27として設定される。
【0061】
図9は、ガロア体乗算を行う方法を示す。図13は、ブロック366で実行された図8の方法の演算、すなわち2つの既知の状態間のガロア体乗算がどのように行われるかを示す。第1状態は状態18で第2状態は状態9である。
第1状態と第2状態の間のガロア体乗算は次のように実行される。第1状態と第2状態がブロック380で得られる。ブロック382では、第1状態の最下位ビットに対応する要素の値が1である場合、ルーチンはブロック384に進み、そこでは第2状態が結果状態に配置されるが、そうでない場合、ルーチンはブロック386に進み、そこでは0が結果状態に配置される。図13では、第1状態は、要素値00011のフィードバック・シフトレジスタを有する18番目の状態THE 18TH STATEである。最下位ビットは一番右のビットであるので、18番目の状態THE 18TH STATEの最下位ビットに対応する要素の値は1であり、ルーチンはブロック384に進み、そこで9番目の状態が結果状態に配置される。すなわち、値11010を有する表の第1行である。
【0062】
ブロック392は、最下位ビットに対応する要素に続く要素から始まる、第1状態要素の各々についてブロック388及び390の操作を交互に反復するために使用される。これは、図13に示される例では、ブロック388、390の操作が4回実行されることを意味する。
ブロック388では、第2状態のフィードバック・シフトレジスタが1状態先、すなわち、図13に示される例では表の第2行の、値10001を有する状態10にシフトされる。
【0063】
ブロック390では、処理対象の第1状態要素の値が1である場合、結果状態と第2状態がガロア体乗算を適用することで乗算される。乗算の結果として得られた状態は結果状態に配置される。図13の例では、第1状態の右から2番目の要素の値は1である。前に述べたように、この場合出力状態と第2状態のガロア体加算が行われる。ガロア体加算は、XOR演算を適用することで実行される。値11010を有する結果状態と値10001を有する第2状態の間のXOR演算によって状態01011が提供され、これは結果状態として配置される。
【0064】
ステップ390及び392は図13に示されるように3回以上繰り返されるが、右から3番目、4番目、5番目の要素は全て0の値を有するので、それらは結果状態の値に何ら影響しない。その結果、結果状態の最終値は01011である。これは、27番目の状態のフィードバック・シフトレジスタの値が実際に01011であることを示す図11から検査できる。
【0065】
図5で説明されるガロア形線形フィードバック・シフトレジスタによって生成されるm系列は、図6に示されるフィボナッチ形線形フィードバック・シフトレジスタによっても生成できる。図6で使用される参照番号は図5のものと同じ意味を有するので、それらはこの文脈では繰り返されない。しかし、要素間の接続が異なっていることに注意すべきである。すなわち、第5要素280の出力は第4要素278の入力に接続され、第4要素278の出力は第3要素276の入力に接続され、第3要素276の出力は第2要素274の入力に接続され、第2要素274の出力は第1要素272の入力に接続される。フィードバック結合も異なっており、第1要素272からは加算器284へのフィードバック結合294が存在し、第3要素からは加算器284へのフィードバック結合294が存在し、加算器284の出力からは第5要素280へのフィードバック結合296が存在する。
【0066】
生成多項式x5 +x2 +1について表されるガロア形とフィボナッチ形の線形フィードバック・シフトレジスタは等価である。等価とは、初期状態の序数が同じであれば、フィードバック・シフトレジスタの出力290は結果として同じm系列を提供するという意味である。状態の序数は、単位状態を初期状態、すなわちこの例では状態00001として、当該状態と同じフィードバック・シフトレジスタの内容を提供するためにはフィードバック・シフトレジスタを何回反復しなければならないかを示す。
【0067】
乗算される状態の一方がフィボナッチ形状態で、もう一方がガロア形状態であり、得られる結果がフィボナッチ形状態であるような形でガロア体乗算を実行することもできる。すなわち、状態の序数は特に加算される、別言すれば、結果状態の序数は乗算すべき序数の加算である。すなわち、符号生成器のガロア形線形フィードバック・シフトレジスタを既知の現在の状態から既知のオフセットにある新しい状態に更新する図8に示される方法は、符号生成器のフィボナッチ形線形フィードバック・シフトレジスタを既知の現在の状態から既知のオフセットにある新しい状態に更新する方法に変換することができる。本発明は、ガロア形フィードバック・シフトレジスタを処理することでフィボナッチ形フィードバック・シフトレジスタを更新することも可能にするという利点を提供する。
【0068】
図14は、図5のガロア形線形フィードバック・シフトレジスタの状態と図6のフィボナッチ形線形フィードバック・シフトレジスタの状態の両方を示す。この実施形態の本質的な特徴は、どちらのフィードバック・シフトレジスタでも、序数1を有する状態は、ガロア体乗算におけるニュートラル要素、すなわち単位状態でなければならないということである。
【0069】
ガロア形とフィボナッチ形のフィードバック・シフトレジスタは異なった系列で、ガロア体要素を経由して進む、すなわち、フィボナッチ形では序数10に対応する状態は1001であり、ガロア形では1000であるが、どちらの形でも状態の一番右の要素、すなわち、フィードバック・シフトレジスタの出力は同じ、すなわち1であるので、それでもやはり手順は妥当である。
【0070】
図8に示される方法は、フィボナッチ形の既知の現在の状態と、現在の状態から既知のオフセットにある新しい状態とが得られるようなやり方でフィボナッチ形フィードバック・シフトレジスタを処理するために使用される。本方法はこの場合、図8と全く同様に実行される。すなわち、ブロック352、354、356、358、360、362及び364が実行される。適用される一時的状態がガロア形であることに注意のこと。最後に、カウンタが0の値に達すると、ブロック366でガロア形一時的状態とフィボナッチ形現在の状態の間でガロア体乗算が実行され、ブロック368で乗算の結果として得られた状態が、フィボナッチ形の新しい状態として設定される。
【0071】
ガロア形状態とフィボナッチ形状態の間のガロア体乗算は図10に示されるように実行され、図15の例は乗算を示す。図15の例で与えられた表中の序数が示すところによれば、ガロア形状態は18番目のガロア形状態であって値00011を有し、フィボナッチ形状態は9番目のフィボナッチ形状態であって、値00110を有する。
【0072】
ブロック332では、一時的状態はガロア形状態を適用することで初期化されるので、この例では値00011が一時的状態に配置される。
ブロック334では、一時的状態とフィボナッチ形状態の間のAND演算が行われる。すなわち、AND演算の結果として受信された全てのビットの間でXOR演算が実行され、XOR演算の結果として得られたビットが、一番右のまだ計算されていない要素として結果状態に配置される。AND演算とは、次の真理値表を有する「論理積」演算を指す。
【0073】
【表2】
Figure 0004510219
【0074】
この例では、図15の表の第1行のフィボナッチ状態と第2行の一時的状態の間でAND演算が実行されるが、演算の結果は表の第3行に示される状態00010である。AND演算の結果として得られた状態の全てのビットの間で上記で説明されたXOR演算が実行されるが、演算の結果は値1を有する1つのビットであり、それが一番右のまだ計算されていない要素として結果状態に配置される。結果状態は計算済みのビットを含んでいないので、XOR演算によって得られたビットは結果状態の右から1番目のビットとして配置される。
【0075】
ブロック336では試験が実行される。全ての結果状態要素が計算済みである場合、ルーチンはブロック340に進み、そこで乗算処理は終了するが、そうでない場合、ルーチンはブロック338に進み、そこで一時的状態が1状態先にシフトされ、第2処理ステップ、すなわちブロック334から乗算が継続される。
この例では第1結果状態要素だけが計算済みなので、ルーチンはブロック338に進み、そこで一時的状態が1状態先にシフトされる、すなわち序数18を有するガロア形状態が序数19を有するガロア形状態にシフトされる。次にブロック334の操作が実行され、その結果、結果状態の右から2番目のビットが得られる。次に、結果状態中の全てのビットが計算されるまで、すなわち、この例では結果状態について5つのビットが計算されるまで、ブロック336、338及び334の操作が反復される。次にルーチンはブロック340に進み、そこで乗算処理は終了する。こうして得られた結果は序数27と値10101を有するフィボナッチ形状態である。これは図14の表から検査され、正しいことが確認される。
【0076】
この例は本発明のソフトウェアによる実現を示す。拡散符号生成器はASIC(特定用途向け集積回路)としても実現できる。当業者には、説明された反復型ソリューション(iterative solution)、またはアンロール型ソリューション(unrolled solution)がASICによる実現で使用できることが明らかである。実現は独立した個別部品を使用する従来のHWによる実現としても実行できる。ソフトウェアだけに基づく実現も可能であるが、その場合、必要時に関連するチップの期間中に当該の拡散符号のチップの値を計算できるようにするため、十分に効率的なプロセッサが必要である。図4は、ソフトウェアによる実現で使用される部分を示す。すなわち、基本的に、符号生成器260Aは、ソフトウェア264、ソフトウェアを実行するプロセッサ266、及び必要なデータを保存するメモリ268を備えている。部分264、266、268は、ガロア形線形フィードバック・シフトレジスタの単位状態から目標状態への既知のオフセットを表す二進オフセット数を生成する図7の方法で必要な手段と、二進オフセット数のビットの数を示すカウンタを生成する手段と、単位状態によって一時的状態を初期化する手段と、カウンタの値が0より大きい限り以下の手段、(1)ガロア体乗算を適用することで一時的状態をそれ自体で乗算する手段、(2)カウンタによって示される二進オフセット数のビットの値が1である場合一時的状態を1状態先にシフトする手段、および(3)カウンタ値を1減らす手段の動作を反復する手段と、最後に、カウンタが0の値に達した時一時的状態を目標状態として設定する手段とを実現するために使用される。ガロア体乗算を行う図8による手段及び図9による手段と、さらにはフィボナッチ形線形フィードバック・シフトレジスタを処理する手段が対応して実現される。
【0077】
本発明は上記で添付の図面による例に関連して説明されたが、本発明はそれに制限されるものではなく、請求項で開示された本発明の概念の範囲内で様々に変化することが明らかである。
【図面の簡単な説明】
【図1】図1は、移動電話システムの例を示す図(その1)である。
【図2】図2は、移動電話システムの例を示す図(その2)である。
【図3】図3は、移動電話システムにおける送信機及び受信機構造の例を示す図である。
【図4】図4は、送信機及び受信機における拡散符号の処理を示す図である。
【図5】図5は、簡単なガロア形線形フィードバック・シフトレジスタの例を示す図である。
【図6】図6は、簡単なフィボナッチ形線形フィードバック・シフトレジスタの例を示す図である。
【図7】図7は、符号生成器の線形フィードバック・シフトレジスタを単位状態から目標状態に更新する方法を示す流れ図である。
【図8】図8は、符号生成器の線形フィードバック・シフトレジスタを現在の状態から新しい状態に更新する方法を示す流れ図である。
【図9】図9は、ガロア体乗算の例を示す流れ図である。
【図10】図10は、フィボナッチ形状態とガロア形状態の間のガロア体乗算を示す流れ図である。
【図11】図11は、図5のフィードバック・シフトレジスタの可能な状態を示す図である。
【図12】図12は、図7の方法を実現する例を示す図である。
【図13】図13は、図9で説明されたガロア形乗算を利用することで図8の方法を実現する例を示す図である。
【図14】図14は、図5のガロア形線形フィードバック・シフトレジスタと図6のフィボナッチ形線形フィードバック・シフトレジスタ両方の状態を示す図である。
【図15】図15は、フィボナッチ形及びガロア形の状態間のガロア形乗算の例を示す図である。
【符号の説明】
252A、252B…拡散符号
260A、260B…拡散符号生成器
262A、262B…制御データ
264…ソフトウェア
266…ソフトウェアを実行するプロセッサ
268…データを保持するメモリ

Claims (12)

  1. 符号生成器のガロア形線形フィードバック・シフトレジスタを、単位状態から既知のオフセットにある目標状態に更新する方法であって、
    前記オフセットを示す二進オフセット数を生成するステップ(302)と、
    前記二進オフセット数のビットの数を示すカウンタを生成するステップ(304)と、
    前記単位状態によって一時的状態を初期化するステップ(306)と、
    前記カウンタ値が0より大きい限り、前記一時的状態をそれ自体で乗算するためガロア体乗算を適用するステップ(310)、前記カウンタによって示される前記二進オフセット数のビットの値が1である場合前記一時的状態を前記現在の一時的状態から1状態先にシフトするステップ(312)、および前記カウンタ値を1減らすステップ(314)を反復するステップ(308)と、
    最後に、前記カウンタが0の値に達した時、前記一時的状態を前記目標状態として設定するステップ(316)と
    を有し、第1状態と第2状態の間の前記ガロア体乗算が、
    前記第1状態の最下位ビットに対応する要素の値が1である場合(382)、前記第2状態が結果状態に配置され(384)、そうでない場合0が前記結果状態に配置される(386)ステップと、
    前記最下位ビットに対応する要素に続く要素から開始して、前記第2状態のフィードバック・シフトレジスタを1状態先にシフトするステップ(388)、および処理すべき前記第1状態要素の値が1である場合、前記結果状態と前記第2状態の間でガロア体加算を行い、前記加算の結果として得られた状態を前記結果状態として配置するステップ(390)を各第1状態要素に対して順に反復するステップ(392)と
    によって行われることを特徴とする方法。
  2. 符号生成器のガロア形線形フィードバック・シフトレジスタを、既知の現在の状態から既知のオフセットにある新しい状態に更新する方法であって、
    前記オフセットを示す二進オフセット数を生成するステップ(352)と、
    前記二進オフセット数中のビットの数を示すカウンタを生成するステップ(354)と、
    単位状態によって一時的状態を初期化するステップ(356)と、
    前記カウンタの値が0より大きい限り、前記一時的状態をそれ自体で乗算するためガロア体乗算を適用するステップ(306)、前記カウンタによって示される前記二進オフセット数のビットの値が1である場合前記一時的状態を前記現在の一時的状態から1状態先にシフトするステップ(362)、および前記カウンタ値を1だけ減らすステップ(364)を反復するステップ(358)と、
    最後に、前記カウンタが0の値に達した時、前記一時的状態と前記現在の状態の間でガロア体乗算を行うステップ(366)と、前記乗算の結果として得られた状態を前記新しい状態として設定するステップ(368)と
    を有し、第1状態と第2状態の間の前記ガロア体乗算が、
    前記第1状態の最下位ビットに対応する要素の値が1である場合(382)、前記第2状態が結果状態に配置され(384)、そうでない場合0が前記結果状態に配置される(386)ステップと、
    前記最下位ビットに対応する要素に続く要素から開始して、前記第2状態のフィードバック・シフトレジスタを1状態先にシフトするステップ(388)、および処理すべき前記第1状態要素の値が1である場合、前記結果状態と前記第2状態の間でガロア体加算を行い、前記加算の結果として得られた状態を前記結果状態として配置するステップ(390)を各第1状態要素に対して順に反復するステップ(392)と
    によって行われることを特徴とする方法。
  3. 符号生成器のフィボナッチ形線形フィードバック・シフトレジスタを、既知の現在の状態から既知のオフセットにある新しい状態に更新する方法であって、
    前記オフセットを示す二進オフセット数を生成するステップ(352)と、
    前記二進オフセット数中のビットの数を示すカウンタを生成するステップ(354)と、
    単位状態によってガロア形一時的状態を初期化するステップ(356)と、
    前記カウンタの値が0より大きい限り、前記一時的状態をそれ自体で乗算するためガロア体乗算を適用するステップ(360)、前記カウンタによって示される前記二進オフセット数のビットの値が1である場合前記一時的状態を前記現在の一時的状態から1状態先にシフトするステップ(362)、および前記カウンタ値を1だけ減らすステップ(362)を反復するステップ(358)と、
    最後に、前記カウンタが0の値に達した時、前記ガロア形一時的状態と前記フィボナッチ形現在の状態の間でガロア体乗算を行うステップ(366)と、前記乗算の結果として得られた状態を前記フィボナッチ形の前記新しい状態として設定するステップ(368)と
    を特徴とする方法。
  4. 前記ガロア体加算がXOR演算を適用することで実行されることを特徴とする、請求項1または2に記載の方法。
  5. 前記ガロア形状態と前記フィボナッチ形状態の間の前記ガロア体乗算が、
    前記ガロア形状態によって前記一時的状態を初期化するステップ(332)と、
    前記一時的状態と前記フィボナッチ状態の間でAND演算を行い、前記AND演算の結果として得られた全てのビットの間でXOR演算を行い、前記XOR演算の結果として得られたビットを一番右の、まだ計算されていない要素として前記結果状態に配置するステップ(334)と、
    前記結果状態中の全ての要素が計算済みである場合(336)、前記乗算処理を完了し(340)、そうでない場合前記一時的状態を次のガロア形状態にシフトし(338)、前記第2処理ステップ(334)から前記乗算を継続するステップと
    によって行われることを特徴とする、請求項3に記載の方法。
  6. 前記線形フィードバック・シフトレジスタによって生成される符号が、符号分割多元接続を利用する無線システムの符号であることを特徴とする、請求項1、請求項2または請求項3の何れか1項に記載の方法。
  7. 無線システムにおける符号生成器であって、
    符号生成器のガロア形線形フィードバック・シフトレジスタの単位状態から目標状態への既知のオフセットを示す二進オフセット数を生成する手段(264、266、268)と、
    前記二進オフセット数のビットの数を示すカウンタを生成する手段(264、266、268)と、
    前記単位状態によって一時的状態を初期化する手段(264、266、268)と、
    前記カウンタ値が0より大きい限り以下の手段、前記一時的状態をそれ自体で乗算するためガロア体乗算を適用する手段(264、266、268)、前記カウンタによって示される前記二進オフセット数のビットの値が1である場合前記一時的状態を前記現在の一時的状態から1状態先にシフトする手段(264、266、268)、および前記カウンタ値を1だけ減らす手段(264、266、268)の動作を反復する手段(264、266、268)と、
    最後に、前記カウンタが0の値に達した時前記一時的状態を前記目標状態として設定する手段(264、266、268)と
    を備え、第1状態と第2状態の間で前記ガロア体乗算を行う前記手段(264、266、268)が、
    前記第1状態の最下位ビットに対応する要素の値が1である場合前記第2状態を結果状態に配置し、そうでない場合0を前記結果状態に配置する手段(264、266、268)と、
    前記最下位ビットに対応する要素に続く要素から開始される各第1状態要素について以下の手段、前記第2状態のフィードバック・シフトレジスタを1状態先にシフトする手段(264、266、268)、および処理すべき前記第1状態要素の値が1である場合、前記結果状態と前記第2状態の間でガロア体加算を行い、前記加算の結果として得られた状態を前記結果状態に配置する手段(264、266、268)の動作を反復する手段(264、266、268)と、
    を含む
    ことを特徴とする符号生成器。
  8. 無線システムにおける符号生成器であって、
    ガロア形線形フィードバック・シフトレジスタの既知の現在の状態から新しい状態への既知のオフセットを示す二進オフセット数を生成する手段(264、266、268)と、
    前記二進オフセット数のビットの数を示すカウンタを生成する手段(264、266、268)と、
    単位状態によって一時的状態を初期化する手段(264、266、268)と、
    前記カウンタ値が0より大きい限り以下の手段、前記一時的状態をそれ自体で乗算するためガロア体乗算を適用する手段(264、266、268)、前記カウンタによって示される前記二進オフセット数のビットの値が1である場合前記一時的状態を前記現在の一時的状態から1状態先にシフトする手段(264、266、268)、および前記カウンタ値を1だけ減らす手段(264、266、268)の動作を反復する手段(264、266、268)と、
    前記カウンタが0の値に達した時、前記ガロア体乗算を適用することで前記一時的状態と前記現在の状態を乗算し、前記乗算の結果として得られた状態を前記新しい状態として設定する手段(264、266、268)と
    を備え、第1状態と第2状態の間で前記ガロア体乗算を行う前記手段(264、266、268)が、
    前記第1状態の最下位ビットに対応する要素の値が1である場合前記第2状態を結果状態に配置し、そうでない場合0を前記結果状態に配置する手段(264、266、268)と、
    前記最下位ビットに対応する要素に続く要素から開始される各第1状態要素について以下の手段、前記第2状態のフィードバック・シフトレジスタを1状態先にシフトする手段(264、266、268)、および処理すべき前記第1状態要素の値が1である場合、前記結果状態と前記第2状態の間でガロア体加算を行い、前記加算の結果として得られた状態を前記結果状態に配置する手段(264、266、268)の動作を反復する手段(264、266、268)と、
    を含むことを特徴とする符号生成器。
  9. 無線システムにおける符号生成器であって、
    フィボナッチ形線形フィードバック・シフトレジスタの既知の現在の状態から新しい状態への既知のオフセットを示す二進オフセット数を生成する手段(264、266、268)と、
    前記二進オフセット数のビットの数を示すカウンタを生成する手段(264、266、268)と、
    単位状態によってガロア形一時的状態を初期化する手段(264、266、268)と、
    前記カウンタ値が0より大きい限り以下の手段、前記一時的状態をそれ自体で乗算するためガロア体乗算を適用する手段(264、266、268)、前記カウンタによって示される前記二進オフセット数の値が1である場合前記一時的状態を前記現在の一時的状態から1状態先にシフトする手段(264、266、268)、および前記カウンタ値を1だけ減らす手段(264、266、268)の動作を反復する手段(264、266、268)と、
    前記カウンタが0の値に達した時、前記ガロア体乗算を適用することで前記ガロア形一時的状態と前記フィボナッチ形現在の状態を乗算し、前記乗算の結果として得られた状態を前記フィボナッチ形の前記新しい状態として設定する手段(264、266、268)と
    を備えることを特徴とする符号生成器。
  10. ガロア体加算を行う前記手段(264、266、268)がXOR演算を使用することを特徴とする、請求項7または8に記載の符号生成器。
  11. ガロア形状態とフィボナッチ形状態の間でガロア体乗算を行う前記手段(264、266、268)が、
    ガロア形状態によって一時的状態を初期化する手段(264、266、268)と、
    前記一時的状態と前記フィボナッチ形状態の間でAND演算を行い、前記AND演算の結果として得られた全てのビットの間でXOR演算を行い、前記XOR演算の結果として得られたビットを一番右の、まだ計算されていない要素として前記結果状態に配置する計算手段(264、266、268)と、
    全ての結果状態要素が計算済みである場合前記乗算処理(336)を完了する手段(264、266、268)と、
    全ての結果状態要素が計算済みでない場合、前記一時的状態を次のガロア形状態にシフトし、前記計算手段(264、266、268)を利用することで前記乗算処理を継続する手段(264、266、268)と
    を備えることを特徴とする、請求項に記載の符号生成器。
  12. 前記無線システムが、符号分割多元接続を利用する無線システムであることを特徴とする、請求項、請求項または請求項の何れか1項に記載の符号生成器。
JP2000101174A 1999-05-10 2000-03-31 符号生成器の線形フィードバック・シフトレジスタを更新する方法と符号生成器 Expired - Fee Related JP4510219B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI991073A FI107094B (fi) 1999-05-10 1999-05-10 Menetelmä päivittää koodigeneraattorin lineaarinen palautesiirtorekisteri
FI991073 1999-05-10

Publications (3)

Publication Number Publication Date
JP2000332728A JP2000332728A (ja) 2000-11-30
JP2000332728A5 JP2000332728A5 (ja) 2007-05-24
JP4510219B2 true JP4510219B2 (ja) 2010-07-21

Family

ID=8554638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101174A Expired - Fee Related JP4510219B2 (ja) 1999-05-10 2000-03-31 符号生成器の線形フィードバック・シフトレジスタを更新する方法と符号生成器

Country Status (6)

Country Link
US (1) US6665692B1 (ja)
EP (1) EP1055996B1 (ja)
JP (1) JP4510219B2 (ja)
CN (1) CN1175578C (ja)
DE (1) DE60038846D1 (ja)
FI (1) FI107094B (ja)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI107094B (fi) * 1999-05-10 2001-05-31 Nokia Mobile Phones Ltd Menetelmä päivittää koodigeneraattorin lineaarinen palautesiirtorekisteri
KR100424538B1 (ko) * 2001-05-29 2004-03-27 엘지전자 주식회사 이동통신시스템에서의 스크램블링 코드 생성 장치 및 방법
US7177891B2 (en) * 2002-10-09 2007-02-13 Analog Devices, Inc. Compact Galois field multiplier engine
US9298423B2 (en) 2012-07-24 2016-03-29 Ternarylogic Llc Methods and systems for determining characteristics of a sequence of n-state symbols
US8374289B2 (en) * 2004-02-25 2013-02-12 Ternarylogic Llc Generation and detection of non-binary digital sequences
US8364977B2 (en) * 2004-02-25 2013-01-29 Ternarylogic Llc Methods and systems for processing of n-state symbols with XOR and EQUALITY binary functions
DE102005005695B4 (de) * 2005-02-08 2019-03-28 Siemens Aktiengesellschaft Codefolge und Funkstation
DE102005005696B4 (de) * 2005-02-08 2014-05-28 Siemens Aktiengesellschaft Verfahren und Funkstation zur Übertragung von Daten
DE102005006893B4 (de) * 2005-02-15 2011-11-24 Siemens Ag Funkstation und Verfahren zur Übertragung von Daten
US7668893B2 (en) * 2005-08-30 2010-02-23 Micron Technology, Inc. Data generator having linear feedback shift registers for generating data pattern in forward and reverse orders
US20070168406A1 (en) * 2005-10-18 2007-07-19 Meyer David R Complementary linear feedback shift registers for generating advance timing masks
KR100871221B1 (ko) * 2005-11-11 2008-12-01 삼성전자주식회사 선형 궤환 시프트 레지스터를 이용하는 통신 시스템에서부호 생성 방법 및 장치
US7487194B2 (en) * 2006-04-05 2009-02-03 Peter Lablans Binary and n-valued LFSR and LFCSR based scramblers, descramblers, sequence generators and detectors in Galois configuration
JP4806341B2 (ja) * 2006-12-20 2011-11-02 日本無線株式会社 符号生成装置及びスペクトラム拡散信号受信システム
DE102007002230A1 (de) * 2007-01-10 2008-07-17 Benecke-Kaliko Ag Thermoplastische Folie
US8312551B2 (en) 2007-02-15 2012-11-13 Harris Corporation Low level sequence as an anti-tamper Mechanism
US8345873B2 (en) * 2007-04-04 2013-01-01 Ternarylogic Llc Methods and systems for N-state signal processing with binary devices
US8611530B2 (en) 2007-05-22 2013-12-17 Harris Corporation Encryption via induced unweighted errors
US7995757B2 (en) * 2007-05-31 2011-08-09 Harris Corporation Closed galois field combination
US7995749B2 (en) * 2007-10-30 2011-08-09 Harris Corporation Cryptographic system configured for extending a repetition period of a random sequence
US8180055B2 (en) 2008-02-05 2012-05-15 Harris Corporation Cryptographic system incorporating a digitally generated chaotic numerical sequence
US8363830B2 (en) 2008-02-07 2013-01-29 Harris Corporation Cryptographic system configured to perform a mixed radix conversion with a priori defined statistical artifacts
US8040937B2 (en) * 2008-03-26 2011-10-18 Harris Corporation Selective noise cancellation of a spread spectrum signal
US8139764B2 (en) 2008-05-06 2012-03-20 Harris Corporation Closed galois field cryptographic system
US8320557B2 (en) * 2008-05-08 2012-11-27 Harris Corporation Cryptographic system including a mixed radix number generator with chosen statistical artifacts
US8145692B2 (en) 2008-05-29 2012-03-27 Harris Corporation Digital generation of an accelerated or decelerated chaotic numerical sequence
US8064552B2 (en) * 2008-06-02 2011-11-22 Harris Corporation Adaptive correlation
US8068571B2 (en) * 2008-06-12 2011-11-29 Harris Corporation Featureless coherent chaotic amplitude modulation
US8325702B2 (en) 2008-08-29 2012-12-04 Harris Corporation Multi-tier ad-hoc network in which at least two types of non-interfering waveforms are communicated during a timeslot
US8165065B2 (en) 2008-10-09 2012-04-24 Harris Corporation Ad-hoc network acquisition using chaotic sequence spread waveform
JP5267038B2 (ja) * 2008-10-20 2013-08-21 富士通株式会社 線形帰還シフト演算装置、通信装置、マイクロプロセッサ、及び線形帰還シフト演算装置におけるデータ出力方法
US8406276B2 (en) 2008-12-29 2013-03-26 Harris Corporation Communications system employing orthogonal chaotic spreading codes
US8351484B2 (en) 2008-12-29 2013-01-08 Harris Corporation Communications system employing chaotic spreading codes with static offsets
US8457077B2 (en) 2009-03-03 2013-06-04 Harris Corporation Communications system employing orthogonal chaotic spreading codes
WO2010113453A1 (ja) * 2009-04-02 2010-10-07 パナソニック株式会社 無線送受信回路、無線通信装置、及び無線送受信方法
US8428102B2 (en) 2009-06-08 2013-04-23 Harris Corporation Continuous time chaos dithering
US8509284B2 (en) 2009-06-08 2013-08-13 Harris Corporation Symbol duration dithering for secured chaotic communications
US8428103B2 (en) 2009-06-10 2013-04-23 Harris Corporation Discrete time chaos dithering
US8369376B2 (en) 2009-07-01 2013-02-05 Harris Corporation Bit error rate reduction in chaotic communications
US8379689B2 (en) 2009-07-01 2013-02-19 Harris Corporation Anti-jam communications having selectively variable peak-to-average power ratio including a chaotic constant amplitude zero autocorrelation waveform
US8340295B2 (en) 2009-07-01 2012-12-25 Harris Corporation High-speed cryptographic system using chaotic sequences
US8363700B2 (en) 2009-07-01 2013-01-29 Harris Corporation Rake receiver for spread spectrum chaotic communications systems
US8385385B2 (en) * 2009-07-01 2013-02-26 Harris Corporation Permission-based secure multiple access communication systems
US8428104B2 (en) 2009-07-01 2013-04-23 Harris Corporation Permission-based multiple access communications systems
US8406352B2 (en) * 2009-07-01 2013-03-26 Harris Corporation Symbol estimation for chaotic spread spectrum signal
US8848909B2 (en) 2009-07-22 2014-09-30 Harris Corporation Permission-based TDMA chaotic communication systems
US8369377B2 (en) * 2009-07-22 2013-02-05 Harris Corporation Adaptive link communications using adaptive chaotic spread waveform
US8345725B2 (en) 2010-03-11 2013-01-01 Harris Corporation Hidden Markov Model detection for spread spectrum waveforms
US8405925B2 (en) * 2011-06-01 2013-03-26 International Business Machines Corporation Track-dependent data randomization mitigating false VFO detection
US9448959B2 (en) * 2012-10-05 2016-09-20 Analog Devices, Inc. Two-wire communication protocol engine
CN103378917B (zh) * 2012-04-17 2016-01-20 中兴通讯股份有限公司 扰码的生成方法、装置和扰码的处理装置
US10084593B2 (en) * 2015-01-20 2018-09-25 Ternarylogic Llc Apparatus for unconventional non-linear feedback shift registers (NLFSRs)
US9356614B1 (en) * 2015-01-23 2016-05-31 Qualcomm Incorporated Thermometer code converter
TWI727507B (zh) * 2019-11-19 2021-05-11 瑞昱半導體股份有限公司 信號處理裝置與信號處理方法
CN112953562B (zh) * 2019-11-26 2024-02-09 瑞昱半导体股份有限公司 信号处理装置与信号处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265276A (ja) * 1998-03-18 1999-09-28 Fujitsu Ltd M系列の位相シフト係数算出方式
US6038577A (en) * 1998-01-09 2000-03-14 Dspc Israel Ltd. Efficient way to produce a delayed version of a maximum length sequence using a division circuit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197746A (ja) * 1984-10-15 1986-05-16 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション 乱数発生装置
JP2845308B2 (ja) * 1993-04-02 1999-01-13 株式会社アドバンテスト 並列疑似ランダムパターン発生器
US5491718A (en) * 1994-01-05 1996-02-13 Nokia Mobile Phones Ltd. CDMA radiotelephone having optimized slotted mode and long code operation
JPH0818550A (ja) * 1994-04-27 1996-01-19 N T T Ido Tsushinmo Kk 符号系列発生器
EP0770289B1 (en) 1995-05-12 2002-11-27 Koninklijke Philips Electronics N.V. A direct-sequence spread spectrum communication system, a primary radio station, and a secondary radio station
US5835528A (en) 1997-07-08 1998-11-10 Texas Instruments Incorporated Method for fast determination of puesdo-noise code generator state
FI107094B (fi) * 1999-05-10 2001-05-31 Nokia Mobile Phones Ltd Menetelmä päivittää koodigeneraattorin lineaarinen palautesiirtorekisteri

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038577A (en) * 1998-01-09 2000-03-14 Dspc Israel Ltd. Efficient way to produce a delayed version of a maximum length sequence using a division circuit
JPH11265276A (ja) * 1998-03-18 1999-09-28 Fujitsu Ltd M系列の位相シフト係数算出方式

Also Published As

Publication number Publication date
US6665692B1 (en) 2003-12-16
EP1055996A3 (en) 2005-06-01
FI107094B (fi) 2001-05-31
CN1273460A (zh) 2000-11-15
CN1175578C (zh) 2004-11-10
DE60038846D1 (de) 2008-06-26
JP2000332728A (ja) 2000-11-30
EP1055996B1 (en) 2008-05-14
EP1055996A2 (en) 2000-11-29
FI991073A0 (fi) 1999-05-10
FI991073A (fi) 2000-11-11

Similar Documents

Publication Publication Date Title
JP4510219B2 (ja) 符号生成器の線形フィードバック・シフトレジスタを更新する方法と符号生成器
KR100845166B1 (ko) 확산 스펙트럼 통신 시스템용 pn 발생기
JP3365513B2 (ja) 可変速度伝送方法および可変速度伝送装置
EP1858171B1 (en) Method and apparatus for reducing peak-to-average ratio in a CDMA communication system
JP4557859B2 (ja) 周波数分割多重送受信装置及び送受信方法
JP2001523410A (ja) 固定レート転送媒体内の転送可変レートデータを処理する装置と方法
EP0854586B1 (en) Quadrature spread spectrum signal demodulation
JPH11275059A (ja) 可変速度伝送方法および可変速度伝送装置
US6580747B1 (en) Method and generator for generating orthogonal spreading code in CDMA radio system
EP1163750B1 (en) Method for updating linear feedback shift register of code generator
KR100347501B1 (ko) 최적화 레이트-호환가능 터보 엔코딩
KR100470010B1 (ko) 상이한 인코딩 레이트들을 사용하는 셀루러 시스템간의 소프트 핸드오프 방법 및 장치
JP2004515093A (ja) 通信システムにおいて信号を効率的にウォルシュカバリングおよび加算するための方法および装置
AU2002213658B2 (en) A method of updating a shift register
JP2004511164A (ja) 通信システムの方法および装置
US7613158B2 (en) Method of quadrature spreading
JPH09116462A (ja) スペクトル拡散方式通信装置
Friel et al. Comparison of Convolutional Coding with Direct Spreading for IS-95 CDMA System
JPH06252879A (ja) M−アレイ符号分割多元接続変復調装置
Ramdat Software Communications Architecture (SCA) compliant software radio design for Interim Standard 95B (IS-95B) transceiver
EP1886410A1 (en) Encoding method, transmitter, network element and communication terminal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees