JP2005259440A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2005259440A
JP2005259440A JP2004067316A JP2004067316A JP2005259440A JP 2005259440 A JP2005259440 A JP 2005259440A JP 2004067316 A JP2004067316 A JP 2004067316A JP 2004067316 A JP2004067316 A JP 2004067316A JP 2005259440 A JP2005259440 A JP 2005259440A
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
air
oxygen
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004067316A
Other languages
English (en)
Inventor
Keiichi Yoshii
桂一 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004067316A priority Critical patent/JP2005259440A/ja
Publication of JP2005259440A publication Critical patent/JP2005259440A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 発電運転停止後に、省動力で燃料電池内部より水分を除去する。
【解決手段】 燃料電池1の発電運転停止後、エアコンプレッサ31を作動させて空気通路12および水素通路11に空気を流す。この際、エアコンプレッサ31にて吸引して、その空気の圧力を大気圧より低い状態に保つ。これにより、燃料電池1の発電運転停止後、大量の空気を流すことなく、比較的少ない動力で燃料電池1内部の水蒸気分圧を飽和水蒸気分圧以下に維持することができ、それにより、燃料電池1内部の乾燥を促進することができる。
【選択図】 図1

Description

本発明は、水素と酸素との化学反応により電気エネルギー発生させる燃料電池からなる燃料電池システムに関するもので、特に極低温下においても、即時、発電が開始できることが要望される車両用燃料電池システムに好適である。
燃料電池システムにおいて、例えば−30℃の極低温下で燃料電池が即時起動できない原因は、以下に述べる水分の凍結である。
燃料電池の発電運転により発生した水および水蒸気は、発電運転停止後、燃料電池内部に残留する。この状態で極低温度下に放置すると、徐々に燃料電池が冷え、水蒸気も結露して水となり、やがてこれらの水分は凍結する。
燃料電池内部が0℃以上の範囲では、水素通路および空気通路に結露水の滞留が生じる。また、微視的には、燃料電池セルのMEAにおける水素側と空気(酸素)側の拡散層にも滞留する。さらに、燃料電池内部が0℃以下になると、前述の結露水が凍結する。このため、以下の2点の不具合を生じる。
第1に、水素通路や空気通路内部で水分が凍結することで、流路が閉塞する。完全に閉塞する場合には、ガスが流れず、燃料電池は発電を開始できない。また、閉塞が不完全でも、ガスの流動抵抗が増大して、コンプレッサ、および、ポンプの消費動力が増大する。
第2に、MEAの水素側と空気(酸素)側の拡散層上で凍結が生じると、水分の凍結がガス供給を阻むため、該当部分においては水素および酸素が触媒に接触することができず、化学反応が活性化しないために発電できない。
そこで、特許文献1に記載の燃料電池システムでは、低温環境下における凍結を防止するために、燃料電池の発電運転停止後に、燃料電池の空気通路と水素通路に乾燥ガスを加圧供給することで、燃料電池内部を乾燥させるようにしている。
特開2002−208421号公報
ところで、燃料電池内部の乾燥を促進するためには、乾燥時に燃料電池内部の水蒸気分圧が飽和水蒸気分圧より低く保たれる必要がある。しかしながら、特許文献1に記載の燃料電池システムの場合、燃料電池内のガス圧力は必ず大気圧以上になる。したがって、乾燥時に、燃料電池内部の水蒸気分圧を飽和水蒸気分圧以下に維持するために、大量のガスが必要となり、このための消費動力が大きくなってしまうことが問題になっている。
本発明は上記点に鑑みて、省動力で燃料電池内部より水分を除去可能にすることを目的とする。
上記目的を達成するため、請求項1に記載の発明では、水素極に供給される水素と酸素極に供給される酸素とを電気化学反応させて電力を得る燃料電池(1)を備える燃料電池システムであって、酸素極に供給される酸素が通過する空気通路(12)と、水素極に供給される水素が通過する水素通路(11)とを備え、燃料電池(1)の発電運転停止後、空気通路(12)および水素通路(11)の少なくとも一方にガスが流されるとともに、そのガスの圧力が大気圧より低い状態に保たれることを特徴とする。
これによると、燃料電池の発電運転停止後、大量のガスを流すことなく、比較的少ない動力で燃料電池内部の水蒸気分圧を飽和水蒸気分圧以下に維持することができ、それにより、燃料電池内部の乾燥を促進することができる。すなわち、省動力で燃料電池内部より水分を除去することができる。
請求項2に記載の発明では、水素極に供給される水素と酸素極に供給される酸素とを電気化学反応させて電力を得る燃料電池(1)を備える燃料電池システムであって、酸素極に供給される酸素が通過する空気通路(12)と、水素極に供給される水素が通過する水素通路(11)とを備え、燃料電池(1)の発電運転停止後、空気通路(12)および水素通路(11)の少なくとも一方にガスが流されるとともに、燃料電池(1)の温度が所定温度以上に保たれることを特徴とする。
これによると、燃料電池の発電運転停止後、燃料電池内部を流れるガスの飽和水蒸気圧が上昇するため、燃料電池内部の乾燥を促進することができる。
請求項3に記載の発明では、水素極に供給される水素と酸素極に供給される酸素とを電気化学反応させて電力を得る燃料電池(1)を備える燃料電池システムであって、酸素極に供給される酸素が通過する空気通路(12)と、水素極に供給される水素が通過する水素通路(11)とを備え、燃料電池(1)の発電運転停止後、空気通路(12)および水素通路(11)の少なくとも一方にガスが流され、そのガスの圧力が大気圧より低い状態に保たれ、さらに、燃料電池(1)の温度が所定温度以上に保たれることを特徴とする。
これによると、燃料電池の発電運転停止後、大量のガスを流すことなく、比較的少ない動力で燃料電池内部の水蒸気分圧を飽和水蒸気分圧以下に維持することができ、それにより、燃料電池内部の乾燥を促進することができる。すなわち、省動力で燃料電池内部より水分を除去することができる。また、燃料電池の発電運転停止後、燃料電池内部を流れるガスの飽和水蒸気圧が上昇するため、燃料電池内部の乾燥をさらに促進することができる。
請求項4に記載の発明では、燃料電池(1)の発電運転時に酸素極に酸素を供給するとともに、燃料電池(1)の発電運転停止後に空気通路(12)および水素通路(11)の少なくとも一方にガスを流す酸素供給手段(31)を備えることを特徴とする。
これによると、燃料電池の発電運転停止後にガスを流すための手段を新たに設ける必要がないため、システム構成の複雑化を抑制することができる。
請求項5に記載の発明では、燃料電池(1)の発電運転時に酸素極に酸素を供給する酸素供給手段(31A)と、燃料電池(1)の発電運転停止後に空気通路(12)および水素通路(11)の少なくとも一方にガスを流すガス吸引手段(31B)とを備えることを特徴とする。
これによると、ガス供給手段は、酸素供給手段と比較すると少流量でよいので、ガス供給手段として少流量・少動力のものを用いることができ、燃料電池内部の乾燥を促進する際の省動力化を図ることができる。
請求項6に記載の発明では、燃料電池(1)を加熱して燃料電池(1)の温度を所定温度以上に保つ加熱手段(7)を備え、加熱手段はヒートポンプであることを特徴とする。
これによると、ヒートポンプは少ない消費動力で多くの熱が得られるため、燃料電池内部の乾燥を促進する際の省動力化を図ることができる。
請求項7に記載の発明では、燃料電池(1)を加熱して燃料電池(1)の温度を所定温度以上に保つ加熱手段(7A)を備え、加熱手段は電気ヒータであることを特徴とする。
これによると、電気ヒータは他の加熱手段と比較してコンパクトであるため、システムの省スペース化を図ることができる。
請求項8に記載の発明では、燃料電池(1)を加熱して燃料電池(1)の温度を所定温度以上に保つ加熱手段(7A)を備え、加熱手段は、水素極に供給される水素を燃料とする燃焼式ヒータであることを特徴とする。
これによると、ほとんど電力を消費することなく熱を得ることができるため、燃料電池内部の乾燥を促進する際の省動力化を図ることができる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
本発明の第1実施形態について説明する。本実施形態は、燃料電池システムを、燃料電池を電源として走行する電気自動車(燃料電池車両)に適用したものである。
図1は、第1実施形態の燃料電池システムの全体構成を示している。図1に示すように、第1実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する燃料電池(FCスタック)1を備えている。第1実施形態では、燃料電池1として固体高分子電解質型燃料電池を用いており、基本単位となるセルが複数積層されて構成されている。
燃料電池1の単セルは、電解質膜の一方の側面に水素極側拡散層が配置されるとともに、他方の側面に空気(酸素)極側拡散層が配置されたMEA(Membrane Electrode Assembly)と、このMEAを挟持する空気側セパレータおよび水素側セパレータを備えている。
燃料電池1では、水素および空気(酸素)が供給されることにより、水素と酸素の電気化学反応が起こり電気エネルギが発生する。発電した電力は、図示しないインバータを介して、図示しない走行用モータを駆動するための負荷電力、あるいは図示しない二次電池の充電等に用いられる。
燃料電池1には、水素供給装置2より水素が供給され、空気供給装置3から酸素を含んだ空気が供給されるように構成されている。
水素供給装置2は、水素を貯蔵した水素タンク21を備えており、燃料電池1の発電運転中は、水素タンク21から水素供給流路22を介して燃料電池1内の水素通路11に水素が供給可能になっており、燃料電池1に供給された水素のうち反応に用いられなかった未反応水素は、水素排出流路23を介して系外の大気中に排出可能になっている。水素供給流路22中には、水素供給流路22を開閉する水素供給弁24が配置され、水素排出流路23中には、水素排出流路23を開閉する水素排出弁25が配置されている。
空気供給装置3は、電動式のエアコンプレッサ31を備えており、燃料電池1の発電運転中は、エアコンプレッサ31から空気供給流路32を介して、燃料電池1内の空気通路12に空気が供給され、燃料電池1に供給された空気のうち反応に用いられなかった未反応空気は、空気排出流路33を介して排ガスとして燃料電池1より排出される。なお、エアコンプレッサ31は本発明の酸素供給手段に相当する。
空気供給流路32中には、空気供給流路32を開閉する第1、第2空気供給弁34、35が設けられている。第1空気供給弁34は、エアコンプレッサ31よりも上流(空気吸い込み側)に配置され、第2空気供給弁35は、エアコンプレッサ31よりも下流でエアコンプレッサ31と燃料電池1との間に配置されている。空気排出流路33中には、空気排出流路33を開閉する空気排出弁36が配置されている。
燃料電池1の発電運転停止後、空気通路12および水素通路11に大気中の空気を流すために、以下の空気流路41〜45や制御弁51〜55を備えている。
まず、エアコンプレッサ31と第2空気供給弁35との間の空気供給流路32には、第1空気流路41が接続され、第1空気流路41中には、第1空気流路41を開閉する第1制御弁51が配置されている。
第2空気供給弁35と燃料電池1との間の空気供給流路32には、第2空気流路42が接続され、第2空気流路42中には、第2空気流路42を開閉する第2制御弁52が配置されている。
エアコンプレッサ31と第1空気供給弁34との間の空気供給流路32は、第3空気流路43を介して、燃料電池1と空気排出弁36との間の空気排出流路33に接続され、第3空気流路43中には、第3空気流路43を開閉する第3制御弁53が配置されている。
第2空気供給弁35と燃料電池1との間の空気供給流路32は、第4空気流路44を介して、燃料電池1と水素排出弁25との間の水素排出流路23に接続され、第4空気流路44中には、第4空気流路44を開閉する第4制御弁54が配置されている。
燃料電池1と空気排出弁36との間の空気排出流路33は、第5空気流路45を介して、燃料電池1と水素供給弁24との間の水素供給流路22に接続され、第5空気流路45中には、第5空気流路45を開閉する第5制御弁55が配置されている。
燃料電池1では、発電の際の化学反応により水分および熱が発生する。燃料電池1は高い発電効率を得るために発電運転中は適正温度(例えば80℃程度)に維持する必要がある。このため、燃料電池システムには、熱媒体を用いて燃料電池1で発生した熱を系外に放出する冷却システム6が設けられている。なお、第1実施形態では、熱媒体として低温環境下で凍結しない不凍液冷却水を用いている。
冷却システム6は、冷却水を燃料電池1に循環させるための熱媒体流路61中に、冷却水を冷却するための熱交換手段であるラジエータ62と、冷却水流を発生させる電動式のウォータポンプ63が設けられている。燃料電池1を通過した冷却水は熱媒体流路61を介してラジエータ62に循環し、ここで外気(大気)と熱交換され冷却される。冷却水は、燃料電池1を構成する各セルの内部を循環するように構成されている。また、冷却システム6は、ラジエータ62に送風する電動式のファン65、冷却水の温度を検出する温度センサ66を備えている。
燃料電池1は、低い温度では高い発電効率が得られないため、燃料電池1を加熱して燃料電池1の温度を適正下限温度以上に保つ加熱システム7が設けられている。加熱システム7は本発明の加熱手段に相当する。第1実施形態では、加熱システム7としてヒートポンプを用いている。
ヒートポンプ式の加熱システム7は、冷媒流路71中に、冷媒を吸入圧縮する電動式の冷媒圧縮機72、熱交換器(詳細後述)73、熱交換器73から流出した冷媒を減圧する膨張弁74、外気から吸熱して冷媒を蒸発させる蒸発器75、および蒸発器75から流出した冷媒を液相冷媒と気相冷媒とに分離して余剰冷媒を液相冷媒として蓄えるとともに、気相冷媒を圧縮機72に供給する気液分離器76が設けられている。
熱交換器73は、冷却システム6の熱媒体流路61とも接続されており、熱媒体流路61を流れる冷却水と冷媒流路71を流れる冷媒との間で熱交換を行うようになっている。そして、ヒートポンプ式の加熱システム7は、外気から吸熱した熱および冷媒圧縮機72の圧縮仕事量に相当する熱量を、熱交換器73を介して熱媒体流路61の冷却水に与えることにより、冷却水を加熱する。さらに、加熱された冷却水を燃料電池1に循環させて燃料電池1を加熱する。
また、冷却システム6の熱媒体流路61に2つの流量調整弁64、67が設けられ、これらの流量調整弁64、67は、ラジエータ62と熱交換器73に対しての冷却水分配量を調整する。
上記構成になる燃料電池システムの作動を説明する。
まず、燃料電池1の発電運転中の作動について説明する。発電運転中は、エアコンプレッサ31を運転させ、水素供給弁24、水素排出弁25、第1、第2空気供給弁34、35、および空気排出弁36を開弁させ、第1〜第5制御弁51〜55を閉弁させる。
これにより、水素タンク21から水素供給流路22を介して燃料電池1内の水素通路11に水素が供給されるとともに、エアコンプレッサ31から空気供給流路32を介して燃料電池1内の空気通路12に空気が供給され、燃料電池1では電気化学反応が起こり電気エネルギが発生する。
次に、燃料電池1の発電運転停止後の作動、すなわち乾燥運転中の作動について説明する。発電運転停止後は、エアコンプレッサ31を引き続き運転させ、第1〜第5制御弁51〜55を開弁させ、水素供給弁24、水素排出弁25、第1、第2空気供給弁34、35、および空気排出弁36を閉弁させる。
これにより、大気中の空気は、第2空気流路42→第4空気流路44→水素排出流路23→水素通路11→水素供給流路22→第5空気流路45→第3空気流路43→空気供給流路32の順に流れて、エアコンプレッサ31に吸入される。また、大気中の空気は、第2空気流路42→空気供給流路32→空気通路12→空気排出流路33→第3空気流路43→空気供給流路32の順に流れて、エアコンプレッサ31に吸入される。そして、エアコンプレッサ31に吸入された空気は、第1空気流路41から大気中に排出される。なお、発電運転停止後に空気通路12および水素通路11に流す空気は、本発明のガスに相当する。
このように、空気通路12および水素通路11に大気中の空気を流すことにより、燃料電池1内を乾燥させる。この際、エアコンプレッサ31にて吸引するため、燃料電池1内のガス圧力が大気圧以下に低下する。したがって、大量のガスを流すことなく、比較的少ないコンプレッサ動力で燃料電池1内部の水蒸気分圧を飽和水蒸気分圧以下に維持することができ、それにより、燃料電池1内部の乾燥を促進することができる。すなわち、省動力で燃料電池1内部より水分を除去することができる。
また、乾燥運転中、燃料電池1の温度が所定温度(例えば80℃)未満になると、燃料電池1内部を循環する冷却水を加熱システム7にて加熱することにより、燃料電池1の温度を所定温度以上に制御する。これにより、燃料電池1内部を流れる乾燥用ガスの飽和水蒸気圧を上昇させることで、さらに乾燥を促進する。因みに、ヒートポンプ式の加熱システム7は、少ない消費動力で多くの熱が得られるため、燃料電池1内部の乾燥を促進する際の省動力化を図ることができる。
なお、乾燥運転中に空気通路12および水素通路11に流すガスは、大気中の空気を用いるのが望ましいが、水分を含んでいないガスであれば、水素でも酸素でも良い。
(第2実施形態)
本発明の第2実施形態について説明する。図2は第2実施形態に係る燃料電池システムの全体構成図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
第1実施形態では、加熱システム7の熱交換器73で熱媒体流路61の冷却水を加熱し、この冷却水で燃料電池1を間接的に加熱したが、図2に示すように、本実施形態では、加熱システム7の冷媒流路71を循環する冷媒で、直接、燃料電池1を加熱するようにしている。これによると、加熱システム7の熱交換器73が不要である。
(第3実施形態)
本発明の第3実施形態について説明する。図3は第3実施形態に係る燃料電池システムの全体構成図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
第1実施形態では、加熱システム7としてヒートポンプを用いたが、図3に示すように、本実施形態では、加熱システム7Aとして、電気ヒータもしくは燃焼式ヒータを用い、加熱システム7Aにより熱媒体流路61の冷却水を加熱し、この冷却水で燃料電池1を加熱するようにしている。なお、加熱システム7Aは本発明の加熱手段に相当する。
因みに、燃焼式ヒータは、水素極に供給される水素を燃料とするものであり、ほとんど電力を消費することなく熱を得ることができるため、燃料電池1内部の乾燥を促進する際の省動力化を図ることができる。
また、電気ヒータは、他の形式の加熱手段と比較してコンパクトであるため、システムの省スペース化を図ることができる。
(第4実施形態)
本発明の第4実施形態について説明する。図4は第4実施形態に係る燃料電池システムの全体構成図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
第1実施形態では、1台のエアコンプレッサ31を、発電運転時および乾燥運転時で兼用したが、図4に示すように、本実施形態では、発電運転時に燃料電池1内の空気通路12に空気を供給する電動式の主エアコンプレッサ31Aと、乾燥運転時に燃料電池1内の水素通路11および空気通路12に空気を供給する電動式の副エアコンプレッサ31Bとを、備えている。
主エアコンプレッサ31Aは空気供給流路32に配置され、主エアコンプレッサ31Aの下流に第2空気供給弁35が配置されている。副エアコンプレッサ31Bは第3空気流路43に配置されている。なお、主エアコンプレッサ31Aは本発明の酸素供給手段に相当し、副エアコンプレッサ31Bは本発明のガス吸引手段に相当する。
発電運転中は、主エアコンプレッサ31Aを運転させ、副エアコンプレッサ31Bを停止させ、水素供給弁24、水素排出弁25、第2空気供給弁35、および空気排出弁36を開弁させ、第2制御弁52、第4制御弁54、および第5制御弁55を閉弁させる。
これにより、水素タンク21から水素供給流路22を介して燃料電池1内の水素通路11に水素が供給されるとともに、主エアコンプレッサ31Aから空気供給流路32を介して燃料電池1内の空気通路12に空気が供給され、燃料電池1では電気化学反応が起こり電気エネルギが発生する。
発電運転停止後の乾燥運転時は、副エアコンプレッサ31Bを運転させ、主エアコンプレッサ31Aを停止させ、第2制御弁52、第4制御弁54、および第5制御弁55を開弁させ、水素供給弁24、水素排出弁25、第2空気供給弁35、および空気排出弁36を閉弁させる。
これにより、大気中の空気は、第2空気流路42→第4空気流路44→水素排出流路23→水素通路11→水素供給流路22→第5空気流路45→第3空気流路43の順に流れて、副エアコンプレッサ31Bに吸入される。また、大気中の空気は、第2空気流路42→空気供給流路32→空気通路12→空気排出流路33→第3空気流路43の順に流れて、副エアコンプレッサ31Bに吸入される。
このように、副エアコンプレッサ31Bにて吸引して空気通路12および水素通路11に大気中の空気を流すことにより、第1実施形態と同様に、省動力で燃料電池1内部より水分を除去することができる。
また、乾燥運転時は発電運転時と比較すると少流量でよいので、副エアコンプレッサ31Bは少流量・少動力のものを用いることができ、燃料電池1内部の乾燥を促進する際の省動力化を図ることができる。
(第5実施形態)
本発明の第5実施形態について説明する。図5は第5実施形態に係る燃料電池システムの全体構成図である。第4実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
第4実施形態では、加熱システム7としてヒートポンプを用いたが、図5に示すように、本実施形態では、加熱システム7Aとして、電気ヒータもしくは燃焼式ヒータを用いている。なお、加熱システム7Aの具体的構成および作動は第3実施形態と同一である。
(他の実施形態)
上記各実施形態では、乾燥運転時に空気通路12および水素通路11にともに空気を流すようにしたが、乾燥運転時に空気通路12および水素通路11の少なくとも一方に空気を流すようにしても、燃料電池1内部より水分を除去することができる。
本発明の第1実施形態に係る燃料電池システムの全体構成図である。 本発明の第2実施形態に係る燃料電池システムの全体構成図である。 本発明の第3実施形態に係る燃料電池システムの全体構成図である。 本発明の第4実施形態に係る燃料電池システムの全体構成図である。 本発明の第5実施形態に係る燃料電池システムの全体構成図である。
符号の説明
1…燃料電池、11…水素通路、12…空気通路。

Claims (8)

  1. 水素極に供給される水素と酸素極に供給される酸素とを電気化学反応させて電力を得る燃料電池(1)を備える燃料電池システムであって、
    前記酸素極に供給される酸素が通過する空気通路(12)と、
    前記水素極に供給される水素が通過する水素通路(11)とを備え、
    前記燃料電池(1)の発電運転停止後、前記空気通路(12)および前記水素通路(11)の少なくとも一方にガスが流されるとともに、そのガスの圧力が大気圧より低い状態に保たれることを特徴とする燃料電池システム。
  2. 水素極に供給される水素と酸素極に供給される酸素とを電気化学反応させて電力を得る燃料電池(1)を備える燃料電池システムであって、
    前記酸素極に供給される酸素が通過する空気通路(12)と、
    前記水素極に供給される水素が通過する水素通路(11)とを備え、
    前記燃料電池(1)の発電運転停止後、前記空気通路(12)および前記水素通路(11)の少なくとも一方にガスが流されるとともに、前記燃料電池(1)の温度が所定温度以上に保たれることを特徴とする燃料電池システム。
  3. 水素極に供給される水素と酸素極に供給される酸素とを電気化学反応させて電力を得る燃料電池(1)を備える燃料電池システムであって、
    前記酸素極に供給される酸素が通過する空気通路(12)と、
    前記水素極に供給される水素が通過する水素通路(11)とを備え、
    前記燃料電池(1)の発電運転停止後、前記空気通路(12)および前記水素通路(11)の少なくとも一方にガスが流され、そのガスの圧力が大気圧より低い状態に保たれ、さらに、前記燃料電池(1)の温度が所定温度以上に保たれることを特徴とする燃料電池システム。
  4. 前記燃料電池(1)の発電運転時に前記酸素極に酸素を供給するとともに、前記燃料電池(1)の発電運転停止後に前記空気通路(12)および前記水素通路(11)の少なくとも一方にガスを流す酸素供給手段(31)を備えることを特徴とする請求項1ないし3のいずれか1つに記載の燃料電池システム。
  5. 前記燃料電池(1)の発電運転時に前記酸素極に酸素を供給する酸素供給手段(31A)と、
    前記燃料電池(1)の発電運転停止後に前記空気通路(12)および前記水素通路(11)の少なくとも一方にガスを流すガス吸引手段(31B)とを備えることを特徴とする請求項1ないし3のいずれか1つに記載の燃料電池システム。
  6. 前記燃料電池(1)を加熱して前記燃料電池(1)の温度を所定温度以上に保つ加熱手段(7)を備え、前記加熱手段はヒートポンプであることを特徴とする請求項2ないし5のいずれか1つに記載の燃料電池システム。
  7. 前記燃料電池(1)を加熱して前記燃料電池(1)の温度を所定温度以上に保つ加熱手段(7A)を備え、前記加熱手段は電気ヒータであることを特徴とする請求項2ないし5のいずれか1つに記載の燃料電池システム。
  8. 前記燃料電池(1)を加熱して前記燃料電池(1)の温度を所定温度以上に保つ加熱手段(7A)を備え、
    前記加熱手段は、前記水素極に供給される水素を燃料とする燃焼式ヒータであることを特徴とする請求項2ないし5のいずれか1つに記載の燃料電池システム。
JP2004067316A 2004-03-10 2004-03-10 燃料電池システム Withdrawn JP2005259440A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067316A JP2005259440A (ja) 2004-03-10 2004-03-10 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067316A JP2005259440A (ja) 2004-03-10 2004-03-10 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2005259440A true JP2005259440A (ja) 2005-09-22

Family

ID=35084967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067316A Withdrawn JP2005259440A (ja) 2004-03-10 2004-03-10 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2005259440A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305420A (ja) * 2006-05-11 2007-11-22 Honda Motor Co Ltd 燃料電池システム
JP2009158379A (ja) * 2007-12-27 2009-07-16 Nissan Motor Co Ltd 燃料電池システムおよび燃料電池システムの制御方法
JP2009163920A (ja) * 2007-12-28 2009-07-23 Honda Motor Co Ltd 燃料電池システム及びその運転方法
JP2011044335A (ja) * 2009-08-21 2011-03-03 Honda Motor Co Ltd 燃料電池システム
WO2012165097A1 (ja) * 2011-06-01 2012-12-06 コニカミノルタホールディングス株式会社 2次電池型燃料電池システム
US8334077B2 (en) 2006-07-13 2012-12-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell vehicle
EP2702626A1 (en) * 2011-04-26 2014-03-05 United Technologies Corporation Internal steam generation for fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305420A (ja) * 2006-05-11 2007-11-22 Honda Motor Co Ltd 燃料電池システム
JP4612584B2 (ja) * 2006-05-11 2011-01-12 本田技研工業株式会社 燃料電池システム
US8334077B2 (en) 2006-07-13 2012-12-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell vehicle
JP2009158379A (ja) * 2007-12-27 2009-07-16 Nissan Motor Co Ltd 燃料電池システムおよび燃料電池システムの制御方法
US8394546B2 (en) 2007-12-27 2013-03-12 Nissan Motor Co., Ltd. Fuel cell system and control method thereof
JP2009163920A (ja) * 2007-12-28 2009-07-23 Honda Motor Co Ltd 燃料電池システム及びその運転方法
JP2011044335A (ja) * 2009-08-21 2011-03-03 Honda Motor Co Ltd 燃料電池システム
EP2287953B1 (en) * 2009-08-21 2013-09-25 Honda Motor Co., Ltd. Fuel cell system
EP2702626A1 (en) * 2011-04-26 2014-03-05 United Technologies Corporation Internal steam generation for fuel cell
EP2702626A4 (en) * 2011-04-26 2014-12-24 United Technologies Corp INTERNAL STEAM GENERATION FOR A FUEL CELL
WO2012165097A1 (ja) * 2011-06-01 2012-12-06 コニカミノルタホールディングス株式会社 2次電池型燃料電池システム

Similar Documents

Publication Publication Date Title
US8216736B2 (en) Fuel cell system using evaporative cooling method
JP4830852B2 (ja) 燃料電池システム
US10207597B2 (en) Fuel cell system as well as vehicle having such a fuel cell system
JP4341356B2 (ja) 燃料電池システム
JP2006519469A (ja) 部分空気加湿を用いる常圧燃料電池システム
JP2010020924A (ja) 燃料電池システム
US7267900B2 (en) Fuel cell system
JP2012099394A (ja) 燃料電池システム
JP2008059922A (ja) 燃料電池システム
US7037610B2 (en) Humidification of reactant streams in fuel cells
JP2005259440A (ja) 燃料電池システム
JP2006216241A (ja) 燃料電池システム
JP2005093374A (ja) 燃料電池発電システムおよび燃料電池発電システムの停止方法
JP2010129482A (ja) 燃料電池用セパレータ、燃料電池スタック及び燃料電池システム
JP5138889B2 (ja) 燃料電池システム
JP4501165B2 (ja) 車輌用燃料電池システム
JP4939053B2 (ja) 燃料電池システム
KR101405753B1 (ko) 연료전지 차량의 실내 난방 장치
JP2011522359A (ja) 作動効率の改善された燃料電池発電設備
JP2008251216A (ja) 燃料電池システム
JP2008293748A (ja) 燃料電池駆動式冷凍装置
KR102579359B1 (ko) 연료전지를 활용한 독립공간의 공조시스템
JP4698965B2 (ja) 燃料電池システム
JP2008123840A (ja) 燃料電池システム
JP2009009762A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605