JP4501845B2 - 鋳造解析装置及び鋳造解析方法 - Google Patents

鋳造解析装置及び鋳造解析方法 Download PDF

Info

Publication number
JP4501845B2
JP4501845B2 JP2005321361A JP2005321361A JP4501845B2 JP 4501845 B2 JP4501845 B2 JP 4501845B2 JP 2005321361 A JP2005321361 A JP 2005321361A JP 2005321361 A JP2005321361 A JP 2005321361A JP 4501845 B2 JP4501845 B2 JP 4501845B2
Authority
JP
Japan
Prior art keywords
molten metal
pressure
injection device
casting
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005321361A
Other languages
English (en)
Other versions
JP2007125593A (ja
Inventor
浩之 生田
詔一 土屋
健二 羽座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005321361A priority Critical patent/JP4501845B2/ja
Publication of JP2007125593A publication Critical patent/JP2007125593A/ja
Application granted granted Critical
Publication of JP4501845B2 publication Critical patent/JP4501845B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、射出装置及び金型により形成される溶湯の流動可能な空間内において射出装置から射出された溶湯の湯流れ停止位置をコンピュータ解析し出力する鋳造解析装置及び鋳造解析方法に係り、特に鋳造装置の装置能力を考慮して湯流れ停止位置を精度良く解析し、この空間内における湯回り不良による溶湯の未充填部を正確に予測することができる鋳造解析装置及び鋳造解析方法に関する。
金型に形成されたキャビティ内に溶湯を射出、充填する際に、この射出された溶湯の湯先が、キャビティの末端に到達する前に凝固することがある。そしてこの溶湯の凝固により、たとえ射出装置により溶湯を加圧しても、それ以上溶湯が流動せずにキャビティ内に溶湯の未充填部を形成する、いわゆる湯回り不良が発生することがある。この湯回り不良は、金型及び射出装置により形成される溶湯の流動可能な空間(溶湯の流動空間)の形状及び鋳造条件に起因するものであり、所望の製品に合わせて、湯回り不良が発生しないように、この溶湯の流動空間を決定し最適な形状の金型を設計し、最適な鋳造条件で鋳造することは重要な課題である。
そこで、このような課題を鑑みて、従来から実際の鋳造時における溶湯の挙動を再現すべくCAE(Computer Aided Engineering)により数値解析(鋳造解析)を行い、この解析結果を反映させて、キャビティ内の湯回り不良が発生しないように最適な金型を設計し、鋳造することが一般的に行われている。このような鋳造解析は、まず、鋳造時における溶湯の流動空間を微小要素に分割してモデル化し、差分法、有限要素法などの数値解析手法を用いて、解析モデルに初期条件、境界条件等を与え、これらの条件に基づいて連続の式、ナビエ・ストークスの式などの流体の式から各要素における流動する溶湯の速度及び圧力を演算し、さらに熱伝導方程式から流動する溶湯の温度、固相率を演算することにより、キャビティ内における溶湯の停止位置を解析している。
その一例として、型内に溶融金属を充填させて成形品を生産するプロセスにおける流動凝固解析方法において、前記成形品の形状および成形に使用する型の形状から微小要素に分割された解析形状モデルを作成し、このモデルに鋳造条件として射出装置からの射出速度を初期条件として与えることにより微小要素内の溶湯金属の速度、圧力、温度、固相率を所定の時間間隔毎に繰返し演算し、湯先における溶融金属の固相率が100%の状態となる場合には、これ以上溶湯が流動ぜず湯回り不良が発生したと判定する流動凝固解析方法が提案されている(特許文献1参照)。
特開2000−271734号公報
しかし、このような解析方法を用いて解析を行った結果、たとえ、キャビティ内において溶湯の未充填部なく良品の鋳造品が鋳造されるような条件が得られたとしても、この条件に基づいて実際の鋳造を行うと、キャビティ内の末端部に湯回り不良が発生することがあり、解析結果により得られた湯流れ停止位置と実際の湯流れ停止位置とが相違することがあった。
そして、鋳造時の湯流れを精度良く解析するために、溶湯の流動速度場と圧力場の演算に、ナビエ・ストークスの法則、ダルシー則、オリジナルのモデル式などの様々な構成式を適用して湯流れ停止位置を解析したとしても、前記の如き湯流れ停止位置の相違は画期的に解消されるものではなかった。
本発明は、上述の如き問題点を解消するためになされたものであって、その目的とするところは、鋳造時における溶湯の湯流れ停止位置を精度良く解析し、キャビティ内における湯流れ不良による溶湯の未充填部を正確に予測することができる鋳造解析装置及び鋳造解析方法を提供することにある。
上述の目的を達成すべく、本発明者らは、鋭意検討を重ねた結果、実際の鋳造においてキャビティ内に溶湯の未充填部が発生するにも拘わらず、解析上ではキャビティ内全てに溶湯が充填されてしまうのは、湯流れの解析に用いるモデル式の問題ではなく、実際の射出装置の装置能力を加味して解析を行っていないことによるものであると考えた。
すなわち、これまでの射出装置を用いて鋳造を行う鋳造解析において、射出装置から解析モデルに与える条件としては、射出速度のみであり、射出装置の加圧能力については、解析条件として加味されていなかった。具体的には、実際の鋳造においては、溶湯がこの流動空間内を流動するために必要な加圧力(溶湯の流動抵抗圧力)が射出装置の加圧能力(最大加圧力)以上である場合には、射出装置はそれ以上溶湯を流動させることができないという制限が課せられるものであり、発明者らは、この射出装置の加圧能力を鋳造解析に反映させることにより、精度良くキャビティ内の溶湯の湯流れ停止位置を解析することができるとの知見を得た。
本発明は、本発明者らが得た上記の新たな知見に基づくものであり、本発明に係る鋳造解析方法は射出装置及び金型により形成される溶湯の流動可能な空間の形状を設定し、前記射出装置が所定の射出速度条件で射出する際の前記空間内を流動する溶湯の圧力を少なくとも演算することにより、前記空間において射出装置から射出された溶湯の湯流れ停止位置をコンピュータ解析する鋳造解析方法であって、該鋳造解析方法は、前記演算において、前記射出装置が射出可能な最大加圧力と、前記演算された溶湯の圧力のうち前記射出装置に作用する前記溶湯の流動抵抗圧力とを、比較し、該流動抵抗圧力が前記最大加圧力以上であると判定した場合には前記演算を終了し、該演算結果に基づいて前記空間内の溶湯の湯流れ停止位置を解析する処理をさらに含むことを特徴としている。
尚、本発明に係る「溶湯の流動可能な空間」とは、金型により形成されたキャビティ及び方案部、射出装置内(射出スリーブ内)の溶湯が充填される空間、などの溶湯が流れる可能性のある閉空間をいう。また、本発明に係る「射出装置が射出可能な最大加圧力」は、射出装置が溶湯を加圧することができる最大推力を、射出装置を構成するプランジャが溶湯に接触する部分の面積(正確には、射出方向に対するプランジャの断面積)で除算した圧力であり、具体的には射出装置の射出能力に依存した値である。たとえば、実際に鋳造において射出装置に油圧ユニットが使用されている場合には、この油圧ユニットを構成する油圧ポンプの能力に依存した値である。また、本発明に係る「流動抵抗圧力」は、解析において演算される、プランジャの射出方向前方にある溶湯を流動させるのに必要な圧力であり、解析において、プランジャを所定の射出速度で移動させたときに、このプランジャに作用する溶湯の圧力に相当する。
このような圧力の判定によって演算を終了させる処理は、キャビティを含む流動空間内の湯先の凝固率が低くキャビティ末端部に向って溶湯が流動可能な状態であっても、油圧ユニットの加圧能力の不足により、プランジャを射出方向に溶湯を流動させることができない実機の現象に一致しているので、本発明の如きこのような構成にすることにより、鋳造時における溶湯の湯流れ停止位置を精度良く解析し、キャビティを含む流動空間内における湯流れ不良による溶湯の未充填部を正確に予測することができる。そして、この予測に基づいて、湯流れ不良が発生しないように、CAEにより最適な金型の設計を行うことが可能となる。
また、別の態様としては、この演算により求めた流動抵抗圧力から、射出装置により溶湯が流動し得る必要加圧力を求めることも可能であり、この場合には、この必要加圧力を有する射出装置を実際の鋳造時に選定して鋳造を行えば、上記の如く金型の設計変更等を行うことなく、好適な鋳造を行うことができる。
また本発明に係る鋳造解析では、前記最大加圧力として、前記射出装置の射出速度に依存した最大加圧力を用いることがより好ましい。すなわち、実機における射出装置の最大加圧力は、射出速度によって変化する(例えば、油圧ポンプの場合には、射出速度が大きくなるに従ってポンプ吐出量が増加し、この結果、ポンプ圧力の減少により射出装置の最大加圧力は減少する)ので、このような値を用いることで、より精度よく湯流れ停止位置を解析することができる。
さらに、この発明の鋳造解析方法では、前記流動抵抗圧力として、前記射出装置の射出方向に作用する溶湯の圧力の分布を演算し、該演算した圧力分布の圧力を平均した値を用いることが好ましい。本発明に係る「射出装置に作用する溶湯の圧力の分布」とは、具体的には、溶湯により射出装置を構成するプランジャの射出方向前方の端面に作用する圧力の分布である。そして、この圧力分布を求めるにあたっては、例えば、射出装置及び金型により形成される溶湯の流動可能な空間を、複数の要素に分割し、鋳造時における該各要素内の溶湯の圧力を演算し、この各要素の圧力のうち、プランジャに作用する射出方向の各要素の圧力を演算することにより得ることができる。このような流動抵抗圧力を用いることにより、簡易的に正確な溶湯の湯流れを演算することができる。
さらに、上記の鋳造解析方法を効果的に実施することのできる装置として、本発明は、射出装置及び金型により形成される溶湯の流動可能な空間の形状を設定し、前記射出装置が所定の射出速度条件で射出する際の前記空間内を流動する溶湯の圧力を少なくとも演算することにより、前記空間内において射出装置から射出された溶湯の湯流れ停止位置をコンピュータ解析する鋳造解析装置であって、前記鋳造解析装置は、前記空間内を流動する溶湯の圧力を少なくとも演算する演算手段を備え、該演算手段は、前記射出装置が射出可能な最大加圧力と、前記演算された溶湯の圧力のうち前記射出装置に作用する前記溶湯の流動抵抗圧力とを、比較し、該流動抵抗圧力が前記最大加圧力以上であると判定した場合には前記演算手段の演算を終了させる圧力判定手段をさらに備えることを特徴とする鋳造解析装置をも開示する。このような装置構成にすることにより、鋳造時における溶湯の湯流れ停止位置を精度良く解析し、キャビティを含む流動空間内における湯流れ不良による溶湯の未充填部を正確に予測することができる。
さらに圧力判定手段は、前記最大加圧力に、前記射出装置の射出速度に依存した最大加圧力を用いて判定することがより好ましく、この前記圧力判定手段は、前記射出装置の射出方向に作用する溶湯の圧力の分布を演算し、該圧力の分布の平均値を、流動抵抗圧力として判定するものであることがより好ましく、このような構成とすることにより、湯流れ停止位置の精度をさらに向上させることができる。
本発明による鋳造解析方法及びその装置によれば、鋳造時における溶湯の湯流れ停止位置を精度良く解析し、キャビティを含む溶湯の流動可能な空間内における湯流れ不良による溶湯の未充填部を正確に予測することができる。そして、この予測の結果に基づいて、最適な金型の形状及び最適な鋳造条件を得ることができる。
以下に添付の図面を参照して、本発明に鋳造解析装置及びその方法の一実施形態を詳細に説明する。
図1は、本発明に係る鋳造解析方法を行うための解析モデルの一例を説明するための図であり、図2は、図1の解析モデルの解析を行うための装置構成を説明するための図であり、図3は、図2の鋳造解析装置の一例を示した解析ブロック図であり、図4は、図1の解析モデルのA部の拡大図であり、図5は、射出装置の最大加圧力を説明するための図である。
図1に示すように、本実施形態に係る鋳造解析方法は、鋳造装置1の金型2に形成されるキャビティ8Aを含む溶湯が流動可能な空間(溶湯の流動空間)8内において射出装置5から射出された溶湯9の湯流れ停止位置を解析するものである。具体的には、本実施形態の鋳造解析方法においては、固定型2A及び可動型2Bからなる金型2と、プランジャ5A、スリーブ5B及び油圧ユニット5Cからなる射出装置5と、により形成される溶湯の流動可能な空間(溶湯の流動空間)8の形状を解析モデルとして設定し、有限要素法または差分法などの解析手法により解析を行うために、このモデル化されたキャビティ8Aを含む溶湯の流動空間8を複数の要素(例えば図4の8a,8b,…)に分割し、各要素に対して後述する材料条件、境界条件、及び初期条件等の諸条件を与え、これらの条件に基づいて、各要素内の溶湯の速度、圧力、温度、及び固相率などの溶湯の状態を演算し、この演算結果に基づいて、キャビティ8Aを含む溶湯の流動空間8内において射出装置5から射出された溶湯9の挙動及び湯流れの停止位置を解析している。
図2及び3には、このような鋳造解析を行うに好適な鋳造解析装置の一例を示している。図2に示すように鋳造解析装置10は、RAM,ROMを有した記憶部30及びCPUを有した演算部(演算手段)40を主に備え、記憶部30は入力装置20からの入力データを記憶するようになっており、演算部40は、この記憶したデータに基づいて、固定型2A及び可動型2Bならなる金型2と、射出装置5とにより形成される溶湯の流動可能な空間(溶湯の流動空間)8内を流れる溶湯9の状態を演算し、演算された溶湯9の状態(湯流れ停止位置を含む)を表示装置50に出力するようになっている。
具体的には、図3に示すように、記憶部30は、入力装置20から入力されたデータを記憶し、この記憶されたデータを必要に応じて演算部40に出力するものであって、この記憶部30は、要素に分割された溶湯の流動空間の形状、材料条件(溶湯、金型、及び射出装置の物性値等)、境界条件(金型と溶湯の熱伝達係数等)、初期条件(鋳造装置の射出速度、金型、射出装置、及び溶湯の初期温度等)、鋳造装置の最大加圧力などのデータを記憶し、後述する演算部40を構成する各手段41〜44及び後述する手段47にこれらのデータが出力されるようになっている。尚、記憶部30に入力するデータとして、溶湯の流動空間8は、既に複数の要素(図4に示すような8a,8b,8c)に分割されたものを入力しているが、入力装置20から溶湯の流動空間8を記憶部30に入力し、演算部40が以下の演算前に、この空間8を複数の要素に分割するようにしてもよい。
また、演算部40は、溶湯の流動空間8内の湯流れ停止位置を含む溶湯の状態を解析処理すべく、この分割された各要素内の溶湯の流動速度を演算する速度演算手段41、各要素内の溶湯の圧力を演算する圧力演算手段42、各要素内の溶湯の温度を演算する温度演算手段43、各要素内の溶湯の固相率を演算する固相率演算手段44を備えている。さらに、演算部40は、これら演算手段41〜44により演算された結果に基づいて、演算手段41〜44の演算の続行を判定する手段として湯先流動判定手段45、充填判定手段46、及び圧力判定手段47を備えている。
速度演算手段41及び圧力演算手段42は、射出装置5が溶湯9を射出する射出速度、溶湯の固相率等から、溶湯の流動空間8内における溶湯の流動速度及び圧力を演算するものであり、具体的には、溶湯をニュートン流体と仮定して連続の式及びナビエ・ストークスの法則を利用して、差分法により各要素内における溶湯の速度及び圧力を演算している。
温度演算手段43は、時間変化に伴う溶湯の温度を演算するものであり、一般的な熱伝導方程式を用いて、要素間及び境界への熱の移動量から、各要素内における溶湯の温度を演算している。また、固相率演算手段44は、液相線温度以上の領域では固相率を0%、固相線温度以下では固相率を100%とし、固相線温度以上かつ液相線温度以下の固液共存領域では溶融金属の温度から固相率を演算している。
そして、これらの演算手段41〜44により演算された結果に基づいて、さらに演算手段41〜44の行う演算を一連の演算として、演算手段41〜44は、射出速度に依存した経過時間(タイムステップ)毎に、繰り返し行う(図中の(※))ようになっている。
湯先流動判定手段45は、固相率演算手段44により演算された固相率に基づいて、射出装置5により射出された溶湯の湯先9Aが流動可能であるか否かを判定するものであり、湯先9Aが凝固し(固相率が100%に近い)、射出装置5により溶湯9を加圧してもそれ以上溶湯が流動しないと判定した場合には、これら演算手段41〜44の演算を終了させ、これまでに演算した結果に基づいて流動空間8内の溶湯の湯流れ停止位置を含む溶湯9の充填状態を解析処理し、表示装置50へ出力する。
また、充填判定手段46は、これらの演算手段41〜44の演算により得られた結果から、キャビティ8Aを含む流動空間8内の溶湯の流れを解析し、金型2が形成するキャビティに完全に充填されたか否かを判定するものであり、充填されたと判定した場合には、これら演算手段41〜44の演算を終了させ、該演算結果に基づいてキャビティ8Aを含む溶湯の流動空間8内の溶湯の湯流れ停止位置を出力し、充填されていないと判定した場合には、これらの演算手段41〜44の演算を続行させる。尚、この充填判定手段46により、充填されたと判定した場合には、解析した溶湯に湯回り不良がなく良品の鋳造品が鋳造可能であると判断することができる。また、これまでに示した演算手段41〜44による演算及び判定手段45,46による判定は、当業者が行うことができる鋳造解析における一般的な方法であるため、詳細な説明は省略している。
さらに、本実施形態では、演算部40に圧力判定手段47を設けており、この圧力判定手段47は、圧力演算手段42により演算された圧力に基づいて、これらの演算手段41〜44の演算の演算を続行すべきかどうかの判定を行う。具体的には、射出装置5が射出可能な最大加圧力Pmと、演算された溶湯の圧力のうち射出装置に作用する前記溶湯の流動抵抗圧力Pfとを、比較し、流動抵抗圧力Pfが最大加圧力Pm以上であると判定した場合には前記した繰り返しの演算を終了させ、これまでに演算した結果に基づいて流動空間8A内の溶湯の湯流れ停止位置を含む溶湯9の充填状態を解析処理し、表示装置50へ出力する。
この流動抵抗圧力Pfは、図4に示すように、射出装置5を構成するプランジャ5Aを所定の射出速度で移動させたときに、プランジャ5Aに作用する圧力であり、圧力判定手段47は、プランジャ5Aの射出方向前方の要素(8a,8b・・・)のうち、プランジャと接触している要素内における溶湯の圧力(P1〜P7)の平均値を算出している。本解析は、プランジャ5Aからの射出速度条件を与えることにより、プランジャ界面の溶湯が移動することを前提として解析するものであり、この条件により演算されたプランジャに接触する各要素内の射出方向に作用する溶湯の圧力の総和が、溶湯を流動させるに必要な力とみなすことができ、この溶湯を流動させるに必要な力は、溶湯の流動抵抗力に相当する。そして、本発明の「射出装置に作用する溶湯の流動抵抗圧力」とは、本実施形態におけるこの圧力P1〜P7に相当し、「圧力分布」とは、この圧力P1〜P7の分布に相当する。なお、ここでは、圧力P1〜P7の圧力の平均値を求めることにより、簡易的に正確な溶湯の流動抵抗圧力を演算することができるが、例えばスリーブ5B内の他の要素における湯流れ方向の溶湯圧力を用いてもよく、圧力の平均値ではなく、各圧力から溶湯の流動抵抗力を求めて、射出装置の推力と比較してもよい。
また、射出装置5が射出可能な最大加圧力Pmは、射出装置5を構成する油圧ユニット5Cが溶湯9に加圧可能な最大の加圧力であり、油圧ユニット5Cの加圧能力によって決定される圧力である。具体的には、射出装置5の最大推力を、プランジャが溶湯9に接触する部分の面積で除算した値である。また、図5(a)に示すように、実際の鋳造では、射出装置5の射出速度は、溶湯9がスリーブ5B内に100%充填されるまでは(鋳造開始からT2まで)は小さく、さらにこのスリーブ5B内の充填された溶湯9がキャビティ8A内に充填される段階では、その速度を大きくするように制御されており、この射出速度の変化に伴って、図5(b)に示すように射出装置5の最大加圧力Pmは変化する。よって、この最大加圧力Pmと流動抵抗圧力Pfとを比較するにあたっては、この最大加圧力Pmに射出装置5の射出速度に依存した最大加圧力を用いることにより、正確な圧力判定を行うことができる。なお、この最大加圧力と射出速度の関係は、実際の鋳造装置から測定し、この関係をマップ、表などの形式で記憶部30に記憶させることにより、射出速度に依存した最大加圧力を求めることができる。ただし、実際の鋳造時に使用する加圧ユニットの加圧ポンプの能力が高い場合には、最大加圧力は射出速度によってほとんど変動しないので、このような場合には、最大加圧力Pmを一定値としてもよい。
このように、圧力判定手段47によって流動抵抗圧力が最大加圧力以上であると判定した場合に湯流れの演算を終了させることは、油圧ユニット5Cの加圧能力の不足により、プランジャ5Aを射出方向に移動させて溶湯を流動させることができない実機の鋳造の現象に一致しているので、鋳造時における溶湯の湯流れ停止位置を精度良く解析し、キャビティを含む流動空間内における湯流れ不良による溶湯の未充填部を正確に予測することができる。
このような構成による解析装置10を用いて、溶湯の湯流れ停止位置をコンピュータ解析した場合の演算フロー図の一例を図6に示す。まず、図6のステップ61(S61)において、金型2及び射出装置5により形成された溶湯の流動空間8の形状を、入力装置20から鋳造解析装置10の記憶部30に入力する。ここで、入力される溶湯の流動空間8のデータとしては、金型2、射出装置5、金型2が形成するキャビティ8Aの形状に合わせて、複数の要素に分割したデータである。次に、ステップ62において、本解析に必要な材料条件、境界条件、初期条件、最大加圧力Pm等のデータを、入力装置20から記憶部30に入力し、ステップ63に進む。
ステップ63では、これらの入力されたデータに基づいて速度演算手段41及び圧力演算手段42が、各要素の溶湯9の速度及び圧力を演算する。ステップ64では、圧力判定手段47が、圧力演算手段42によって演算された溶湯の圧力のうち射出装置5に作用する流動抵抗圧力Pfを演算する。ステップ65では、圧力判定手段47が、流動抵抗圧力Pfと、記憶部30から読み出した射出装置5の射出速度に依存した最大加圧力Pmと、を比較し、該流動抵抗圧力Pfが最大加圧力Pm以上であると判定した場合には、ステップ70に進み、演算を終了させ、該演算結果に基づいて前記キャビティを含む流動空間内の溶湯の湯流れ停止位置を出力し、そうでない場合(流動抵抗圧力Pfが最大加圧力Pmよりも小さいと判定した場合)には、ステップ66に進む。
ステップ66では、温度演算手段43が、各要素内の溶湯の温度を演算し、ステップ67では、固相率演算手段44が、この演算した温度に基づいて、各要素内の溶湯の固相率を演算しステップ68に進む。
ステップ68では、湯先流動判定手段45は、この演算された固相率に基づいて、溶湯9の湯先9Aが流動可能かを判定し、流動可能でない(湯先が凝固している)と判断した場合には、ステップ70に進み、演算を終了させ、該演算結果に基づいて前記キャビティを含む流動空間内の溶湯の湯流れ停止位置を出力し、流動可能であると判断した場合には、ステップ69に進む。ステップ69では、充填判定手段46が、金型2が形成するキャビティに完全に充填されたかを判定し、充填されたと判定した場合には、これら演算手段41〜44の演算を終了させ、該演算結果に基づいてキャビティ8Aを含む流動空間8内の溶湯の湯流れ停止位置を出力し、未だ充填されていない場合には、ステップ71に進み、射出速度にあわせてタイムステップを進め、ステップ63の演算を再び行う。
このように、ステップ65、ステップ68の判定において、演算を終了する場合には、キャビティ8Aを含む流動空間8内に溶湯9が充填されず湯回り不良が発生したと判断することができ、ステップ69の判定において、演算を終了することができた場合には、湯回り不良なく溶湯が、空間8内に充填されたと判断することができる。
上述した本実施形態の鋳造解析装置を用いて、鋳造解析を行った実施例を以下に示す。
(実施例)
4気筒シリンダブロックを鋳造する際における溶湯の流動空間の形状を入力、この空間を複数の要素に分割した。次に、以下の表1に示すように、材料条件として、溶湯の材質をダイカスト用アルミニウム鋳造合金(JIS規格:ADC12)、金型の材質を合金工具鋼材(JIS規格:SKD61)、鋳造装置のライナ(溶湯と接触する部分)の材質を鋳鉄品(JIS規格:FC230)としたときの物性値を入力した。
さらに、解析の初期条件として、スリーブ内への溶湯充填率50%、溶湯温度923K、プランジャ速度0.2m/sとし、境界条件として、部位に合わせて金型と溶湯の熱伝導率を2000〜10000W/m・Kの範囲で入力し、鋳造装置の最大加圧力(鋳造装置の性能から決定)を20MPaとし、射出速度が射出開始時間から3.2秒後には、0.2m/sから1.5m/sとなるように射出速度条件を入力した。ただし、ここでは、実機の油圧ポンプ能力が高いため、この射出速度の変化に対しての最大加圧力はほとんど変化しないので、最大加圧力は一定(20MPa)とした。この入力したデータに基づいて解析をした結果を図7の実施例の欄に示す。尚、図7の解析結果は、4気筒シリンダブロックの#2〜#3気筒の中央断面図であり、図中の白抜き部分が、溶湯が充填された充填部を示しており、図中の斜線部分が、溶湯が充填されていない未充填部を示している。
さらに、この解析条件と同じ条件で、実際に鋳造装置を用いてアルミニウム合金を鋳造し、得られた鋳造品の湯回り不良部(未充填部)を観察した。この結果も図7の実施例の欄に示す。尚、この観察結果は、実際に鋳造された4気筒シリンダブロックの#2〜#3気筒の中央断面図の未充填部を破線囲い部として示したものであり、キャビティ内の溶湯の停止位置は、この断面図内における破線囲い部近傍である。
Figure 0004501845
(比較例)
実施例と同じように解析を行った。実施例と異なる点は、解析時において、流動抵抗圧力と前記最大加圧力との比較による判定を行わなかった(圧力判定手段により判定を行わなかった)点である。この結果を図7に示す。
(結果)
実施例の解析結果におけるキャビティ内の未充填部(斜線部)は、比較例の解析結果における未充填部(斜線部)に比べて多く、実施例の未充填部(斜線部)は、実際の鋳造品におけるキャビティ内の未充填部(破線囲み部)の位置に略一致していた。
(考察)
比較例における解析では、射出装置の加圧能力以上の圧力で溶湯を加圧したことにより、未充填部が、実施例よりも少なくなったと考えられ、実施例の如く解析において射出装置の加圧能力を加味することにより、実施例では、実際の鋳造結果と略一致する未充填部を予測することができたと考えられる。
以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、例えば、湯回り不良の解析が行うことができるのであれば、実施形態に示したフロー図の各ステップの手順が入れ替わってもよく、実施例では、溶湯を用いたがこの溶湯の材質、アルミニウム合金に限定されるものではなく、またこの溶湯が、半凝固、半溶融状態のものであっても同様の効果を得ることができる。
本発明に係る鋳造解析方法を行うための解析モデルの一例を説明するための図。 図1の解析モデルに基づく解析を行うための装置構成を説明するための図。 図2の鋳造解析装置の一例を示した解析ブロック図。 図1に示す解析モデルのA部の拡大図。 射出速度の変化による最大加圧力の変化を説明するための図。 図3に示す鋳造解析装置が行う解析ステップを説明するためのフロー図。 実施例及び比較例による鋳造解析の結果を示した図。
符号の説明
1:鋳造装置,2:金型,2A:固定型,2B:可動型,5:射出装置,5A:プランジャ,5B:スリーブ,5C:油圧ユニット,8:溶湯の流動空間,8A:キャビティ,9:溶湯,9A:湯先,10:鋳造解析装置,20:入力装置,30:記憶部,40:演算部(演算手段),41:速度演算手段,42:圧力演算手段,43:温度演算手段,44:固相率演算手段,45:湯先流動判定手段,46:充填判定手段,47:圧力判定手段,50:表示装置,Pf:流動抵抗圧力,Pm:最大加圧力

Claims (6)

  1. 射出装置及び金型により形成される溶湯の流動可能な空間の形状を設定し、前記射出装置が所定の射出速度条件で射出する際の前記空間内を流動する溶湯の圧力を少なくとも演算することにより、前記空間において射出装置から射出された溶湯の湯流れ停止位置をコンピュータ解析する鋳造解析方法であって、
    該鋳造解析方法は、前記演算において、前記射出装置が射出可能な最大加圧力と、前記演算された溶湯の圧力のうち前記射出装置に作用する前記溶湯の流動抵抗圧力とを、比較し、該流動抵抗圧力が前記最大加圧力以上であると判定した場合には前記演算を終了し、該演算結果に基づいて前記空間内の溶湯の湯流れ停止位置を解析する処理をさらに含むことを特徴とする鋳造解析方法。
  2. 前記最大加圧力として、前記射出装置の射出速度に依存した最大加圧力を用いることを特徴とする請求項1に記載の鋳造解析方法。
  3. 前記流動抵抗圧力として、前記射出装置の射出方向に作用する溶湯の圧力の分布を演算し、該演算した圧力分布の圧力を平均した値を用いることを特徴とする請求項1又は2に記載の鋳造解析方法。
  4. 射出装置及び金型により形成される溶湯の流動可能な空間の形状を設定し、前記射出装置が所定の射出速度条件で射出する際の前記空間内を流動する溶湯の圧力を少なくとも演算することにより、前記空間内において射出装置から射出された溶湯の湯流れ停止位置をコンピュータ解析する鋳造解析装置であって、
    前記鋳造解析装置は、前記空間内を流動する溶湯の圧力を少なくとも演算する演算手段を備え、該演算手段は、前記射出装置が射出可能な最大加圧力と、前記演算された溶湯の圧力のうち前記射出装置に作用する前記溶湯の流動抵抗圧力とを、比較し、該流動抵抗圧力が前記最大加圧力以上であると判定した場合には前記演算手段の演算を終了させる圧力判定手段をさらに備えることを特徴とする鋳造解析装置。
  5. 前記圧力判定手段は、前記最大加圧力に、前記射出装置の射出速度に依存した最大加圧力を用いて判定することを特徴とする請求項4に記載の鋳造解析装置。
  6. 前記圧力判定手段は、前記射出装置の射出方向に作用する溶湯の圧力の分布を演算し、該圧力の分布の平均値を、流動抵抗圧力として判定することを特徴とする請求項4または5に記載の鋳造解析装置。
JP2005321361A 2005-11-04 2005-11-04 鋳造解析装置及び鋳造解析方法 Expired - Fee Related JP4501845B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321361A JP4501845B2 (ja) 2005-11-04 2005-11-04 鋳造解析装置及び鋳造解析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321361A JP4501845B2 (ja) 2005-11-04 2005-11-04 鋳造解析装置及び鋳造解析方法

Publications (2)

Publication Number Publication Date
JP2007125593A JP2007125593A (ja) 2007-05-24
JP4501845B2 true JP4501845B2 (ja) 2010-07-14

Family

ID=38148691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321361A Expired - Fee Related JP4501845B2 (ja) 2005-11-04 2005-11-04 鋳造解析装置及び鋳造解析方法

Country Status (1)

Country Link
JP (1) JP4501845B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442242B2 (ja) * 2008-12-02 2014-03-12 株式会社豊田中央研究所 ダイカスト鋳造鋳物の鋳巣解析方法およびその鋳巣解析プログラム
JP5445257B2 (ja) * 2010-03-17 2014-03-19 トヨタ自動車株式会社 鋳造シミュレーション方法、及び、鋳造シミュレーション装置
CN114632922B (zh) * 2022-02-15 2022-11-29 湖南大学 高效高质铝合金减震塔高压真空压铸工艺控制系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257741A (ja) * 1995-03-24 1996-10-08 Hitachi Metals Ltd 数値解析を利用した鋳造欠陥の予測方法
JP3396837B2 (ja) * 1999-03-29 2003-04-14 日立協和エンジニアリング株式会社 流動凝固解析方法
JP2005246439A (ja) * 2004-03-04 2005-09-15 Daido Steel Co Ltd 鋳造シミュレーションによる最適鋳造条件策定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257741A (ja) * 1995-03-24 1996-10-08 Hitachi Metals Ltd 数値解析を利用した鋳造欠陥の予測方法
JP3396837B2 (ja) * 1999-03-29 2003-04-14 日立協和エンジニアリング株式会社 流動凝固解析方法
JP2005246439A (ja) * 2004-03-04 2005-09-15 Daido Steel Co Ltd 鋳造シミュレーションによる最適鋳造条件策定方法

Also Published As

Publication number Publication date
JP2007125593A (ja) 2007-05-24

Similar Documents

Publication Publication Date Title
Aweda et al. Experimental determination of heat transfer coefficients during squeeze casting of aluminium
Chen et al. Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand
Patnaik et al. Die casting parameters and simulations for crankcase of automobile using MAGMAsoft
Dou et al. A complete computer aided engineering (CAE) modelling and optimization of high pressure die casting (HPDC) process
Gebelin et al. Modelling of the investment casting process
JP2007330977A (ja) 鋳造シミュレーション方法、その装置、そのプログラム、及び当該プログラムを記録した記録媒体、並びに鋳造方法
JP4501845B2 (ja) 鋳造解析装置及び鋳造解析方法
JP4501844B2 (ja) 鋳造解析装置及び鋳造解析方法
Guofa et al. Numerical simulation of low pressure die-casting aluminum wheel
KR101312474B1 (ko) 용융 합금의 응고 해석 방법 및 그 응고 해석 프로그램을 저장한 컴퓨터-판독가능 저장 매체
JP2007167893A (ja) 鋳造割れ予測方法及び鋳造割れ予測システム
US20020170699A1 (en) Mathematically determined solidification for timing the injection of die castings
JP6525026B2 (ja) 圧力鋳造の溶湯湯まわり判定方法及びその装置
JP5442242B2 (ja) ダイカスト鋳造鋳物の鋳巣解析方法およびその鋳巣解析プログラム
JP7256448B2 (ja) 鋳造解析方法
JP5494353B2 (ja) 金型寿命判定方法及びその装置
Yongyou et al. Determination of interfacial heat transfer coefficient and its application in high pressure die casting process
JP5494352B2 (ja) 金型溶着判定方法及びその装置
Reikher et al. A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation
JP4052006B2 (ja) 成型シミュレーション方法、成型シミュレーション装置及び成型シミュレーションプログラム並びに当該成型シミュレーションプログラムを記録したコンピュータ読みとり可能な記録媒体
JP2006026723A (ja) ダイカストシミュレーション方法、その装置及びそのプログラム、並びに当該プログラムを記録した記録媒体
JP2009298035A (ja) 金型設計方法
JP4478073B2 (ja) 連続鋳造鋳型の設計方法
JP6725877B2 (ja) ダイカストの初期温度設定方法
Gebelin et al. Simulation of die filling for the wax injection process: Part II. Numerical simulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R151 Written notification of patent or utility model registration

Ref document number: 4501845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees