JPH0689731A - 固体高分子電解質型燃料電池発電システム - Google Patents

固体高分子電解質型燃料電池発電システム

Info

Publication number
JPH0689731A
JPH0689731A JP4241080A JP24108092A JPH0689731A JP H0689731 A JPH0689731 A JP H0689731A JP 4241080 A JP4241080 A JP 4241080A JP 24108092 A JP24108092 A JP 24108092A JP H0689731 A JPH0689731 A JP H0689731A
Authority
JP
Japan
Prior art keywords
reaction gas
polymer electrolyte
fuel cell
cooling
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4241080A
Other languages
English (en)
Inventor
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4241080A priority Critical patent/JPH0689731A/ja
Publication of JPH0689731A publication Critical patent/JPH0689731A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

(57)【要約】 【目的】熱交換器を用いずに反応ガスを冷却,かつ加湿
できる反応ガスの冷却・加湿手段を備えた固体高分子電
解質型燃料電池発電システムを得る。 【構成】固体高分子電解質膜を挟んでその両面にアノ−
ドおよびカソ−ドを密着して配した単セルの積層体から
なる固体高分子電解質型燃料電池1が、反応ガス2Fが
過剰に持つ熱エネルギ−を水の蒸発潜熱により吸収して
反応ガスを所定の温度に冷却し、かつ生成した水蒸気に
より加湿した反応ガス11Fとしてアノ−ドまたはカソ
−ドに供給する反応ガスの冷却・加湿手段11を備え
る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、固体高分子電解質型
燃料電池発電システム、ことに固体高分子電解質膜の乾
燥を防ぐために、固体高分子電解質型燃料電池の外部に
設けられる反応ガスの冷却および加湿構造に関する。
【0002】
【従来の技術】固体高分子電解質型燃料電池は、プロト
ン(水素イオン)交換基を有する固体高分子電解質膜
と、その両面に触媒層が密着するよう配されたアノ−ド
(燃料電極)およびカソ−ド(酸化剤電極)とからなる
単セルを、両面に反応ガス通路としての凹溝を有するセ
パレ−ト板を介在させて複数層積層したスタックとして
構成され、アノ−ド側に燃料としての水素リッチな燃料
ガス、カソ−ド側に酸化剤としての酸素または空気を前
記反応ガス通路を介して供給することにより、両電極の
触媒層と固体高分子電解質膜との界面に三層界面が形成
され、アノ−ドではH2 →2H+ +2eなる電極反応
が、カソ−ドでは1/2 O2 +2H+ +2e→H 2 Oなる
電極反応が行われ、全体として水素と酸素が反応してカ
ソ−ド側に水が生成するとともに、生成した電子が外部
回路を通って移動することにより発電が行われる。
【0003】固体高分子電解質膜は分子中にプロトン交
換基を持ち、飽和状態に含水させることにより常温で2
0Ω−cm以下の比抵抗を示し、プロトン導電性電解質と
して機能するものであり、固体高分子電解質型燃料電池
では供給する反応ガスを加湿して固体高分子電解質膜を
常に濡れた状態に維持する必要がある。このための反応
ガスの加湿方法としては、固体高分子電解質膜の両側に
水と加湿する気体とを流す内部加湿法または膜加湿法
と、温湯中で反応ガスをバブリングする外部加湿法とが
知られている。
【0004】また、燃料ガスとして天然ガスやメタノ−
ルを燃料改質器で改質した水素リッチな改質ガスを使用
する場合、改質ガスの温度が原燃料が天然ガスである場
合600〜700°C ,メタノ−ルを使用した場合でも
200〜400°C となり、固体高分子電解質型燃料電
池の運転温度である100°C 以下に比べて遙かに高い
ため、燃料ガスの冷却が必要になる。さらに、酸化剤と
して空気を使用する場合、空気をブロワまたはコンプレ
ッサで加圧して供給する際温度が上昇し、例えば4気圧
の場合でも200°C 程度の高温になり、やはり反応空
気の冷却が必要になる。
【0005】図5は固体高分子電解質型燃料電池におけ
る従来の燃料ガスの冷却・加湿方式を示すシステム構成
図、図6は従来の反応空気の冷却・加湿方式を示すシス
テム構成図である。図5において、固体高分子電解質型
燃料電池1のアノ−ド側と燃料改質器2との間には、冷
却水を冷却媒体とする熱交換器4および外部加湿方式に
よる加湿器5が設けられ、改質ガス2Fを燃料電池1の
運転温度近くに冷却し、かつ飽和状態に加湿した燃料ガ
ス5Fとして燃料電池1のアノ−ドに供給するよう構成
される。また、図6において、固体高分子電解質型燃料
電池1のカソ−ド側とコンプレッサ3との間には、冷却
水を冷却媒体とする熱交換器4および外部加湿方式によ
る加湿器5が設けられ、圧縮空気3Aを燃料電池1の運
転温度近くに冷却し、かつ飽和状態に加湿した反応空気
5Aとして燃料電池1のカソ−ドに供給するよう構成さ
れる。
【0006】
【発明が解決しようとする課題】燃料ガスおよび反応空
気(以下併せて反応ガスとよぶ)を冷却・加湿するため
に、別体の熱交換器および加湿器を接地する従来の方式
では、システムの初期コストを上昇させるとともに、装
置の大型化を招くという問題がある。また、冷却のため
の冷却水や加湿のためのヒ−タ−を必要とするために、
システムとしての熱効率の低下、あるいは運転コストの
上昇を招くという問題も発生する。
【0007】この発明の目的は、熱交換器を用いずに反
応ガスを冷却,かつ加湿できる反応ガスの冷却・加湿手
段を備えた固体高分子電解質型燃料電池発電システムを
得ることにある。
【0008】
【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、固体高分子電解質膜を挟んでそ
の両面にアノ−ドおよびカソ−ドを密着して配した単セ
ルの積層体からなり、前記アノ−ドに燃料改質器から燃
料ガスを,前記カソ−ドに酸化剤供給系から酸化剤を供
給することにより発電を行うものにおいて、前記燃料ガ
ス,酸化剤等の反応ガスが過剰に持つ熱エネルギ−を水
の蒸発潜熱により吸収して前記反応ガスを所定の温度に
冷却し、かつ生成した水蒸気により反応ガスを加湿して
固体高分子電解質型燃料電池に供給する反応ガスの冷却
・加湿手段を備えてなるものとする。
【0009】また、反応ガスの冷却・加湿手段が燃料ガ
スの供給系,酸化剤としての反応空気の供給系の両方、
またはいずれか一方に配されてなるものとする。さら
に、反応ガスの冷却・加湿手段が、加圧した水を反応ガ
ス中に噴霧することにより、反応ガスの冷却および加湿
を行うものであることとする。さらにまた、反応ガスの
冷却・加湿手段が、反応ガス通路内に配された多孔質の
保水材からなる蒸発部と、この蒸発部に外部から水を補
給する補給水供給部とからなるものとする。
【0010】
【作用】この発明の構成において、高温の反応ガスが持
つ熱エネルギ−を利用して水を蒸発させることにより反
応ガスを冷却し、かつ生成した水蒸気により反応ガスを
加湿して固体高分子電解質型燃料電池に供給する反応ガ
スの冷却・加湿手段を設けるよう構成したことにより、
発電システムの排熱と、水の大きな蒸発潜熱とを利用し
て反応ガスの冷却を熱交換器を用いることなく効率よく
行えると同時に、水の蒸発が直ちに反応ガスの加湿につ
ながるので外部加湿器も不要になり、熱効率の高い反応
ガスの冷却・加湿手段が得られるとともに、システムの
構成を簡素化する機能が得られる。
【0011】また、反応ガスの冷却・加湿手段を燃料ガ
スの供給系,酸化剤としての反応空気の供給系の両方、
またはいずれか一方に配設するよう構成すれば、燃料ガ
スおよび反応空気それぞれの排熱を利用して反応ガスの
冷却および加湿を効率よく行う機能が得られる。さら
に、反応ガスの冷却・加湿手段を、加圧した水を反応ガ
ス中に噴霧することにより、反応ガスの冷却および加湿
を行うよう構成すれば、高圧で噴霧した細粒化した霧が
高温の反応ガスに直接接触して直ちに蒸発するので、そ
の蒸発潜熱により反応ガスを効率よく冷却できると同時
に反応ガスを加湿する機能が得られる。
【0012】さらにまた、反応ガスの冷却・加湿手段
を、反応ガス通路内に配された多孔質の保水材からなる
蒸発部と、この蒸発部に外部から水を補給する補給水供
給部とで構成すれば、面積の大きい保水材の表面を熱交
換面として水の蒸発潜熱により反応ガスを冷却すると同
時に反応ガスを加湿する機能が得られる。
【0013】
【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池発電システ
ムの燃料ガス供給系を示すシステム構成図であり、以下
従来技術と同じ構成部分には同一参照符号を付すことに
より、重複した説明を省略する。図において、固体高分
子電解質型燃料電池1のアノ−ドと燃料改質器2との間
には、燃料ガス2Fの冷却・加湿手段11が設けられ
る。燃料ガス2Fの温度を340°C ,その圧力を1.
13ata ,流量を1.0Nm3/min,水蒸気濃度を0.1
3Nm3/minとした場合、冷却・加湿手段により毎分16
0cm3 の水を添加することで燃料ガスの温度は燃料電池
1の運転温度より低い70°C に冷却されるとともに、
0.33Nm3/minの水蒸気を含むほぼ飽和状態の燃料ガ
ス11Fを固体高分子電解質型燃料電池1のアノ−ドに
供給できるので、固体高分子電解質膜の乾燥を防ぐとと
もに、従来技術で必要とした熱交換器4および外部加湿
器5を排除して発電システムの構成を簡素化できる利点
が得られる。
【0014】図2はこの発明の異なる実施例になる燃料
電池発電システムの反応空気供給系を示すシステム構成
図であり、固体高分子電解質型燃料電池1のカソ−ドと
コンプレッサ3との間には、反応空気3Aの冷却・加湿
手段11が設けられる。反応空気3Aの温度を213°
C ,その圧力を4ata ,流量を1.0Nm3/min,水蒸気
濃度を0.02Nm3/minとした場合、冷却・加湿手段に
より毎分74cm3 の水を添加することで反応空気の温度
は燃料電池1の運転温度より低い75°C に冷却される
とともに、0.113Nm3/minの水蒸気を含むほぼ飽和
状態の反応空気11Aを固体高分子電解質型燃料電池1
のカソ−ドに供給できるので、固体高分子電解質膜の乾
燥を防ぐとともに、従来技術で必要とした熱交換器4お
よび外部加湿器5を排除して発電システムの構成を簡素
化できる利点が得られる。
【0015】図3はこの発明の実施例になる反応ガスの
冷却・加湿手段を模式化して示す断面図であり、噴霧式
冷却・加湿手段11は10ata程度に加圧した加圧水1
3を反応ガス通路15内に噴霧する圧力噴霧ノズル12
を備える。反応ガス通路内で霧化した水の粒子は、高温
燃料ガス2Fまたは反応空気3Aいずれかの反応ガスと
直接接触して直ちに蒸発し、その蒸発潜熱により反応ガ
スを冷却すると同時に反応ガスを加湿し、水分がほぼ飽
和状態の反応ガスとして固体高分子電解質型燃料電池1
のアノ−ドまたはカソ−ドに供給する。したがって、噴
霧式冷却・加湿手段11は、冷却しようとする反応ガス
が余分に持つ熱エネルギ−を、霧化した水滴の蒸発潜熱
として吸収することにより、反応ガスの冷却および加湿
を同時に行う合理的で構成が簡素装置となるので、従来
の技術で必要とした熱交換器や加湿器を排除して発電シ
ステムの構成を簡素化できるとともに、冷却水や加湿用
の熱源を必要としないので、発電装置の初期コストの低
減および熱効率の向上にも貢献できる利点が得られる。
【0016】図4はこの発明の異なる実施例になる反応
ガスの冷却・加湿手段を模式化して示す断面図であり、
蒸発式冷却・加湿手段21は、反応ガス通路15内に配
された多孔質の保水材からなる蒸発部22と、この蒸発
部に外部から水を補給する補給水供給部23とを備え
る。面積の大きい保水材の表面を熱交換面として水の蒸
発潜熱により反応ガスを冷却すると同時に反応ガスを加
湿する機能が得られる。なお、保水材としては耐熱性に
優れた多孔質カ−ボン材,金属網の充填体等が適してお
り、これらの保水材を同軸状あるいは互いに平行した膜
状に配置して蒸発表面積を拡張することにより、小型か
つ構成が簡素で特別の熱源を必要としない反応ガスの冷
却・加湿手段を得ることができる。
【0017】
【発明の効果】この発明は前述のように、反応ガスの供
給系に噴霧式または蒸発式の冷却・加湿手段を設けるよ
う構成した。その結果、冷却・加湿手段が冷却しようと
する反応ガスが余分に持つ熱エネルギ−を、霧化した水
滴の蒸発潜熱として吸収して反応ガスの冷却および加湿
を同時に行う合理的で構成が簡素な反応ガスの冷却・加
湿手段を備え、従来の技術で必要とした熱交換器や加湿
器、およびその熱源を排除して発電システムの初期コス
トおよび運転コストを低減できるとともに、固体高分子
電解質膜の乾燥を防止して固体高分子電解質型燃料電池
の発電性能を安定して維持できる効果が得られる。
【図面の簡単な説明】
【図1】この発明の実施例になる燃料電池発電システム
の燃料ガス供給系を示すシステム構成図
【図2】この発明の異なる実施例になる燃料電池発電シ
ステムの反応空気供給系を示すシステム構成図
【図3】この発明の実施例になる反応ガスの冷却・加湿
手段を模式化して示す断面図
【図4】この発明の異なる実施例になる反応ガスの冷却
・加湿手段を模式化して示す断面図
【図5】固体高分子電解質型燃料電池における従来の燃
料ガスの冷却・加湿方式を示すシステム構成図
【図6】従来の反応空気の冷却・加湿方式を示すシステ
ム構成図
【符号の説明】
1 固体高分子電解質型燃料電池 2 燃料改質器 2F 燃料ガス(高温,未加湿) 3 コンプレッサ 3A 反応空気(高温,未加湿) 4 熱交換器 5 加湿器 11 噴霧式冷却・加湿手段 11A 反応空気(冷却,加湿済) 11F 燃料ガス(冷却,加湿済) 12 圧力噴霧ノズル 13 加圧水 14 霧化した水 15 反応ガス通路 21 蒸発式冷却・加湿手段 22 蒸発部(多孔質保水材) 23 補給水供給部

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】固体高分子電解質膜を挟んでその両面にア
    ノ−ドおよびカソ−ドを密着して配した単セルの積層体
    からなり、前記アノ−ドに燃料改質器から燃料ガスを,
    前記カソ−ドに酸化剤供給系から酸化剤を供給すること
    により発電を行うものにおいて、前記燃料ガス,酸化剤
    等の反応ガスが過剰に持つ熱エネルギ−を水の蒸発潜熱
    により吸収して前記反応ガスを所定の温度に冷却し、か
    つ生成した水蒸気により反応ガスを加湿して固体高分子
    電解質型燃料電池に供給する反応ガスの冷却・加湿手段
    を備えてなることを特徴とする固体高分子電解質型燃料
    電池発電システム。
  2. 【請求項2】反応ガスの冷却・加湿手段が燃料ガスの供
    給系に配されてなることを特徴とする請求項1記載の固
    体高分子電解質型燃料電池発電システム。
  3. 【請求項3】反応ガスの冷却・加湿手段が酸化剤として
    の反応空気の供給系に配されてなることを特徴とする請
    求項1記載の固体高分子電解質型燃料電池発電システ
    ム。
  4. 【請求項4】反応ガスの冷却・加湿手段が、加圧した水
    を反応ガス中に噴霧することにより、反応ガスの冷却お
    よび加湿を行うものであることを特徴とする請求項1記
    載の固体高分子電解質型燃料電池発電システム。
  5. 【請求項5】反応ガスの冷却・加湿手段が、反応ガス通
    路内に配された多孔質の保水材からなる蒸発部と、この
    蒸発部に外部から水を補給する補給水供給部とを備えて
    なることを特徴とする請求項1記載の固体高分子電解質
    型燃料電池発電システム。
JP4241080A 1992-09-10 1992-09-10 固体高分子電解質型燃料電池発電システム Pending JPH0689731A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4241080A JPH0689731A (ja) 1992-09-10 1992-09-10 固体高分子電解質型燃料電池発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4241080A JPH0689731A (ja) 1992-09-10 1992-09-10 固体高分子電解質型燃料電池発電システム

Publications (1)

Publication Number Publication Date
JPH0689731A true JPH0689731A (ja) 1994-03-29

Family

ID=17068997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4241080A Pending JPH0689731A (ja) 1992-09-10 1992-09-10 固体高分子電解質型燃料電池発電システム

Country Status (1)

Country Link
JP (1) JPH0689731A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317238A (ja) * 1997-12-22 1999-11-16 Aqueous Reserch:Kk 車輌用燃料電池システム
JP2000243422A (ja) * 1999-02-23 2000-09-08 Toyota Motor Corp 燃料電池システムおよび燃料電池の冷却方法
JP2001052717A (ja) * 1999-08-03 2001-02-23 Equos Research Co Ltd 燃料電池用空気極
JP2001332279A (ja) * 1999-11-17 2001-11-30 Equos Research Co Ltd 燃料電池装置
JP2002003206A (ja) * 2000-06-14 2002-01-09 Toyota Motor Corp 燃料改質装置
JP2002015760A (ja) * 1997-12-22 2002-01-18 Equos Research Co Ltd 燃料電池装置
JP2002516469A (ja) * 1998-05-20 2002-06-04 フオルクスワーゲン・アクチエンゲゼルシヤフト 燃料電池装置と燃料電池装置によって電気エネルギーを発生する方法
WO2004062016A1 (ja) * 2002-12-26 2004-07-22 Sony Corporation 水素ガス湿度制御装置、燃料電池、水素ガス湿度制御方法および燃料電池の湿度制御方法
CN102132449A (zh) * 2008-11-12 2011-07-20 松下电器产业株式会社 燃料电池
CN102195058A (zh) * 2010-03-17 2011-09-21 株式会社日立制作所 固体高分子形燃料电池
US8920987B2 (en) 2009-08-26 2014-12-30 Hyundai Motor Company Fuel cell system with improved humidification performance
JP2019102170A (ja) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 冷却装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015760A (ja) * 1997-12-22 2002-01-18 Equos Research Co Ltd 燃料電池装置
JPH11317238A (ja) * 1997-12-22 1999-11-16 Aqueous Reserch:Kk 車輌用燃料電池システム
JP2002516469A (ja) * 1998-05-20 2002-06-04 フオルクスワーゲン・アクチエンゲゼルシヤフト 燃料電池装置と燃料電池装置によって電気エネルギーを発生する方法
JP2000243422A (ja) * 1999-02-23 2000-09-08 Toyota Motor Corp 燃料電池システムおよび燃料電池の冷却方法
JP2001052717A (ja) * 1999-08-03 2001-02-23 Equos Research Co Ltd 燃料電池用空気極
JP2001332279A (ja) * 1999-11-17 2001-11-30 Equos Research Co Ltd 燃料電池装置
JP4686813B2 (ja) * 1999-11-17 2011-05-25 株式会社エクォス・リサーチ 燃料電池装置
JP2002003206A (ja) * 2000-06-14 2002-01-09 Toyota Motor Corp 燃料改質装置
WO2004062016A1 (ja) * 2002-12-26 2004-07-22 Sony Corporation 水素ガス湿度制御装置、燃料電池、水素ガス湿度制御方法および燃料電池の湿度制御方法
CN102132449A (zh) * 2008-11-12 2011-07-20 松下电器产业株式会社 燃料电池
US8920987B2 (en) 2009-08-26 2014-12-30 Hyundai Motor Company Fuel cell system with improved humidification performance
CN102195058A (zh) * 2010-03-17 2011-09-21 株式会社日立制作所 固体高分子形燃料电池
JP2011192617A (ja) * 2010-03-17 2011-09-29 Hitachi Ltd 固体高分子形燃料電池
JP2019102170A (ja) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 冷却装置

Similar Documents

Publication Publication Date Title
JP3352716B2 (ja) 固体高分子電解質型燃料電池装置
US6432566B1 (en) Direct antifreeze cooled fuel cell power plant
JP3203150B2 (ja) 固体高分子型燃料電池及び固体高分子型燃料電池システム
US6007931A (en) Mass and heat recovery system for a fuel cell power plant
US6045934A (en) Solid polymer electrolyte fuel cell
US3507702A (en) Fuel cell system including cooling and humidifying means
JP3610892B2 (ja) 燃料電池
US20030170527A1 (en) Temperature sensitive adsorption oxygen enrichment system
JPH0554900A (ja) 固体高分子電解質型燃料電池
WO2001020701A1 (en) Fine pore enthalpy exchange barrier for a fuel cell power plant
WO2000054350A1 (en) Water management system for fuel cell
JPH0689731A (ja) 固体高分子電解質型燃料電池発電システム
JP3685936B2 (ja) 固体高分子型燃料電池システム
JPH09180743A (ja) 固体高分子形燃料電池
JPH06325780A (ja) 燃料電池システム
JPH11242962A (ja) 燃料電池装置
JP3111682B2 (ja) 固体高分子電解質型燃料電池システム
JP4552236B2 (ja) 燃料電池装置
JP2000277128A (ja) 固体高分子型燃料電池
JPH11214022A (ja) 燃料電池発電装置
JP2001176529A (ja) 固体高分子型燃料電池本体および固体高分子型燃料電池発電システム
US6350535B1 (en) Mist evaporation system for fuel cell hydration
JPH10106593A (ja) 固体高分子型燃料電池,その運転方法及び固体高分子型燃料電池システム
JPH0864218A (ja) 固体高分子電解質型燃料電池の運転方法
JP2718239B2 (ja) 固体高分子電解質型燃料電池発電装置