JP4501165B2 - 車輌用燃料電池システム - Google Patents

車輌用燃料電池システム Download PDF

Info

Publication number
JP4501165B2
JP4501165B2 JP18173998A JP18173998A JP4501165B2 JP 4501165 B2 JP4501165 B2 JP 4501165B2 JP 18173998 A JP18173998 A JP 18173998A JP 18173998 A JP18173998 A JP 18173998A JP 4501165 B2 JP4501165 B2 JP 4501165B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
water
air
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18173998A
Other languages
English (en)
Other versions
JPH11317238A (ja
Inventor
正志 中村
慎之 高田
宗久 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP18173998A priority Critical patent/JP4501165B2/ja
Publication of JPH11317238A publication Critical patent/JPH11317238A/ja
Application granted granted Critical
Publication of JP4501165B2 publication Critical patent/JP4501165B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
この発明は車輌用燃料電池システムに関する。更に詳しくは、高分子固体電解質膜を有するPEM型の燃料電池であって水を液体の状態で空気極に供給するタイプの燃料電池システム(以下、「水直噴タイプの燃料電池システム」という)を車輌に適用するときの改良に関する。
【0002】
【従来の技術】
PEM型の燃料電池本体は、燃料極と空気極との間に高分子固体電解質膜が挟持された構成である。
燃料極及び空気極はともに触媒物質を含む触媒層と、前記触媒層を支持すると共に反応ガスを供給しさらに集電体としての機能を有する電極器材からなる。
燃料極と空気極の更に外側には、反応ガスを外部より電極内に均一に供給するとともに、余剰ガスを外部に排出するためのガス流通溝を設けたセパレータ(コネクタ板)が積層される。このセパレータはガスの透過を防止するとともに発生した電流を外部へ取り出すための集電を行う。
【0003】
上記燃料電池本体とセパレータとで単電池が構成される。実際の燃料電池システムでは、かかる単電池の多数個が直列に積層されてスタックが構成される。
燃料電池本体では、一般的に発生電力にほぼ相当する熱量の熱が発生する。従って、燃料電池本体が過度にヒートアップすることを防止するために、スタックに冷却板を内蔵させる。この冷却板には空気や水などの冷却媒体が冷却板内に配される通路を介して流通されてスタックが冷却され、もって燃料電池本体が所望の温度に維持される。
【0004】
このような構成の燃料電池の起電力は、燃料極側(アノード)に燃料ガスが供給され、空気極側に酸化ガスが供給された結果、電気化学反応の進行に伴い電子が発生し、この電子を外部回路に取り出すことにより、発生される。
即ち、燃料極(アノード)にて得られる水素イオンがプロトン(H)の形態で、水分を含んだ電解質膜中を空気極(カソード)側に移動し、また燃料極(アノード)にて得られた電子が外部負荷を通って空気極(カソード)側に移動して酸化ガス(空気を含む)中の酸素と反応して水を生成する、一連の電気化学反応による電気エネルギーを取り出すことができるからである。
【0005】
上記において、プロトンが燃料極より空気極に向かって電解質膜中を移動する際に水和の状態をとるため、電解質膜が乾燥してしまうと、イオン伝導率が低下し、エネルギー変換効率が低下してしまう。
よって、良好なイオン伝導を保つために固体電解質膜に水分を供給する必要があり、そのために燃料ガス及び酸化ガスを加湿して、水分を供給している。
また、アノード電極側では、電極反応を適正に継続させるために、より水素ガスの湿潤状態を維持する必要があり、燃料ガスの加湿方法については従来から様々な提案がある。
【0006】
他方、プロセス空気を加湿する方法は従来から提案されているが、反応熱により昇温されている(通常80℃程度である)空気極を確実に加湿するには、常温のプロセス空気を加湿器において予め加温しておく必要がある。飽和水蒸気量を空気極の周囲の環境と一致させるためである。そのため、加湿器は水の供給機能とプロセス空気の昇温機能とが求められる複雑な構成であった。
特開平7−14599号公報に開示の燃料電池装置では、空気導入管に噴射ノズルを設けて加湿に必要な水がプロセス空気中に噴霧される。この噴射ノズルが圧縮機の上流側にある場合、噴霧された水はプロセス空気の圧縮にともなう熱で蒸発され、水蒸気の状態で空気極を加湿する。また、この装置でも、必要に応じて空気の加湿装置が更に付加される。
いずれにせよ従来の技術では空気へ水蒸気を混入させることにより電解質膜へ水分を補給していた。
【0007】
更には、特開平9−266004号公報に示される燃料電池装置では、排出される水素ガスの濃度を下げるため、燃料極から排出されるガス(この排気ガスには未反応の水素ガスが含まれている)を空気極側へ導入してその中の水素ガスを空気極において燃焼させている。当該燃焼において反応水(回収水)が生成されるため、このような燃料電池装置では加湿器を特に付加しなくても、電解質膜へ充分な水分を補給できることとなる。
【0008】
【先の出願における開示の概要】
更なる研究により以下の事項が解った。
所定値以下の厚さの電解質膜により、燃料電池を構成した場合に、プロトンが空気極において空気中の酸素と反応して生成された水が、電解質膜中を空気極から水素極へ逆浸透する。この逆浸透された水により、電解質膜を好適な湿潤状態に維持することができるため、水素極(アノード電極)側で水素(燃料ガス)を加湿する必要がない。
しかし、空気極(カソード電極)側において、導入される空気(酸化ガス)流により、電解質膜の空気極側の水分が蒸発するため、電解質膜の空気極側の水分が不足することが解った。
【0009】
そこで先の出願では、燃料電池本体の空気極に水が液体の状態で供給される、水直噴タイプの燃料電池システムを提案した。
このように構成された燃料電池システムによれば、空気極の表面に供給された水が優先的に空気から潜熱を奪うので、空気極側の電解質膜から水分の蒸発することが防止される。従って、電解質膜はその空気極側で乾燥することなく、常に均一な湿潤状態を維持する。よって、燃料電池システムの性能及び/又は耐久性が向上する。
【0010】
さらには、水を液体の状態で空気極に供給すると、空気極の表面に供給された水は空気極自体からも熱を奪いこれを冷却するので、これにより燃料電池本体の温度を制御できる。即ち、燃料電池スタックへ冷却板を付加しなくても当該燃料電池本体を冷却することができる。
【0011】
【発明が解決しようとする課題】
本発明者は先の出願で提案された水直噴タイプの燃料電池システムを車輌に適用すべく鋭意検討を重ねた。
その結果、次の解決すべき課題に気が付いた。
車輌を駆動させる燃料電池システムにはより高い効率と、よりコンパクトな容積及び軽量化が求められる。
車輌用の燃料電池システムでは車輌の走行時、特に加速時に燃料電池本体に高い負荷がかかり、その発熱量が大きくなる。従って、水直噴タイプの燃料電池システムにおいて空気極に水を液体の状態で供給するだけでは燃料電池本体ひいては燃料電池スタックがヒートアップしてしまうおそれがある。
【0012】
【課題を解決するための手段】
この発明の第1の局面は、上記課題を解決するものであり、その構成は次の通りである。
車輌用燃料電池システムであって、
燃料電池スタックと、
前記燃料電池スタックの空気極に水を液体の状態で供給する手段と、を備えてなり、
前記燃料電池スタックが車輌のラム風の通路に配置されている、ことを特徴とする車輌用燃料電池システム。
【0013】
このように構成されたこの発明の第1の局面の車輌用燃料電池システムによれば、燃料電池スタックに高い負荷がかかりその発熱量が大きくなる車輌の走行時に、燃料電池スタックはラム風によって冷却される。従って、燃料電池スタックが過度にヒートアップされることが未然に防止される。
また、ラム風による冷却効果があるので、水直噴タイプにおいて燃料電池スタックに供給される水の量を低減することができる。よって、水タンクに要求される容量をはじめとして燃料電池システムにおける水供給系の各装置をコンパクトにすることができ、もってその軽量化を図れる。
【0014】
上記において、ラム風とは、車輌の進行にともない車輌内(特に車両のボンネット内部)を通過する空気の流れをいう。この車両のボンネット内部には、発電用の燃料電池システム、電力変換装置や車輌走行用モータ等が収納されている。車輌の進行にともない外気は車輌前部の開口部、特にフロントグリルからボンネット内部に取り込まれ、その一部は室内を通過する。冷却効果を考えればラム風の最も強い部分(乗用車ではフロントグリルの部分)に燃料電池スタックを配置することが好ましい。
また、車輌のボンネット上に外気取入れ用の開口部を別途設けて、ここから取り入れられるラム風の最も強い部分に燃料電池スタックを配置してもよい。
【0015】
燃料電池本体はその空気極に水を液体の状態で供給して所望の効果が得られるものであれば、特に限定されない。実施例では、PEM型の燃料電池本体を採用している。この燃料電池本体をセパレータで挟持して燃料電池の単位ユニットが構成される。この単位ユニットを複数重ねあわせて燃料電池スタックが構成される。
燃料電池スタックの空気極に水を液体の状態で供給する手段もその機能が達成できれば特に限定されない。実施例では、燃料電池スタックの空気流路の入り口の上に配置されたノズルより水を噴霧させる構成とした。
【0016】
なお、電解質膜の湿潤状態を維持し及び/又は燃料電池スタックを冷却する観点から、この出願時点では、空気極に供給される熱媒体として水が考えられる。勿論、将来同様の機能を有する他の熱媒体が開発されれば、それは水と均等である。
【0017】
この発明の第2の局面の車輌用燃料電池システムは次のように構成される。
即ち、第1の局面の車輌用燃料電池システムにおいて、燃料電池スタックから排出された空気の水分を凝縮して回収する凝縮器が更に備えられ、該凝縮器も前記ラム風の通路に配置されている。
【0018】
このように構成されたこの発明の第2の局面によれば、第1の局面の発明の作用効果に加えて、凝縮器にラム風があたりその冷却機能が強化される。即ち、一般的な凝縮器にはファンが備えられ、排出空気中の水分を凝縮させるための熱交換器に強制的に風が送られている。ここで、ラム風が利用できればファンに要求される出力が小さくなる。よって、凝縮器のコンパクト化及び軽量化及び省エネルギー化が図れる。
【0019】
この発明の第3の局面の車輌用燃料電池システムは次のように構成される。
即ち、車輌用燃料電池システムであって、
燃料電池スタックと、
冷媒を循環させて前記燃料電池スタックを冷却する冷却系と、を備えてなり、
前記冷却系の熱交換器が車輌のラム風の通路に配置されている、ことを特徴とする車輌用燃料電池システム。
【0020】
このように構成された第3の局面の発明によれば、燃料電池スタックに高い負荷がかかりその発熱量が大きくなる車輌の走行時及び加速時に、燃料電池スタックの冷却系の熱交換器の冷却機能がラム風によって強化される。従って、熱交換器のコンパクト化及び燃料電池発電システムの省電力化を行うことができる。
【0021】
燃料電池スタックを冷却する冷却系はこれをコンパクト化するために減圧冷却系とすることが好ましい。減圧冷却系の冷媒には水を使用することが好ましい。燃料電池スタックの各セパレータはカーボン製であり、有機系の冷媒を用いるとセパレータの主として有機系のバインダが溶解されるおそれがあるからである。
【0022】
この発明の第4の局面の車輌用燃料電池システムは次のように構成される。
即ち、第3の局面の車輌用燃料電池システムにおいて、燃料電池スタックから排出された空気の水分を凝縮して回収する凝縮器が更に備えられ、該凝縮器も前記ラム風の通路に配置されている。
【0023】
このように構成されたこの発明の第4の局面によれば、第3の局面の作用効果に加えて、凝縮器にラム風があたりその冷却機能が強化される。即ち、一般的な凝縮器にはファンが備えられ、排出空気中の水分を凝縮させるための熱交換器に強制的に風が送られている。ここで、ラム風が利用できればファンに要求される出力が小さくなる。よって、凝縮器のコンパクト化、軽量化及び省電力化が図れる。
【0024】
本発明の第5の局面の燃料電池システムは次のように構成される。
燃料電池スタック、
水素吸蔵合金、
水素と空気中の酸素とを反応させて熱エネルギーを取得する手段、
該熱エネルギーを前記水素吸蔵合金に与え、該水素吸蔵合金から水素を放出させる手段、
前記水素吸蔵合金から放出された水素により前記燃料電池スタックから排出された一部の空気を昇温し、該昇温された空気を前記熱エネルギー取得手段に導入する手段、
を備えてなる燃料電池システム。
【0025】
このように構成されたこの発明の第5の局面のシステムによれば、燃料電池スタックにより昇温された一部の空気を水素吸蔵合金から放出された高温の水素(例えば170〜200℃)でもって更に加熱して触媒燃焼器などの熱エネルギー取得手段に導入するので、当該触媒燃焼器における燃焼効率が向上する。従って、システムとしてのトータルの熱効率が向上する。
【0026】
【実施例】
以下、この発明の実施例を説明する。
図1にこの発明の実施例の燃料電池システム1の概略構成を示す。
この燃料電池システム1は、燃料電池スタック2、燃料供給系10、空気供給系40、水供給系50及び負荷系70及び制御系80から大略構成される。
【0027】
燃料電池スタック2は燃料電池の単位ユニットを複数(約30〜100枚程度)接続したものである。この単位ユニットは、図2に示すように、空気極3と燃料極4とで固体高分子電解質5を挟持した燃料電池本体を、更にカーボンブラックのセパレータ6、7で挟持した構成である。この単位ユニットの形状は特に限定されないが、セパレータ6と空気極3との間には空気を流通させる空気流路8が上下方向に形成される。セパレータ7と燃料極4との間には水素ガスを流通させる水素ガス流路9が形成されている。
この燃料電池スタック2は車輌のラム風の通路に配置される。従って、この燃料電池スタック2はラム風によって冷却される。車速が早いときには燃料電池スタック2の負荷も大きくなってその発熱量が大きくなるが、ラム風の風量も大きくなるのでそれだけ燃料電池スタック2に対する冷却効果が大きくなる。
【0028】
燃料供給系10から上記水素ガス流路9に水素ガスが導入され、連続的若しくは間欠的に燃料電池スタック2から排出される。燃料供給系10には汎用的なものを利用でき、水素の貯蔵及び放出は水素吸蔵合金で行う。
空気供給系40は空気マニホールド45より大気を燃料電池スタック2の空気流路8に供給し、燃料電池スタック2から排出された空気を水凝縮器51を通して排出する。
【0029】
この実施例では、空気マニホールド45に複数のノズル55が配設されて、これより吸気中に水が液体の状態で供給される。この水の大部分は液体の状態を維持したまま水凝縮器51に到達し、そのままタンク53へ送られて回収される。供給された水の一部は蒸発し、水凝縮器51において凝縮されて回収される。
この水凝縮器51において、この実施例では、その熱交換器52がラム風の通路に配置されている。これにより、熱交換器52における熱交換機能(空気を冷却し水を凝縮する)がラム風により補助若しくは強化される。よって、熱交換器52自体に要求される容量が小さくなり、もってラム風を利用しないものに比べて熱交換器52ひいては水凝縮器51をコンパクトにすることができる。
【0030】
水供給系50はタンク53の水をノズル55から空気マニホールド45へ供給し、この水を水凝縮器51で回収してタンク53に戻すという閉じられた系である。勿論、水供給系50を完全に閉じることは不可能であるので、タンク53の水位をモニタしてこの水位が所定の閾値を超えたら外部より水を補給する。冬季にタンク53中の水が凍結しないようにタンク53にはヒータを取り付けることが好ましい。
【0031】
タンク53の水はポンプ61により空気マニホールド内に配設されたノズル55へ圧送され、ここから空気極3の表面に対して連続的若しくは間欠的に噴出される。この水は燃料電池スタック2の空気極3に供給され、ここにおいて優先的に空気から潜熱を奪うので、空気極3側の電解質膜5からの水分の蒸発が防止される。従って、電解質膜5はその空気極3側で乾燥することなく、常に均一な湿潤状態を維持する。
また、空気極3の表面に供給された水は空気極3自体からも熱を奪いこれを冷却する。この冷却効果とラム風による冷却効果により燃料電池スタック2の温度を制御できる。
【0032】
負荷系70は燃料電池スタック2の出力を外部に取り出して、モータ77等の負荷を駆動させる。負荷系70の出力は水供給系50のポンプ61及び制御系80のコントローラ81にも与えられる。
【0033】
制御系80は、燃料電池スタック2に対するラム風の影響をモニタして、燃料電池スタック2に供給される水の量を制御し、もって燃料電池スタック2の温度を維持する。
コントローラ81は、図示しないCPUとメモリを備える。メモリにはCPUの動作を制御するプログラムが保存されており、CPUは当該プログラムに基づき、入力されたデータを処理してポンプ61の作動を制御する。
図中の符号83は温度センサであり、燃料電池スタック2の温度をモニタしている。
【0034】
次に、この実施例の燃料電池システム1の動作を図3に基づき説明する。なお、下記の動作の中で行われる演算は全てコントローラ81のCPUがメモリに保存されているプログラムに基づいて行っている。
【0035】
スタート後、ポンプ61が作動してタンク53の水がノズル55より空気マニホールド45内に噴出され、燃料電池スタック2の空気極3に水が液体の状態で供給される(ステップ1)。これにより、燃料電池スタック2が予め冷却され、システム起動時の電解質膜等におけるいわゆる焼き付きが未然に防止される。
【0036】
その後、空気供給系40をオンにし、続いて燃料供給系10をオンにしてシステム1を起動する(ステップ2)。
車輌の走行に伴いラム風が発生し、ラム風による燃料電池スタック2及び水凝縮器51の熱交換器52に対する空冷が開始する(ステップ3)。
【0037】
ステップ4では、図示しない温度計で検出されたラム風の温度と車輌付設の速度計で検出された車輌の走行速度に基づき、ラム風による冷却能Yを演算する。なお、コントローラのメモリはラム風の温度及び走行速度と冷却能Yとの関係を予め保存しており、CPUはこの関係を参照してこのステップ4の演算を行う。
一方、ステップ5では、走行に対応した燃料電池スタック2の実際の出力に基づき、燃料電池スタック2の総発熱量Zを同じくCPUで演算する。なお、コントローラのメモリは出力と燃料電池スタック2の総発熱量との関係を予め保存しており、CPUはこの関係を参照してこのステップ5の演算を行う。
【0038】
ステップ6では、燃料電池スタック2の総発熱量Zとラム風による冷却能Yとの差を演算する。そして、この差(Z−Y)の熱量を冷却するのに適当な水量を演算する。ステップ7でこの水量がノズル55から噴出されるようにポンプ61をコントローラ81で制御する。
【0039】
ステップ8では、温度センサ83で燃料電池スタック2の温度を検出し、この温度と予め定めれてメモリに保存されている設定温度(50〜60℃)とを比較する。燃料電池スタック2の温度が設定温度内にあれば定常走行モード(ステップ9)となりポンプ61の出力、即ち水直噴量を安定させる。一方、当該温度が標準温度から外れているとステップ4に戻り、水直噴量を調整する。
【0040】
上記動作を別の方向からみれば、燃料電池スタック2の冷却はもっぱらノズル5より供給される水によりなされるが、ラム風による冷却作用が付加される。従って、燃料電池スタック2の過度のヒートアップが確実に防止される。
【0041】
次に、この発明の第2の実施例を図4及び図5に基づいて説明する。なお図4において図1と同一の要素には、また、図5において図3と同一のステップにはそれぞれ同一の符号を付してその説明を省略する。
この実施例の燃料電池システム100では、燃料電池スタック2を冷却する冷却系110が設けられている。
【0042】
この冷却系110は燃料電池スタック2と周知構成の熱交換器111との間で冷媒としての水を循環させる。符号112はそのためのポンプであり、ポンプ112の電源はこの燃料電池スタック2自体からとられる。この実施例では、熱交換器111がラム風の通路に配置されている。これにより、水に対する熱交換器の冷却能力がラム風により補助ないし強化される。よって、ラム風を利用しないものに比べてこれをコンパクトにすることができる。
【0043】
この実施例では、冷却系110のポンプ112も制御系180のコントローラ181によって制御される。
即ち、図5のフローチャートにあるように、ステップ106において、総発熱量Zとラム風による冷却能Yよりノズル55から噴出すべき水の量Vと冷却系110に求められる冷却能Cとが演算される。この演算を実行するため、コントローラ内のメモリには総発熱量Z及びラム風による冷却能Yと水噴出量V及び冷却系110求められるに冷却能Cとの関係が予め保存されている。
そして、ステップ107では、ステップ106で求められた水噴出量Vと冷却能Cとに基づいて、それぞれ水供給系50のポンプ61の出力と冷却系110のポンプ112の出力とが制御される。
【0044】
なお、燃料電池スタック2に付設された冷却系110の熱交換器111をラム風の通路に配置することは、水直噴タイプの燃料電池システムに限られるものではない。
【0045】
図6に第3の実施例の燃料電池システム200を示す。なお、図4と同一の要素には同一の符号を付してその説明を省略する。
この実施例の燃料電池システム200は、図4に示したシステム100においてその冷却系を減圧冷却系210としたものである。減圧冷却系210において熱交換器211がラム風の通路に配置される。図中の符号212はコンプレッサである。
減圧冷却系を採用することにより、燃料電池スタック2に付設される冷却系がよりコンパクトになる。
【0046】
この実施例の燃料電池システム200の動作は、ポンプ112の出力制御をコンプレッサ212の出力制御とする他は、図5のフローチャートと同じである。
【0047】
図7に第4の実施例の燃料電池システム300を示す。なお、図7において図1と同一の要素には同一の符号を付してその説明を省略する。
この実施例の燃料電池システム300では、図1に示したシステム1において、新規な構成の燃料供給系310を用いた。
【0048】
この燃料供給系310は水素吸蔵合金311に貯えられた水素を熱交換器317、319を介して燃料電池スタック2へ供給する。この水素吸蔵合金311にはMg−Ni系等の高吸蔵材が用いられ、触媒燃焼器313の熱により水素を放出する。
触媒燃焼器313には水素吸蔵合金311から放出された水素の一部と空気が導入される。そして、触媒上で水素と空気中の酸素とが反応し熱エネルギーが取り出される。この熱エネルギーはヒートポンプその他の通常の間接熱交換を伴う熱伝達部材により水素吸蔵合金311へ与えられ、これを加熱する。
【0049】
この実施例では、触媒燃焼器313へ供給される空気が、熱交換器317を介して、水素吸蔵合金311から放出された水素により予め触媒燃焼温度近くまで加熱される。従って、触媒燃料器313における燃焼効率が向上する。
更にこの実施例では熱交換器317に導入される空気として燃料電池スタックにより昇温されている排出空気を利用する。従って、更に熱エネルギーの有効利用が図れる。
【0050】
触媒燃焼器313から排出された高温の空気は空気供給系40において水凝縮器51の上流側に戻される。なお、空気供給系40を流れる空気において触媒燃焼器313に送られるのはごく一部であるし、特にこの実施例の水凝縮器51ではその空気冷却機能がラム風により強化されているので、空気供給系40に高温の空気が戻されても水凝縮器51の機能に殆ど影響を与えない。
【0051】
参考のため、燃料供給系310における熱収支を図面上に示した。
【0052】
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
【0053】
(13)車輌用燃料電池システムであって、
燃料電池スタックと、
冷媒を循環させて前記燃料電池スタックを冷却する冷却系と、を備えてなり、
前記冷却系の熱交換器が車輌のラム風の通路に配置されている、ことを特徴とする車輌用燃料電池システム。
(14) 前記冷却系は減圧冷却により前記燃料電池スタックを冷却する、ことを特徴とする(13)に記載の車輌用燃料電池システム。
(15) 前記冷媒は水である、ことを特徴とする(14)に記載の車輌用燃料電池システム。
(16) 前記燃料電池スタックから排出された空気の水分を凝縮して回収する凝縮器が更に備えられ、該凝縮器も前記ラム風の通路に配置されている、ことを特徴とする(13)〜(15)のいずれかに記載の車輌用燃料電池システム。
【0054】
(20) 燃料電池スタック、
水素吸蔵合金、
水素と空気中の酸素とを反応させて熱エネルギーを取得する手段、
該熱エネルギーを前記水素吸蔵合金に与え、該水素吸蔵合金から水素を放出させる手段、
前記燃料電池スタックから排出された空気を前記熱エネルギー取得手段に導入する手段、
を備えてなる燃料電池システム。
(21) 燃料電池スタック、
水素吸蔵合金、
水素と空気中の酸素とを反応させて熱エネルギーを取得する手段、
該熱エネルギーを前記水素吸蔵合金に与え、該水素吸蔵合金から水素を放出させる手段、
前記水素吸蔵合金から放出された水素により昇温された空気を前記熱エネルギー取得手段に導入する手段、
を備えてなる燃料電池システム。
【0055】
(30) 燃料電池スタック、
水素吸蔵合金、
水素と空気中の酸素とを反応させて熱エネルギーを取得する手段、
該熱エネルギーを前記水素吸蔵合金に与え、該水素吸蔵合金から水素を放出させる手段、
を備えてなる燃料電池システム。
【図面の簡単な説明】
【図1】図1はこの発明の第1の実施例の燃料電池システムの構成図である。
【図2】図2は同じく燃料電池の単位ユニットの構成を示す断面図である。
【図3】図3は同じく第1の実施例の燃料電池システムの動作を示すフローチャートである。
【図4】図4はこの発明の第2の実施例の燃料電池システムの構成図である。
【図5】図5は同じく第2の実施例の燃料電池システムの動作を示すフローチャートである。
【図6】図6はこの発明の第3の実施例の燃料電池システムの構成図である。
【図7】図7はこの発明の第4の実施例の燃料電池システムの構成図である。
【符号の説明】
1、100、200、300 燃料電池システム
2 燃料電池スタック
3 空気極
10、310 燃料供給系
50 水供給系
55 ノズル
51 水凝縮器
110 燃料電池スタックの冷却系
210 燃料電池スタックの減圧冷却系
311 水素吸蔵合金
313 触媒燃焼器
317 熱交換器

Claims (6)

  1. 車輌用燃料電池システムであって、
    燃料電池スタックと、
    前記燃料電池スタックの空気極に水を液体の状態で供給する手段と、を備えてなり、
    前記燃料電池スタックが車輌のラム風の通路に配置されており、
    前記燃料電池スタックの総発熱量と前記ラム風による冷却能との差から前記水の供給量を制御するコントローラが更に備えられている、
    ことを特徴とする車輌用燃料電池システム。
  2. 前記燃料電池スタックから排出された空気の水分を凝縮して回収する凝縮器が更に備えられ、該凝縮器も前記ラム風の通路に配置されている、ことを特徴とする請求項1に記載の車輌用燃料電池システム。
  3. 車輌用燃料電池システムであって、
    燃料電池スタックと、
    前記燃料電池スタックの空気極に水を液体の状態で供給する手段と、
    冷媒を循環させて前記燃料電池スタックを冷却する冷却系と、を備えてなり、
    前記冷却系の熱交換器が車輌のラム風の通路に配置されており、
    前記燃料電池スタックの総発熱量と前記ラム風による冷却能との差から前記水の供給量を制御するコントローラが更に備えられている、
    ことを特徴とする車輌用燃料電池システム。
  4. 前記冷却系は減圧冷却により前記燃料電池スタックを冷却する、ことを特徴とする請求項3に記載の車輌用燃料電池システム。
  5. 前記冷媒は水である、ことを特徴とする請求項4に記載の車輌用燃料電池システム。
  6. 前記燃料電池スタックから排出された空気の水分を凝縮して回収する凝縮器が更に備えられ、該凝縮器も前記ラム風の通路に配置されている、ことを特徴とする請求項3〜5のいずれかに記載の車輌用燃料電池システム。
JP18173998A 1997-12-22 1998-06-29 車輌用燃料電池システム Expired - Fee Related JP4501165B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18173998A JP4501165B2 (ja) 1997-12-22 1998-06-29 車輌用燃料電池システム

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP36585097 1997-12-22
JP10-67885 1998-03-02
JP10067885 1998-03-02
JP9-365850 1998-03-02
JP18173998A JP4501165B2 (ja) 1997-12-22 1998-06-29 車輌用燃料電池システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007322836A Division JP4544298B2 (ja) 1997-12-22 2007-12-14 車輌用燃料電池システム

Publications (2)

Publication Number Publication Date
JPH11317238A JPH11317238A (ja) 1999-11-16
JP4501165B2 true JP4501165B2 (ja) 2010-07-14

Family

ID=27299569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18173998A Expired - Fee Related JP4501165B2 (ja) 1997-12-22 1998-06-29 車輌用燃料電池システム

Country Status (1)

Country Link
JP (1) JP4501165B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590792B2 (ja) * 2001-07-04 2010-12-01 株式会社エクォス・リサーチ 燃料電池装置
US6824906B2 (en) * 2001-07-16 2004-11-30 Modine Manufacturing Company Fuel cell system incorporating and integrated cathode exhaust condenser and stack cooler
US7226680B2 (en) * 2003-02-07 2007-06-05 General Motors Corporation Integrated air cooler, filter, and humidification unit for a fuel cell stack
JP4747655B2 (ja) * 2005-04-19 2011-08-17 株式会社エクォス・リサーチ 燃料電池システム
JP2007179972A (ja) * 2005-12-28 2007-07-12 Equos Research Co Ltd 燃料電池システム
JP2008123840A (ja) * 2006-11-13 2008-05-29 Denso Corp 燃料電池システム
JP5743097B2 (ja) * 2012-02-17 2015-07-01 三菱日立パワーシステムズ株式会社 固体酸化物形燃料電池及び固体酸化物形燃料電池の停止時冷却方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861576A (ja) * 1981-09-21 1983-04-12 ウエスチングハウス エレクトリック コ−ポレ−ション 燃料電池装置およびその運転方法
JPH0554900A (ja) * 1991-08-29 1993-03-05 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH0562697A (ja) * 1991-08-30 1993-03-12 Yamaha Motor Co Ltd 車載型燃料電池
JPH05187749A (ja) * 1992-01-14 1993-07-27 Tlv Co Ltd 減圧冷却装置
JPH06338338A (ja) * 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd 燃料電池の高分子イオン交換膜の加湿方法
JPH0714597A (ja) * 1993-06-07 1995-01-17 Daimler Benz Ag 燃料電池装置の運転用プロセスガスに加湿する方法及び装置
JPH0755315A (ja) * 1993-08-12 1995-03-03 Tlv Co Ltd 減圧冷却装置
JPH07220746A (ja) * 1994-02-07 1995-08-18 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池
JPH07226222A (ja) * 1994-02-15 1995-08-22 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の加湿システム
JPH08222254A (ja) * 1995-02-17 1996-08-30 Tanaka Kikinzoku Kogyo Kk 固体高分子電解質型燃料電池に於けるガスの加湿方法、加湿スタック構造及び加湿ノズル
JPH08315839A (ja) * 1995-05-18 1996-11-29 Sanyo Electric Co Ltd 固体高分子型燃料電池及び固体高分子型燃料電池システム
JPH0977707A (ja) * 1995-09-13 1997-03-25 Hironori Ishikawa 水熱法によるメタノール等の燃料用アルコール類の合成法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795683A (en) * 1987-07-23 1989-01-03 United Technologies Corporation High power density evaporatively cooled ion exchange membrane fuel cell
JP3147518B2 (ja) * 1992-08-20 2001-03-19 富士電機株式会社 固体高分子電解質型燃料電池のセル構造
JPH0689731A (ja) * 1992-09-10 1994-03-29 Fuji Electric Co Ltd 固体高分子電解質型燃料電池発電システム
JP3337295B2 (ja) * 1993-12-21 2002-10-21 三菱重工業株式会社 燃料電池システム
JPH07320753A (ja) * 1994-05-27 1995-12-08 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜型燃料電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861576A (ja) * 1981-09-21 1983-04-12 ウエスチングハウス エレクトリック コ−ポレ−ション 燃料電池装置およびその運転方法
JPH0554900A (ja) * 1991-08-29 1993-03-05 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH0562697A (ja) * 1991-08-30 1993-03-12 Yamaha Motor Co Ltd 車載型燃料電池
JPH05187749A (ja) * 1992-01-14 1993-07-27 Tlv Co Ltd 減圧冷却装置
JPH06338338A (ja) * 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd 燃料電池の高分子イオン交換膜の加湿方法
JPH0714597A (ja) * 1993-06-07 1995-01-17 Daimler Benz Ag 燃料電池装置の運転用プロセスガスに加湿する方法及び装置
JPH0755315A (ja) * 1993-08-12 1995-03-03 Tlv Co Ltd 減圧冷却装置
JPH07220746A (ja) * 1994-02-07 1995-08-18 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池
JPH07226222A (ja) * 1994-02-15 1995-08-22 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池の加湿システム
JPH08222254A (ja) * 1995-02-17 1996-08-30 Tanaka Kikinzoku Kogyo Kk 固体高分子電解質型燃料電池に於けるガスの加湿方法、加湿スタック構造及び加湿ノズル
JPH08315839A (ja) * 1995-05-18 1996-11-29 Sanyo Electric Co Ltd 固体高分子型燃料電池及び固体高分子型燃料電池システム
JPH0977707A (ja) * 1995-09-13 1997-03-25 Hironori Ishikawa 水熱法によるメタノール等の燃料用アルコール類の合成法

Also Published As

Publication number Publication date
JPH11317238A (ja) 1999-11-16

Similar Documents

Publication Publication Date Title
US8216736B2 (en) Fuel cell system using evaporative cooling method
JP4543440B2 (ja) 水直噴型燃料電池システム
JP5083234B2 (ja) 燃料電池システム
JP4131038B2 (ja) 燃料電池システム
JP4830852B2 (ja) 燃料電池システム
JPH11317236A (ja) 燃料電池システム
JP4660927B2 (ja) 燃料電池システム
US20080020246A1 (en) Fuel Cell System
US20060073367A1 (en) Fuel cell system
JP4341356B2 (ja) 燃料電池システム
US7267900B2 (en) Fuel cell system
JP2010020924A (ja) 燃料電池システム
JP4501165B2 (ja) 車輌用燃料電池システム
JP4552236B2 (ja) 燃料電池装置
JP4288721B2 (ja) 燃料電池システム
JP2000106206A (ja) 燃料電池システム
JP2000030725A (ja) 燃料電池スタック
JP4544298B2 (ja) 車輌用燃料電池システム
JP2005259440A (ja) 燃料電池システム
JP4553004B2 (ja) 燃料電池スタック
JP4000971B2 (ja) 燃料電池システム
JP2000048842A (ja) 燃料電池システム
JP3831836B2 (ja) 固体高分子形燃料電池発電装置
JP7422122B2 (ja) 燃料電池システム
JP2009238393A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees