JP4499132B2 - 光源およびwdm光通信システム - Google Patents

光源およびwdm光通信システム Download PDF

Info

Publication number
JP4499132B2
JP4499132B2 JP2007119363A JP2007119363A JP4499132B2 JP 4499132 B2 JP4499132 B2 JP 4499132B2 JP 2007119363 A JP2007119363 A JP 2007119363A JP 2007119363 A JP2007119363 A JP 2007119363A JP 4499132 B2 JP4499132 B2 JP 4499132B2
Authority
JP
Japan
Prior art keywords
output
light
laser diode
wavelength
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007119363A
Other languages
English (en)
Other versions
JP2008278200A (ja
Inventor
智久 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007119363A priority Critical patent/JP4499132B2/ja
Priority to US12/109,972 priority patent/US7642495B2/en
Publication of JP2008278200A publication Critical patent/JP2008278200A/ja
Application granted granted Critical
Publication of JP4499132B2 publication Critical patent/JP4499132B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • G01J1/30Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors
    • G01J1/32Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source using electric radiation detectors adapted for automatic variation of the measured or reference value

Description

この発明は、WDM光通信システムおよびこのWDM光通信システムに用いられる光源に関する。
光伝送システムの一方式として、波長分割多重(WDM:Wavelength Division Multiplex)方式が知られている。図9は、従来のWDM方式に用いられる光源の構成を示すブロック図である。図9に示すように、従来の光源1は、モニタ用のフォトダイオード(以下、PDとする)2およびLD出力光モニタ3によりレーザーダイオード(以下、LDとする)4の出力光パワーを監視し、波長ロッカ5および波長モニタ6により出力光の波長を監視する。そして、光出力アラーム検出部7または波長アラーム検出部8が出力光パワーのモニタ値または波長のモニタ値の異常を検出すると、光パワー制御部9により光出力が瞬時に遮断(シャットダウン)される。
ところで、WDM方式では、伝送距離の長距離化を図るために、伝送線路内にEDF(Erbium Doped Fiber)光増幅器が配置される。このEDF光増幅器には、波長の異なる複数の出力光が合波されて入力される。光送信側で波長多重された光信号は、EDF光増幅器において増幅される。EDF光増幅器では、自動利得制御(AGC:Automatic Gain Control)機能により、入力波(あるいは入力光パワー)が増えるとEDFに注入する励起光の量が増え、入力波長数が減ると励起光の量が減ることによって、出力光パワーが一定になるように制御される。
図10は、従来の光源を用いた場合の伝送線路における光変動を説明する模式図である。図10に示すように、ある波長の光源において、出力光パワーのモニタ値に異常が検出されると、その異常が検出された光源のLDモジュールの出力光パワー11が瞬時に遮断される。それによって、EDF光増幅器への入力光パワー12が、遮断された光源の出力光パワー分だけ急激に下がる。
EDF光増幅器への入力光パワーが下がっても、その下がった分の励起光がEDF内から放出されるまでに時間(EDF励起放出時定数)がかかり、その間、EDF光増幅器は、増幅率の高い状態となる。そのため、EDF光増幅器の出力光パワー13が一時的に高い状態になる。その後、自動利得制御機能が正常に機能するまでの期間(自動利得制御回路追従時定数)、EDF光増幅器の出力光パワー13が不安定になる。その影響で、EDF光増幅器の出力光パワーにおける、遮断された光源以外の出力光パワー14が一時的に変動する。
しかし、WDM方式の光伝送システムでは、ある波長の光源において異常が発生しても、他の波長の出力光パワーに影響を及ぼさないことが要求される。そのためには、ある波長の光源の光出力が遮断されても、EDF光増幅器の出力光パワーが大きく変動しないようにする必要がある。そこで、EDF光増幅器の光入力段に光減衰器と光入力モニタを設け、EDF光増幅器への入力光パワーの変動量に基づいて光減衰器を可変させることによって、入力光パワーの急激な変動を吸収し、EDF光増幅器の出力光パワーの一時的な変動を抑圧するようにしたEDF光増幅器が公知である(例えば、特許文献1参照。)。
特開平11−112435号公報
しかしながら、上述した従来の光源では、モニタ値の異常を検出した場合、その原因が各種モニタの異常にあり、LDの光出力が制御可能な状態にある場合でも、一律に光出力が遮断される。そのため、前記特許文献1に記載された構成のEDF光増幅器を用いない場合には、LDの光出力を制御できる状態にあるにもかかわらず、EDF光増幅器で一時的に大きなレベル変動が発生するという問題がある。また、前記特許文献1に記載された構成のEDF光増幅器を用いる場合には、EDF光増幅器の光入力段に光減衰器と光入力モニタを設ける必要があり、部品点数が増え、構成が複雑になるという問題がある。
この発明は、上述した従来技術による問題点を解消するため、モニタ値の異常検出時に、その異常の状態に合わせてLDの光出力を制御することができる光源を提供することを目的とする。また、この発明は、モニタ値の異常検出による光出力の遮断が原因で発生するEDF光増幅器の出力光パワーのレベル変動を簡易な構成で抑制することができる光源およびWDM光通信システムを提供することを目的とする。
本発明にかかる光源は、出力パワーが一定になるように制御しても、入力パワーが急激に変化した場合には前記出力パワーが変化し、当該出力パワーが一定値に復帰するまでに一定の時間を要するエルビウムドープ光ファイバ増幅器を具備するWDM光通信システムの信号伝送用光源として用いられる光源において、レーザーダイオードと、前記レーザーダイオードの動作状態に関する第1の特性を監視する第1の監視手段と、前記レーザーダイオードの動作状態に関する、前記第1の特性とは異なる第2の特性を監視する第2の監視手段と、前記第1および第2の監視手段の監視結果に基づき前記レーザーダイオードの動作を制御する制御手段を備え、前記制御手段は、前記第1の特性の値および前記第2の特性の値の両方の異常を検出したとき、前記レーザーダイオードの光出力を瞬時に減衰させ、前記第1の特性の値および前記第2の特性の値のいずれか一方のみが異常である場合に、前記レーザーダイオードの光出力が前記エルビウムドープ光ファイバ増幅器の出力パワーが前記一定値に復帰するまでの前記一定の時間より長い時間を経過後遮断されるように、前記レーザーダイオードの光出力を徐々に減衰させることを特徴とする。
また、本発明にかかる光源は、LDの出力光の波長と、LDの温度を、独立して監視し、その両方または一方が異常であるときに、上述した判断と同様の判断により、LDの光出力を制御する。あるいは、本発明にかかる光源は、波長チューニング素子により調整されたLDの出力光の波長と、波長チューニング素子の印加電圧を、独立して監視し、その両方または一方が異常であるときに、上述した判断と同様の判断により、LDの光出力を制御する。
この発明によれば、異なる2系統でLDの動作状態を監視するので、モニタ値の異常を検出した場合に、実際にLDの動作状態が異常であるのか、あるいは、LDは正常に動作しているが、モニタ系統に異常が起こっているのか、ということを判断することができる。従って、その判断に応じて、LDの光出力を瞬時に減衰させたり、LDの光出力を徐々に減衰させたりすることができる。LDの光出力を徐々に減衰させる場合、LDの光出力減衰時定数がWDM光通信システムに設けられたEDF光増幅器の追従時定数以上になるように減衰させることにより、当該LDの出力光の消滅に起因してEDF中に励起光が残留するのを防ぐことができる。従って、EDF光増幅器の出力光パワーにおける、他のWDM光の光源の出力光パワーが一時的に変動するのを防ぐことができる。
本発明によれば、モニタ値の異常検出時に、その異常の状態に合わせてLDの光出力を制御することができるという効果を奏する。また、この発明は、モニタ値の異常検出による光出力の遮断が原因で発生するWDM通信システムのEDF光増幅器の出力光パワーのレベル変動を簡易な構成で抑制することができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる光源およびWDM光通信システムの好適な実施の形態を詳細に説明する。なお、以下の説明において、同様の構成には同一の符号を付して、重複する説明を省略する。
(実施の形態1)
図1は、この発明の実施の形態1にかかる光源の構成を示すブロック図である。図1に示すように、光源21は、レーザー光を出力するLDモジュール22、LDモジュール22の動作を制御するLD制御ブロック23、LDモジュール22の出力光を変調する外部変調器であるLN変調器24、LN変調器24の動作を制御するLN制御ブロック25、および異常の発生を検出するアラーム検出制御ブロック26を備えている。
LDモジュール22は、LD31およびモニタ用のPD32を備えている。LD31は、前方へ主出力光を出力するとともに、後方へモニタ用出力光を出力する。ここで、LD31の前方とは、LDモジュール22から出力光を出力する側のことである。PD32は、モニタ用出力光を電流信号に変換する。この電流信号は、モニタ用出力光のパワーに応じて変化する。
前記LD制御ブロック23は、LD出力光モニタ33、LDドライバ34、電流モニタ35および光パワー制御部36を備えている。LD出力光モニタ33は、PD32の出力信号に基づいて、モニタ用出力光のパワーを監視する。従って、PD32およびLD出力光モニタ33は、第1の監視手段としての機能を有する。LDドライバ34は、LD31を動作させるための駆動信号を出力する。LD31の出力パワーは、この駆動信号により制御される。
電流モニタ35は、LDドライバ34の出力電流を監視する。光パワー制御部36は、LD出力光モニタ33の出力信号および電流モニタ35の出力信号に基づいて、制御信号を出力する。LDドライバ34は、この制御信号に基づいて、LD31の駆動信号を出力する。通常の定常安定動作状態においては、PD32、LD出力光モニタ33、光パワー制御部36およびLDドライバ34による自動出力制御(APC:Automatic Power Control)が行われている。
前記LN変調器24は、マッハツェンダー構成の変調部37およびモニタ用のPD38を備えている。変調部37は、LD31の主出力光を変調する。PD38は、位相変調部37の出力光を電流信号に変換する。この電流信号は、位相変調部37の出力光パワーに応じて変化する。
前記LN制御ブロック25は、変調器出力モニタ39、バイアス制御部40、バイアス回路41および変調信号ドライバ42を備えている。変調器出力モニタ39は、PD38の出力信号に基づいて、位相変調部37の出力光パワーを監視する。従って、PD38および変調器出力モニタ39は、第2の監視手段としての機能を有する。バイアス制御部40は、変調器出力モニタ39の出力信号に基づいて、制御信号を出力する。
バイアス回路41は、バイアス制御部40の出力信号に基づいて、位相変調部37にバイアス電圧を印加する。通常の定常安定動作状態においては、PD38、変調器出力モニタ39、バイアス制御部40およびバイアス回路41による自動バイアス制御(ABC)が行われている。また、バイアス回路41は、変調信号ドライバ42から供給される変調信号に基づいて、位相変調部37におけるLD31の主出力光の位相を制御する。この主出力光の位相制御によって、主出力光が変調される。
前記アラーム検出制御ブロック26は、光出力アラーム検出部43を備えている。光出力アラーム検出部43は、LD出力光モニタ33の出力信号および変調器出力モニタ39の出力信号に基づいて、光源21の異常を検出する。そして、光出力アラーム検出部43は、検出した異常の内容に応じて、LD31の光出力を瞬時に減衰させるか、またはLD31の光出力を徐々に減衰させるか、を判断する。従って、光出力アラーム検出部43は、検出手段としての機能を有する。光出力アラーム検出部43は、その判断の結果に基づいて、光パワー制御部36に制御信号を出力する。
光パワー制御部36は、光出力アラーム検出部43の出力信号に基づいて、LD31の光出力を瞬時に減衰させるか、またはLD31の光出力を徐々に減衰させる。LD31の光出力を徐々に減衰させる場合、光パワー制御部36は、前記EDF励起放出時定数と前記自動利得制御回路追従時定数を足した時定数以上の時定数で、LD31の光出力を徐々に減衰させる。
図2は、この発明の実施の形態1にかかる光源の異常検出時の光出力停止処理手順を示すフローチャートである。図2に示すように、通常の定常安定動作状態においては、上述した自動出力制御(APC)が行われており、LD31の出力光パワーは安定している(ステップS1)。この状態で、光出力アラーム検出部43は、LD出力光モニタ33の値を取得し(ステップS2)、出力光パワーのモニタ値の異常を検出したか否かを判断する(ステップS3)。出力光パワーのモニタ値の異常を検出できない場合(ステップS3:No)、ステップS1に戻る。
出力光パワーのモニタ値の異常を検出した場合(ステップS3:Yes)、光出力アラーム検出部43は、光パワー制御部36がLDドライバ34に印加する電圧を、異常検出直前の値に固定化する(ステップS4)。これによって、出力光パワーのフィードバック制御(APC)が停止する。次いで、光出力アラーム検出部43は、変調器出力モニタ39の値を取得し、確認する(ステップS5)。次いで、光出力アラーム検出部43は、変調器出力モニタ39の値が正常範囲内にあるか否かを判断する(ステップS6)。
正常範囲内である場合(ステップS6:Yes)、光出力アラーム検出部43は、LD出力光モニタ機能の異常であると判断する。この場合、LD31は、光パワー制御部36およびLDドライバ34による制御が可能な状態にあると推測される。従って、光出力アラーム検出部43は、前記EDF励起放出時定数と前記自動利得制御回路追従時定数を足した時定数以上の時定数で、LD31の出力光が徐々に減衰するように、光パワー制御部36がLDドライバ34に印加する電圧を制御する(ステップS7)。これによって、LD31の出力光を徐々に減衰させて停止させることができる(ステップS9)。
一方、変調器出力モニタ39の値が正常範囲外である場合(ステップS6:No)、光出力アラーム検出部43は、LD出力制御機能の異常であると判断する。この場合には、LD31は、光パワー制御部36およびLDドライバ34による制御が不能な状態にあると推測される。従って、光出力アラーム検出部43は、LD31の出力光が瞬時に減衰するように、光パワー制御部36がLDドライバ34に印加する電圧を制御する(ステップS8)。これによって、LD31の出力光を瞬時に停止させることができる(ステップS9)。
図3は、この発明の実施の形態1にかかる光源を用いたシステムの伝送線路における光変動を説明する模式図である。図3に示すように、ある波長の光源において、出力光パワーのモニタ値が上昇して閾値に達し、異常が検出されると、異常状態診断期間の後、その異常が検出された光源のLDモジュールの出力光パワー51が、前記EDF励起放出時定数と前記自動利得制御回路追従時定数を足した時定数以上の時定数で、徐々に低下し、出力光が停止する。
それによって、異常状態診断期間の後、EDF光増幅器への入力光パワー52が徐々に下がり、異常のあった光源の出力光パワー分だけ低くなる。それに伴って、EDF光増幅器の出力光パワー53も、異常状態診断期間の後、徐々に下がり、異常のあった光源の出力光パワー分だけ低くなる。この間、EDF光増幅器の出力光パワーにおける、異常のあった光源以外の出力光パワー54は、一定のままである。
実施の形態1によれば、モニタ用出力光のパワーのモニタ値が異常であることを検出した場合に、主出力光のパワーのモニタ値を確認することにより、実際にLD31の動作状態が異常であるのか、あるいは、LD31は正常に動作しているが、モニタ系統に異常が起こっているのか、ということを判断することができる。その判断結果に基づいて、LD31は正常であるが、モニタ系統が異常である場合には、LD31の光出力を徐々に減衰させることができるので、当該LD31の出力光の消滅に起因してEDF中に励起光が残留するのを防ぐことができる。
従って、EDF光増幅器の出力光パワーにおける、他の光源の出力光パワーが一時的に変動するのを防ぐことができる。また、主出力光のパワーのモニタ値が異常であるが、モニタ用出力光のパワーのモニタ値が正常である場合も、LD31は正常であるが、モニタ系統が異常であると判断できるので、LD31の光出力を徐々に減衰させることができる。なお、LN変調器24およびLN制御ブロック25とは別に、主出力光のパワーの監視を行うモニタ機能を設けてもよい。
(実施の形態2)
図4は、この発明の実施の形態2にかかる光源の構成を示すブロック図である。図4に示すように、実施の形態2の光源61では、実施の形態1の光源の構成に加えて、LDモジュール22に、波長によって透過率が変化するフィルタ等で構成される波長ロッカ62、ペルチェ素子等の熱電クーラ(TEC:Thermoelectric Cooler)63、およびサーミスタ抵抗(Rth)等の温度センサ64が設けられている。また、LD制御ブロック23に、熱電クーラドライバ(TECドライバ)65、温度モニタ66、波長モニタ67および波長制御部68が設けられている。また、アラーム検出制御ブロック26には、光出力アラーム検出部の代わりに、波長アラーム検出部69が設けられている。
波長モニタ67は、波長ロッカ62の出力信号に基づいて、LD31の出力光の波長を監視する。従って、波長ロッカ62および波長モニタ67は、第1の監視手段としての機能を有する。温度モニタ66は、温度センサ64の出力信号に基づいて、熱電クーラ63の温度を監視する。LD31は、熱電クーラ63の上に設置されているので、熱電クーラ63の温度は、LD31の温度に等しい。従って、温度センサ64および温度モニタ66は、第2の監視手段としての機能を有する。
波長制御部68は、温度モニタ66の出力信号および波長モニタ67の出力信号に基づいて、制御信号を出力する。熱電クーラドライバ65は、この制御信号に基づいて、熱電クーラ63の駆動信号を出力する。通常の定常安定動作状態においては、波長ロッカ62、波長モニタ67、温度センサ64、温度モニタ66、波長制御部68、熱電クーラドライバ65および熱電クーラ63による自動周波数制御(AFC:Automatic frequency control)が行われている。
波長アラーム検出部69は、波長モニタ67の出力信号および温度モニタ66の出力信号に基づいて、光源61の異常を検出する。そして、波長アラーム検出部69は、検出した異常の内容に応じて、LD31の光出力を瞬時に減衰させるか、またはLD31の光出力を徐々に減衰させるか、を判断する。従って、波長アラーム検出部69は、検出手段としての機能を有する。波長アラーム検出部69は、その判断の結果に基づいて、光パワー制御部36に制御信号を出力する。
光パワー制御部36は、波長アラーム検出部69の出力信号に基づいて、LD31の光出力を瞬時に減衰させるか、または前記EDF励起放出時定数と前記自動利得制御回路追従時定数を足した時定数以上の時定数で、LD31の光出力を徐々に減衰させる。なお、実施の形態2では、光出力アラーム検出部が設けられていないので、LD出力光モニタ33の出力信号および変調器出力モニタ39の出力信号に基づく光源61の異常検出は、行われない。
ただし、実施の形態2においても、PD32、LD出力光モニタ33、光パワー制御部36およびLDドライバ34による自動出力制御(APC)と、PD38、変調器出力モニタ39、バイアス制御部40およびバイアス回路41による自動バイアス制御(ABC)は、行われる。その他の構成は、実施の形態1と同様である。
図5は、この発明の実施の形態2にかかる光源の異常検出時の光出力停止処理手順を示すフローチャートである。図5に示すように、通常の定常安定動作状態においては、上述した自動周波数制御(AFC)が行われており、LD31の出力光の波長は安定している(ステップS11)。この状態で、波長アラーム検出部69は、波長モニタ67の値を取得し(ステップS12)、光出力波長のモニタ値の異常を検出したか否かを判断する(ステップS13)。光出力波長のモニタ値の異常を検出できない場合(ステップS13:No)、ステップS11に戻る。
光出力波長のモニタ値の異常を検出した場合(ステップS13:Yes)、波長アラーム検出部69は、波長制御部68が熱電クーラドライバ65に印加する電圧を、異常検出直前の値に固定化する(ステップS14)。これによって、光出力波長のフィードバック制御(AFC)が停止する。次いで、波長アラーム検出部69は、温度モニタ66の値を取得し、確認する(ステップS15)。次いで、波長アラーム検出部69は、温度モニタ66の値が正常範囲内にあるか否かを判断する(ステップS16)。
正常範囲内である場合(ステップS16:Yes)、波長アラーム検出部69は、光出力波長モニタ機能の異常であると判断する。この場合、LD31は、光パワー制御部36およびLDドライバ34による制御が可能な状態にあると推測される。従って、波長アラーム検出部69は、前記EDF励起放出時定数と前記自動利得制御回路追従時定数を足した時定数以上の時定数で、LD31の出力光が徐々に減衰するように、光パワー制御部36がLDドライバ34に印加する電圧を制御する(ステップS17)。これによって、LD31の出力光を徐々に減衰させて停止させることができる(ステップS19)。
一方、温度モニタ66の値が正常範囲外である場合(ステップS16:No)、波長アラーム検出部69は、光出力波長モニタ機能は正常であるが、光出力波長が異常であると判断する。つまり、波長アラーム検出部69は、熱電クーラ(TEC)出力制御機能の異常であると判断する。この場合には、波長アラーム検出部69は、LD31の出力光が瞬時に減衰するように、光パワー制御部36がLDドライバ34に印加する電圧を制御する(ステップS18)。これによって、LD31の出力光を瞬時に停止させることができる(ステップS19)。
図6は、この発明の実施の形態2にかかる光源を用いたシステムの伝送線路における光変動を説明する模式図である。図6に示すように、ある波長の光源において、光出力波長のモニタ値が上昇して閾値に達し、異常が検出されると、異常状態診断期間の後、その異常が検出された光源の出力光パワー72が、前記EDF励起放出時定数と前記自動利得制御回路追従時定数を足した時定数以上の時定数で、徐々に低下し、出力光が停止する。
それによって、異常状態診断期間の後、EDF光増幅器への入力光パワー73が徐々に下がり、異常のあった光源の出力光パワー分だけ低くなる。それに伴って、EDF光増幅器の出力光パワー74も、異常状態診断期間の後、徐々に下がり、異常のあった光源の出力光パワー分だけ低くなる。この間、EDF光増幅器の出力光パワーにおける、異常のあった光源以外の出力光パワー75は、一定のままである。
なお、図6において、最上段の特性図は、異常が検出された光源のLDモジュールの光出力波長71を示す図であり、λcは目標波長である。この光出力波長71の特性図に示すように、異常状態診断期間の後、異常のあった光源の出力光が停止するまで、波長は、高いままである。異常が検出された光源の出力光が停止した後には、波長が検出されなくなる。この波長を検出できない状態は、図6の光出力波長71の特性図では、横軸近辺の低いレベルとして表されている。
実施の形態2によれば、光出力波長のモニタ値が異常であることを検出した場合に、熱電クーラ63の温度のモニタ値を確認することにより、実際にLD31の動作状態が異常であるのか、あるいは、LD31は正常に動作しているが、モニタ系統に異常が起こっているのか、ということを判断することができる。また、熱電クーラ63の温度のモニタ値が異常であるが、光出力波長のモニタ値が正常である場合も、LD31は正常であるが、モニタ系統が異常であると判断できる。従って、実施の形態1と同様の効果が得られる。
(実施の形態3)
図7は、この発明の実施の形態3にかかる光源の構成を示すブロック図である。図7に示すように、実施の形態3の光源81では、実施の形態2の光源の構成に加えて、LDモジュール22に、印加電圧に応じてLD31の出力波長を制御可能な波長チューニング素子82が設けられている。また、LD制御ブロック23に、波長ドライバ83および電圧モニタ84が設けられている。その代わり、実施の形態3の光源81には、実施の形態2の光源に設けられていた熱電クーラ、温度センサおよび熱電クーラドライバがない。
実施の形態3においても、波長ロッカ62および波長モニタ67は、第1の監視手段としての機能を有する。波長ドライバ83は、波長チューニング素子82に印加する電圧を出力する。電圧モニタ84は、波長ドライバ83の出力電圧、すなわち波長チューニング素子82への印加電圧を監視する。この印加電圧に応じてLD31の出力波長が制御されるので、電圧モニタ84は、第2の監視手段としての機能を有する。
波長制御部68は、電圧モニタ84の出力信号および波長モニタ67の出力信号に基づいて、制御信号を出力する。波長ドライバ83は、この制御信号に基づいて、波長チューニング素子82への印加電圧を出力する。通常の定常安定動作状態においては、波長ロッカ62、波長モニタ67、電圧モニタ84、波長制御部68、波長ドライバ83および波長チューニング素子82による自動周波数制御(AFC)が行われている。波長アラーム検出部69は、波長モニタ67の出力信号および電圧モニタ84の出力信号に基づいて、光源81の異常を検出する。その他の構成は、実施の形態2と同様である。
図8は、この発明の実施の形態3にかかる光源の異常検出時の光出力停止処理手順を示すフローチャートである。図8に示すように、通常の定常安定動作状態においては、上述した自動周波数制御(AFC)が行われており、LD31の出力光の波長は安定している(ステップS21)。この状態で、波長アラーム検出部69は、波長モニタ67の値を取得し(ステップS22)、光出力波長のモニタ値の異常を検出したか否かを判断する(ステップS23)。光出力波長のモニタ値の異常を検出できない場合(ステップS23:No)、ステップS21に戻る。
光出力波長のモニタ値の異常を検出した場合(ステップS23:Yes)、波長アラーム検出部69は、波長制御部68が波長ドライバ83に印加する電圧を、異常検出直前の値に固定化する(ステップS24)。これによって、光出力波長のフィードバック制御(AFC)が停止する。次いで、波長アラーム検出部69は、電圧モニタ84の値、すなわち波長チューニング素子82への印加電圧の値を取得し、確認する(ステップS25)。次いで、波長アラーム検出部69は、電圧モニタ84の値が正常範囲内にあるか否かを判断する(ステップS26)。
正常範囲内である場合(ステップS26:Yes)、波長アラーム検出部69は、光出力波長モニタ機能の異常であると判断する。この場合、LD31は、光パワー制御部36およびLDドライバ34による制御が可能な状態にあると推測される。従って、波長アラーム検出部69は、前記EDF励起放出時定数と前記自動利得制御回路追従時定数を足した時定数以上の時定数で、LD31の出力光が徐々に減衰するように、光パワー制御部36がLDドライバ34に印加する電圧を制御する(ステップS27)。これによって、LD31の出力光を徐々に減衰させて停止させることができる(ステップS29)。
一方、電圧モニタ84の値が正常範囲外である場合(ステップS26:No)、波長アラーム検出部69は、光出力波長モニタ機能は正常であるが、光出力波長が異常であると判断する。つまり、波長アラーム検出部69は、波長チューニング素子82による波長出力制御機能の異常であると判断する。この場合には、波長アラーム検出部69は、LD31の出力光が瞬時に減衰するように、光パワー制御部36がLDドライバ34に印加する電圧を制御する(ステップS28)。これによって、LD31の出力光を瞬時に停止させることができる(ステップS29)。実施の形態3にかかる光源を用いたシステムの伝送線路における光変動については、図6と同様である。
実施の形態3によれば、光出力波長のモニタ値が異常であることを検出した場合に、波長チューニング素子82への印加電圧を、電圧モニタ84により確認することにより、実際にLD31の動作状態が異常であるのか、あるいは、LD31は正常に動作しているが、モニタ系統に異常が起こっているのか、ということを判断することができる。また、電圧モニタ84のモニタ値が異常であるが、光出力波長のモニタ値が正常である場合も、LD31は正常であるが、モニタ系統が異常であると判断できる。従って、実施の形態1と同様の効果が得られる。
以上のように、本発明にかかる光源は、光伝送システムに有用であり、特に、WDM方式による光伝送システムに適している。
この発明の実施の形態1にかかる光源の構成を示すブロック図である。 この発明の実施の形態1にかかる光源の異常検出時の光出力停止処理手順を示すフローチャートである。 この発明の実施の形態1にかかる光源を用いたシステムの伝送線路における光変動を説明する模式図である。 この発明の実施の形態2にかかる光源の構成を示すブロック図である。 この発明の実施の形態2にかかる光源の異常検出時の光出力停止処理手順を示すフローチャートである。 この発明の実施の形態2にかかる光源を用いたシステムの伝送線路における光変動を説明する模式図である。 この発明の実施の形態3にかかる光源の構成を示すブロック図である。 この発明の実施の形態3にかかる光源の異常検出時の光出力停止処理手順を示すフローチャートである。 従来の光源の構成を示すブロック図である。 従来の光源を用いたシステムの伝送線路における光変動を説明する模式図である。
符号の説明
21,61,81 光源
31 LD
32,38 PD
33 LD出力光モニタ
36 光パワー制御部
39 LN出力光モニタ
43 光出力アラーム検出部
62 波長ロッカ
64 温度センサ
66 温度モニタ
67 波長モニタ
69 波長アラーム検出部
82 波長チューニング素子
84 電圧モニタ

Claims (5)

  1. 出力パワーが一定になるように制御しても、入力パワーが急激に変化した場合には前記出力パワーが変化し、当該出力パワーが一定値に復帰するまでに一定の時間を要するエルビウムドープ光ファイバ増幅器を具備するWDM光通信システムの信号伝送用光源として用いられる光源において、
    レーザーダイオードと、
    前記レーザーダイオードの動作状態に関する第1の特性を監視する第1の監視手段と、
    前記レーザーダイオードの動作状態に関する、前記第1の特性とは異なる第2の特性を監視する第2の監視手段と、
    前記第1および第2の監視手段の監視結果に基づき前記レーザーダイオードの動作を制御する制御手段を備え、
    前記制御手段は、前記第1の特性の値および前記第2の特性の値の両方の異常を検出したとき、前記レーザーダイオードの光出力を瞬時に減衰させ、前記第1の特性の値および前記第2の特性の値のいずれか一方のみが異常である場合に、前記レーザーダイオードの光出力が前記エルビウムドープ光ファイバ増幅器の出力パワーが前記一定値に復帰するまでの前記一定の時間より長い時間を経過後遮断されるように、前記レーザーダイオードの光出力を徐々に減衰させることを特徴とする光源。
  2. 前記第1の監視手段は、前記レーザーダイオードの後方へ出力されるモニタ用出力光のパワーを監視し、
    前記第2の監視手段は、前記レーザーダイオードの前方へ出力される主出力光のパワーを監視することを特徴とする請求項1に記載の光源。
  3. 前記第1の監視手段は、前記レーザーダイオードの出力光の波長を監視し、
    前記第2の監視手段は、前記レーザーダイオードの温度を監視することを特徴とする請求項1に記載の光源。
  4. 印加される電圧に応じて前記レーザーダイオードの出力光の波長を変化させる波長チューニング素子をさらに備え、
    前記第1の監視手段は、前記波長チューニング素子により調整された前記レーザーダイオードの出力光の波長を監視し、
    前記第2の監視手段は、前記波長チューニング素子の印加電圧を監視することを特徴とする請求項1に記載の光源。
  5. 光伝送信号用の光源と、
    出力パワーが一定になるように制御しても、入力パワーが急激に変化した場合には前記出力パワーが変化し、当該出力パワーが一定値に復帰するまでに一定の時間を要するエルビウムドープ光ファイバ増幅器と、を具備するWDM光通信システムにおいて、
    前記光源は、
    レーザーダイオードと、
    前記レーザーダイオードの動作状態に関する第1の特性を監視する第1の監視手段と、
    前記レーザーダイオードの動作状態に関する、前記第1の特性とは異なる第2の特性を監視する第2の監視手段と、
    前記第1および第2の監視手段の監視結果に基づき前記レーザーダイオードの動作を制御する制御手段を備え、
    前記制御手段は、前記第1の特性の値および前記第2の特性の値の両方の異常を検出したとき、前記レーザーダイオードの光出力を瞬時に減衰させ、前記第1の特性の値および前記第2の特性の値のいずれか一方のみが異常である場合に、前記レーザーダイオードの光出力が前記エルビウムドープ光ファイバ増幅器の出力パワーが前記一定値に復帰するまでの前記一定の時間より長い時間を経過後遮断されるように、前記レーザーダイオードの光出力を徐々に減衰させることを特徴とするWDM光通信システム。
JP2007119363A 2007-04-27 2007-04-27 光源およびwdm光通信システム Expired - Fee Related JP4499132B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007119363A JP4499132B2 (ja) 2007-04-27 2007-04-27 光源およびwdm光通信システム
US12/109,972 US7642495B2 (en) 2007-04-27 2008-04-25 Light source error detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119363A JP4499132B2 (ja) 2007-04-27 2007-04-27 光源およびwdm光通信システム

Publications (2)

Publication Number Publication Date
JP2008278200A JP2008278200A (ja) 2008-11-13
JP4499132B2 true JP4499132B2 (ja) 2010-07-07

Family

ID=39885841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119363A Expired - Fee Related JP4499132B2 (ja) 2007-04-27 2007-04-27 光源およびwdm光通信システム

Country Status (2)

Country Link
US (1) US7642495B2 (ja)
JP (1) JP4499132B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310751B2 (ja) * 2006-01-27 2009-08-12 ブラザー工業株式会社 画像読取装置
DE102012221164A1 (de) * 2012-10-12 2014-04-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Einrichtung und Verfahren zur Erkennung von Laserstrahlung
JP6492489B2 (ja) * 2014-09-26 2019-04-03 日本電気株式会社 光通信システム及び光通信方法
JP6601212B2 (ja) 2015-12-24 2019-11-06 住友電気工業株式会社 光送信器
US20240089007A1 (en) * 2022-09-12 2024-03-14 Fujitsu Limited Mitigation of anomaly loss in an optical transmission system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112435A (ja) * 1997-10-07 1999-04-23 Fujitsu Ltd 光増幅器
JP2000089178A (ja) * 1998-07-15 2000-03-31 Furukawa Electric Co Ltd:The 光送信方法及びその装置
JP2005085871A (ja) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd レーザ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732033B2 (ja) * 1999-02-19 2006-01-05 富士通株式会社 光出力制御回路
EP1283570B1 (en) * 2000-04-19 2008-01-23 Fujitsu Limited Parallel optical module and information processing device
JP3626675B2 (ja) 2000-10-23 2005-03-09 日本電気エンジニアリング株式会社 光出力停止方式
US6998594B2 (en) * 2002-06-25 2006-02-14 Koninklijke Philips Electronics N.V. Method for maintaining light characteristics from a multi-chip LED package
JP4847104B2 (ja) 2005-11-09 2011-12-28 富士通株式会社 光モジュールテスト方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112435A (ja) * 1997-10-07 1999-04-23 Fujitsu Ltd 光増幅器
JP2000089178A (ja) * 1998-07-15 2000-03-31 Furukawa Electric Co Ltd:The 光送信方法及びその装置
JP2005085871A (ja) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd レーザ装置

Also Published As

Publication number Publication date
US7642495B2 (en) 2010-01-05
US20080265132A1 (en) 2008-10-30
JP2008278200A (ja) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4746951B2 (ja) 光増幅器および光増幅方法
KR100417322B1 (ko) 광 증폭기 및 광 증폭기 제어 방법
JP4499132B2 (ja) 光源およびwdm光通信システム
US20090135868A1 (en) Optical transmitter able to resume APC operation automatically
JP2007142008A (ja) 光増幅器
JP2000277842A (ja) 光学部品、光増幅器及び光増幅器の特性制御方法
JP2010232336A (ja) 光源制御装置および光源装置
JP2001311920A (ja) 2つの制御ループを含む光減衰器
JP4962499B2 (ja) 光増幅器及びその異常検出方法
JP2013197332A (ja) 光回路装置
US6297902B1 (en) Light amplification medium control method, light amplification apparatus and system using the same
JP2010010177A (ja) 光波長制御回路および方法
US20090190920A1 (en) Optical apparatus
US20090141757A1 (en) Optical amplifiers
JP2011151210A (ja) 光出力装置
JPH0865249A (ja) 光サージの発生を抑圧した光増幅器
JP6713767B2 (ja) 光増幅装置および光増幅方法
JPH09162475A (ja) 光増幅媒体制御方法及び光増幅装置並びにそれを利用したシステム
JP2003008117A (ja) 光増幅ブロックとこれを用いる光増幅システム
JP2513150B2 (ja) 光直接増幅回路
WO2023002690A1 (ja) 光源装置
JP4783090B2 (ja) 光増幅器
US8699127B2 (en) Optical amplifier
JPH11274624A (ja) 光増幅装置
JP3670341B2 (ja) 光送信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees