WO2023002690A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2023002690A1
WO2023002690A1 PCT/JP2022/011990 JP2022011990W WO2023002690A1 WO 2023002690 A1 WO2023002690 A1 WO 2023002690A1 JP 2022011990 W JP2022011990 W JP 2022011990W WO 2023002690 A1 WO2023002690 A1 WO 2023002690A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
light source
light
photodetector
wavelength
Prior art date
Application number
PCT/JP2022/011990
Other languages
English (en)
French (fr)
Inventor
将 下牧
伸 加藤
康孝 鈴木
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP22845630.7A priority Critical patent/EP4358322A1/en
Priority to CN202280050725.4A priority patent/CN117678128A/zh
Publication of WO2023002690A1 publication Critical patent/WO2023002690A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the present disclosure relates to a light source device.
  • Patent Document 1 shows a supercontinuum light source.
  • This light source has a fiber laser, a fiber amplifier, a wavelength shifting fiber, and a highly nonlinear optical fiber.
  • the fiber amplifier has a polarization-maintaining EDF, a polarization-maintaining optical coupler, and a pump light source.
  • the excitation light source is a laser diode that outputs excitation light. Pumping light from the pumping light source is input to the EDF via an optical coupler.
  • part of the supercontinuum light from the highly nonlinear optical fiber is branched by an optical coupler and input to the spectrum measurement device.
  • the spectrum measuring device measures the spectrum of supercontinuum light, that is, the intensity distribution for each wavelength.
  • the output and spectrum of supercontinuum light are stabilized by feedback-controlling the intensity of pumping light from the fiber amplifier according to the intensity of supercontinuum light.
  • the excitation light source is also provided in the fiber laser, no mention is made of its feedback control.
  • a carbon nanotube sheet may be provided as a saturable absorber in the fiber laser of the light source.
  • the CNT sheet has a limited life and needs to be replaced. According to the present inventors, studies are currently underway to make the unit including the CNT sheet replaceable by the user.
  • an object of the present disclosure is to provide a light source device capable of adjusting an excitation light source so that mode-locking occurs without measuring the spectrum.
  • a light source device includes an excitation light source, a fiber laser for outputting pulsed light generated in response to excitation light from the excitation light source, and the pulsed light output from the fiber laser is input, and the pulsed light a fiber amplifier for amplifying and outputting the pulsed light output from the fiber amplifier, a wavelength shifting fiber for shifting the wavelength of the pulsed light and outputting it, and a pulse output from the wavelength shifting fiber
  • an acquisition process is executed for acquiring a specified current value of the drive current at which the
  • pulsed light generated in response to pumping light from the pumping light source is output from the fiber laser, amplified by the fiber amplifier, and then input to the wavelength shift fiber.
  • the pulsed light input to the wavelength shift fiber is output from the output fiber after undergoing wavelength shift. Therefore, it is conceivable to adjust the drive current of the excitation light source so as to cause mode locking while measuring the spectrum of the light output from this output fiber.
  • spectrum measurement is not always easy.
  • the photodetector for detecting the pulsed light that has passed through the wavelength-shifting fiber detects light in a part of the wavelength band of the pulsed light that has passed through the wavelength-shifting fiber. Therefore, the photodetector element generates an output signal corresponding to the light in a partial wavelength band of the light that has undergone the wavelength shift.
  • the output signal of the photodetector does not change depending on whether or not the fiber laser is mode-locked. It changes depending on whether or not mode locking occurs.
  • control unit changes the driving current of the excitation light source according to the output value of the photodetector element, and executes an acquisition process of acquiring the specified current value of the excitation light source at which the output value of the photodetector element is equal to or greater than the specified value. be able to.
  • mode locking can be caused in the fiber laser.
  • this light source device it is possible to adjust the excitation light source so as to cause mode locking without measuring the spectrum.
  • the light in some wavelength bands may include wavelength components caused by the wavelength bands generated in the pulsed light through the wavelength shift fiber.
  • the intensity of light in some wavelength bands generated by the wavelength-shifting fiber is likely to change depending on whether or not mode-locking occurs. Therefore, by detecting the light of the wavelength component resulting from the wavelength band with the photodetector, it is possible to more reliably acquire the specified current value of the excitation light source in which mode locking occurs.
  • the control unit may further change the drive current of the excitation light source in one direction from the specified current value, and perform setting processing of setting the drive current of the excitation light source. . In this case, it is possible to more stably cause mode locking in the fiber laser.
  • the control unit may change the drive current of the excitation light source so as to increase from the lower limit value according to the output value of the photodetector. In this case, driving the excitation light source with unnecessarily high drive currents is avoided. As a result, if the fiber laser contains, for example, a CNT sheet, wear of the CNT sheet is suppressed.
  • the photodetector element may be arranged to detect the pulsed light output from the output fiber.
  • the light source device includes a filter provided between the wavelength shift fiber and the photodetector so that light in a part of the wavelength band of the pulsed light that has passed through the wavelength shift fiber is incident on the photodetector.
  • the output fiber includes a nonlinear fiber; and the filter is configured to allow light in a short wavelength band of the pulsed light that has passed through the nonlinear fiber to enter the photodetector.
  • the intensity of light in a partial wavelength band on the short wavelength side tends to change depending on whether or not the fiber laser is mode-locked. Therefore, in this case, by detecting part of the light on the short wavelength side of the light that has passed through the nonlinear fiber with the photodetector via the short-pass filter, it is possible to easily and reliably determine whether or not mode-locking has occurred. As a result, it becomes possible to more reliably acquire the specified current value of the excitation light source.
  • the photodetector element may be arranged to detect pulsed light input to the output fiber.
  • the light source device includes a filter provided between the wavelength shift fiber and the photodetector so that light in a part of the wavelength band of the pulsed light that has passed through the wavelength shift fiber is incident on the photodetector.
  • the filter is provided between the wavelength-shifting fiber and the photodetector so that part of the light in the long-wavelength-side wavelength band of the pulsed light that has passed through the wavelength-shifting fiber enters the photodetector.
  • a long pass filter may be included.
  • the intensity of the light in some wavelength bands on the longer wavelength side tends to change depending on whether or not the fiber laser is mode-locked. . Therefore, in this case, by detecting part of the light on the long wavelength side that has passed through the wavelength shift fiber with the photodetector via the long-pass filter, it is possible to easily and reliably determine whether or not mode-locking has occurred. As a result, it becomes possible to more reliably acquire the specified current value of the excitation light source.
  • FIG. 1 is a schematic diagram showing the light source device according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the fiber laser shown in FIG.
  • FIG. 3 is a diagram showing an example of the spectrum of light that has passed through a highly nonlinear fiber.
  • FIG. 4 is a flow chart showing one step of the drive current adjusting method according to the present embodiment.
  • FIG. 5 is a diagram showing an example of the spectrum of light that has passed through the wavelength-shifting fiber.
  • FIG. 6 is a schematic diagram showing a light source device according to the second embodiment.
  • FIG. 7 is a schematic diagram showing a light source device according to the third embodiment.
  • FIG. 8 is a schematic diagram showing a light source device according to a fourth embodiment.
  • FIG. 1 is a schematic diagram showing the light source device according to the first embodiment.
  • a light source device 1 shown in FIG. 1 is a broadband spectrum light source, for example, a supercontinuum light source that outputs supercontinuum light.
  • the light source device 1 includes a fiber laser 10 , a fiber amplifier 20 , a wavelength shift fiber 30 , an output fiber 40 , a photodetector 50 and a controller 60 .
  • FIG. 2 is a schematic diagram showing the fiber laser shown in FIG.
  • the fiber laser 10 is a ring laser oscillator.
  • a fiber laser 10 is an ultrashort pulse (femtosecond) laser device and includes a fiber amplifier 2 and a saturable absorber 3 .
  • the fiber amplifier 2 has an amplification fiber 2a, a pumping light source 2b, and an optical coupler 2c.
  • the amplification fiber 2a is, for example, an erbium-doped fiber (EDF) in which the core is doped with erbium.
  • the pumping light source 2b is, for example, a laser diode (LD), and outputs continuous light as pumping light for pumping the amplification fiber.
  • LD laser diode
  • the optical coupler 2c is, for example, a wavelength division multiplexing optical coupler (WDM optical coupler). Pumping light (continuous light) output from the pumping light source 2b is input to the amplification fiber 2a via the optical coupler 2c and circulates in one direction.
  • WDM optical coupler wavelength division multiplexing optical coupler
  • the saturable absorber 3 contains, for example, carbon nanotubes.
  • the saturable absorber 3 is a material whose optical transparency changes depending on the intensity of incident light.
  • the saturable absorber 3 includes a sheet-shaped resin material and a plurality of carbon nanotubes dispersed in the resin material. A material having excellent heat resistance is used as the resin material.
  • Carbon nanotubes have a saturable absorption characteristic that absorbs light in the 1560 nm band and the absorption decreases when the incident light intensity reaches a high level.
  • the saturable absorber 3 is held at the butted end surfaces of the optical fibers 3a and 3b.
  • the light from the amplification fiber 2a is incident on the saturable absorber 3 via the optical coupler 4 and the optical fiber 3a.
  • the saturable absorber 3 absorbs incident light in a linear region where the incident light intensity is weak.
  • the saturable absorber 3 absorbs less when the incident light intensity reaches a high level, and the incident light is transmitted through the saturable absorber 3 . Since the amplitude of the oscillating laser light fluctuates with time at a high frequency due to noise components, light with a high level of incident light intensity is transmitted without being absorbed by the saturable absorber 3 and becomes pulsed light.
  • the pulsed light is superimposed on the circulating continuous light, stimulated emission is promoted, the intensity is increased, and the saturable absorber 3 is more easily transmitted. While the pulsed light grows and circulates in this manner, pulsed light is generated by the saturable absorption characteristics of the saturable absorber 3, the fiber nonlinear effect, and the chromatic dispersion effect. The generated pulsed light is partially output from the fiber laser 10 via the optical coupler 4 .
  • the fiber laser 10 includes the excitation light source 2b and outputs pulsed light generated in response to the excitation light from the excitation light source 2b.
  • the pulsed light output from the fiber laser 10 is input to the fiber amplifier 20 via the optical fiber 15 .
  • the optical fiber 15 is, for example, a polarization-maintaining single-mode fiber (PM-SMF), and is used, for example, to expand the pulse width of the pulsed light from the fiber laser 10 to form a waveform.
  • PM-SMF polarization-maintaining single-mode fiber
  • the fiber amplifier 20 has an amplification fiber 21, an optical coupler 22, and an excitation light source 23.
  • the amplification fiber 21 is, for example, an erbium-doped fiber (EDF) in which the core is doped with erbium.
  • the optical coupler 22 is, for example, a wavelength division multiplexing optical coupler (WDM optical coupler).
  • the pumping light source 23 is, for example, a laser diode, and outputs pumping light for pumping the amplification fiber 21 .
  • the pumping light from the pumping light source 23 is combined with the pulsed light from the optical fiber 15 (from the fiber laser 10 ) in the optical coupler 22 and input to the amplification fiber 21 .
  • the pulsed light is amplified in the amplification fiber 21 .
  • the fiber amplifier 20 receives the pulsed light output from the fiber laser 10, amplifies the pulsed light, and outputs the amplified pulsed light.
  • the pulsed light output from the fiber amplifier 20 is input to the wavelength shift fiber 30 via the optical isolator 16 .
  • the wavelength-shifting fiber is, for example, a polarization-maintaining single-mode fiber (PM-SMF).
  • the wavelength shift fiber 30 shifts the wavelength of the pulsed light output from the fiber amplifier 20 and outputs it.
  • the pulsed light output from the wavelength shift fiber 30 is input to the output fiber 40 .
  • the output fiber 40 is for outputting pulsed light to the outside.
  • the output fiber 40 has a highly nonlinear fiber (nonlinear fiber, HNLF) 41 and an optical fiber 42 connected to the highly nonlinear fiber 41 .
  • the highly nonlinear fiber 41 and the optical fiber 42 are connected by fusion splicing to form a fusion splicing section 43 .
  • the highly nonlinear fiber 41 receives the pulsed light from the wavelength shift fiber 30 and expands the spectral width of the pulsed light by the nonlinear optical effect. As a result, supercontinuum light having a broadband spectrum is generated and output.
  • a long pass filter (LPF) 62 is interposed between the wavelength shift fiber 30 and the highly nonlinear fiber 41 .
  • the long-pass filter 62 transmits light in a part of the wavelength band on the longer wavelength side (for example, 1650 nm or longer) in the pulsed light output from the wavelength shift fiber 30 .
  • the long-pass filter 62 transmits a part of the wavelength band Pw1 corresponding to the soliton pulses generated in the wavelength shift fiber 30, as shown in FIG. 5(a). Therefore, the highly nonlinear fiber 41 receives a soliton pulse through the long-pass filter 62, converts the soliton pulse into supercontinuum light, and outputs the supercontinuum light.
  • FIG. 3(a) shows an example of the spectrum Sm (when mode-locked) of the supercontinuum light output from the highly nonlinear fiber 41. As shown in FIG.
  • the photodetector element 50 is, for example, a photodiode.
  • the photodetector 50 is for detecting at least the pulsed light that has passed through the wavelength shift fiber 30 in the output fiber 40 .
  • the photodetector 50 is arranged so as to face the fusion spliced portion 43 between the highly nonlinear fiber 41 and the optical fiber 42 of the output fiber 40 , and detects light leaking from the fusion spliced portion 43 . to detect Therefore, here, the photodetector element 50 can detect pulsed light (supercontinuum light) that has passed through the highly nonlinear fiber 41 in addition to the wavelength shift fiber 30 .
  • the photodetector element 50 is electrically connected to the controller 60 , and the output signal of the photodetector element 50 is transmitted to the controller 60 . Thereby, the control unit 60 can acquire the output value of the photodetector 50 .
  • a short-pass filter 61 is provided between the photodetector 50 and the fusion splicing portion 43 (highly nonlinear fiber 41). As shown in (a) of FIG. 3, the short-pass filter 61 transmits a part of the wavelength band Pw2 on the short wavelength side (for example, 1400 nm or less) of the pulsed light that has passed through the highly nonlinear fiber 41, and detects the light. Make it incident on the element 50 .
  • the pulsed light that has passed through the highly nonlinear fiber 41 is generated from the soliton pulse generated in the wavelength shift fiber 30 and transmitted through the long-pass filter 62 .
  • part of the wavelength band Pw2 incident on the photodetector 50 by the short-pass filter 61 has wavelength components caused by the wavelength band Pw1 (corresponding to the soliton pulse) generated by passing through the wavelength shift fiber 30. contains.
  • the short-pass filter 61 and the long-pass filter 62 are configured to allow the light in the wavelength band Pw2, which is part of the pulsed light that has passed through the wavelength shift fiber 30, to enter the photodetector 50. It functions as a filter provided between it and the detection element 50 .
  • the photodetector element 50 detects light in the wavelength band Pw2, which is part of the pulsed light that has passed through the wavelength shift fiber 30 .
  • the control unit 60 has a processing unit, a storage unit, an input/output unit, and the like.
  • the processing unit is composed of a substrate including a processor, a microcomputer including a memory, and the like.
  • the processing unit executes the program written in the storage unit in the microcomputer.
  • the controller 60 controls the drive current of the excitation light source 2b in the fiber laser 10 based on the output value of the photodetector 50.
  • the fiber laser 10 currently includes a CNT sheet as the saturable absorber 3, a unit including this CNT sheet (for example, the optical fibers 3a and 3b and the saturable absorber 3 (structure containing
  • FIG. 3A shows the spectrum Sm of the light output from the output fiber 40 when mode-locked
  • FIG. 3B shows the light output from the output fiber 40 when not mode-locked is a diagram showing the spectrum Sn of .
  • the shape of the spectrum of the output light is totally different between the mode-locked state and the non-mode-locked state (unstable mode-locked state). It is difficult to make a determination based on the output value of the photodetector 50 . On the other hand, if the light incident on the photodetector 50 is limited to a partial wavelength band, the change in the output value of the photodetector 50 can be detected between the mode-locked state and the non-mode-locked state.
  • the intensity is significantly lower when not mode-locked than when mode-locked.
  • the controller 60 utilizes the output value of the photodetector 50 when the wavelength band Pw2 is detected, and the excitation light source 2b is controlled so that the fiber laser 10 is mode-locked. Adjustment of the drive current can be performed. Subsequently, a method for adjusting the driving current of the excitation light source 2b will be described.
  • FIG. 4 is a flow chart showing one process of the drive current adjusting method according to the present embodiment.
  • the controller 60 sets the drive current of the excitation light source 2b to the lower limit (step S1: acquisition process).
  • the control unit 60 determines whether or not the output value of the photodetector 50 is equal to or greater than a specified value (step S2: acquisition process).
  • the fiber laser 10 outputs pulsed light corresponding to the excitation light from the excitation light source 2b driven by the lower limit drive current.
  • a part of the wavelength band Pw2 of the output light corresponding to the pulsed light is incident on the photodetector element 50 .
  • step S2 if the output value of the photodetector 50 is less than the specified value (step S2: No), the control unit 60 increases the driving current of the excitation light source 2b (for example, about 1 mA) (step S3 : Acquisition process).
  • step S3 Acquisition process
  • the fiber laser 10 outputs pulsed light according to the pumping light from the pumping light source 2b driven by the increased current value.
  • a part of the wavelength band Pw2 of the output light corresponding to the pulsed light is incident on the photodetector element 50 .
  • step S2 acquisition processing
  • step S3 acquisition processing
  • control unit 60 increases the drive current of the excitation light source 2b according to the output value of the photodetector element 50, thereby increasing the output value of the photodetector element 50 to the specified value or more. Acquisition processing for acquiring the specified current value of the drive current is executed.
  • step S2 determines whether the output value of the photodetector 50 is equal to or greater than the specified value.
  • step S4 setting process. This is because, in the fiber laser 10, mode-locking occurs within a certain range of the driving current of the pumping light source 2b, but the specified current value obtained by repeating steps S2 and S3 is the lower limit value of the certain range. This is because by increasing the drive current, it is possible to achieve more stable mode-locking.
  • the value to be increased at this time can be a value (for example, about several tens of mA) that is about half the range of the drive current of the excitation light source 2b that causes mode locking.
  • the drive current of the excitation light source 2b is set by the above.
  • control unit 60 further changes the driving current of the excitation light source 2b in one direction (increasing direction) from the specified current value, and sets the changed current value as the driving current of the excitation light source 2b. setting processing to be performed.
  • the pulsed light generated in response to the pumping light from the pumping light source 2b is output from the fiber laser 10, amplified by the fiber amplifier 20, and then transmitted through the wavelength shift fiber. 30.
  • the pulsed light input to the wavelength shift fiber 30 is output from the output fiber 40 after undergoing wavelength shift. Therefore, it is conceivable that mode-locking can be caused by adjusting the driving current of the excitation light source 2b while measuring the spectrum of the light output from the output fiber 40. FIG. However, spectrum measurement is not always easy.
  • the photodetector 50 for detecting at least the pulsed light that has passed through the wavelength shift fiber 30 detects the wavelength of part of the pulsed light that has passed through the wavelength shift fiber 30. Light in band Pw2 is detected. Therefore, the photodetector 50 generates an output signal corresponding to the light in the wavelength band Pw2, which is part of the wavelength-shifted light.
  • the output signal of the photodetector element 50 does not change depending on whether or not the fiber laser 10 is mode-locked. The output value changes depending on whether or not the fiber laser 10 is mode-locked.
  • the control unit 60 changes the driving current of the excitation light source 2b according to the output value of the photodetector element 50, and acquires the specified current value of the excitation light source 2b at which the output value of the photodetector element 50 is equal to or greater than the specified value.
  • the excitation light source 2b can be driven with the specified current value. This makes it possible to cause mode locking in the fiber laser 10 .
  • the light source device 1 it is possible to adjust the excitation light source 2b so as to cause mode locking without performing spectrum measurement.
  • part of the light in the wavelength band Pw2 includes wavelength components caused by the wavelength band Pw1 (corresponding to soliton pulses) generated in the pulsed light through the wavelength shift fiber 30.
  • the intensity of light in a part of the wavelength band Pw1 generated in the wavelength shift fiber 30 is likely to change depending on whether or not mode-locking occurs. Therefore, by detecting the light of the wavelength component due to the wavelength band Pw1 (the light of the wavelength band Pw2) with the photodetector element 50, it is possible to more reliably obtain the specified current value of the excitation light source 2b where mode locking occurs. .
  • the control unit 60 further changes the current value of the excitation light source 2b in one direction from the specified current value, and performs the setting process of setting it as the driving current of the excitation light source 2b. Run. Therefore, it is possible to stably cause mode locking in the fiber laser 10 .
  • the control unit 60 changes the drive current of the excitation light source 2b so as to increase from the lower limit value according to the output value of the photodetector element 50 . Therefore, it is possible to avoid driving the excitation light source 2b with an unnecessarily large driving current. As a result, when the fiber laser 10 includes, for example, a CNT sheet, wear of the CNT sheet is suppressed.
  • the photodetector element 50 is arranged to detect the pulsed light output from the output fiber 40 .
  • the light source device 1 includes filters (a long-pass filter 62 and a short-pass filter 61) that cause light in a wavelength band Pw2, which is part of the pulsed light that has passed through the wavelength shift fiber 30, to enter the photodetector 50.
  • the output fiber 40 includes a highly nonlinear fiber 41
  • the filter is a highly nonlinear filter such that light in a short wavelength band Pw ⁇ b>2 of the pulsed light that has passed through the highly nonlinear fiber 41 is incident on the photodetector 50 .
  • a short pass filter 61 provided between the fiber 41 and the photodetector 50 .
  • the intensity of the light in the partial wavelength band Pw2 on the short wavelength side tends to change depending on whether or not the fiber laser 10 is mode-locked. Therefore, in this case, by detecting a portion of the light on the short wavelength side that has passed through the highly nonlinear fiber 41 with the photodetector 50 via the short-pass filter 61, it can be easily determined whether or not mode-locking has occurred. Moreover, it is possible to reliably determine and obtain the specified current value of the excitation light source 2b more reliably. [Second embodiment]
  • FIG. 6 is a schematic diagram showing a light source device according to the second embodiment.
  • the light source device 1A according to the second embodiment is different from the light source device 1 according to the first embodiment in that the short-pass filter 61 is not provided and the light detection element 50 is It differs from the light source device 1 in terms of arrangement, and is identical in other respects.
  • the photodetector element 50 detects at least the pulsed light that has passed through the wavelength shift fiber 30 in the output fiber 40, so that the optical fiber 35 connecting the long-pass filter 62 and the output fiber 40 and the highly nonlinear fiber 41 It is arranged so as to face the fusion spliced portion 44 of the .
  • the photodetector 50 detects leaked light from the fusion splicing portion 44 .
  • the photodetector element 50 is arranged so as to detect pulsed light input to the output fiber 40 (highly nonlinear fiber 41 ), that is, pulsed light that has not passed through the highly nonlinear fiber 41 . No filter is interposed between the photodetector element 50 and the fusion splicing portion 44 .
  • the light detected by the photodetector 50 is light in a partial wavelength band Pw1 corresponding to the soliton pulse generated by passing through the wavelength shift fiber 30, as shown in FIG. That is, in the present embodiment, the filter is configured such that the wavelength shift fiber 30 and the light detection element 50 are arranged such that light in a part of the wavelength band Pw1 on the long wavelength side of the pulsed light that has passed through the wavelength shift fiber 30 is incident on the light detection element 50 . Only the long pass filter 62 provided between the element 50 is included. In other words, in the present embodiment, the photodetector 50 detects light in the wavelength band Pw1, which is part of the pulsed light that has passed through the wavelength shift fiber 30 .
  • FIG. 5 shows the spectrum Tm when mode-locked
  • (b) of FIG. 5 shows the spectrum Tn when not mode-locked.
  • the light before being input to the output fiber 40 (highly nonlinear fiber 41) through the wavelength shift fiber 30 is relatively long depending on whether or not the fiber laser 10 is mode-locked.
  • the intensity of light in a part of the wavelength band Pw1 on the wavelength side (for example, 1650 nm or longer) tends to change.
  • the detection target of the photodetector 50 is not limited to supercontinuum light, and may be a soliton pulse before being converted into supercontinuum light as in the present embodiment.
  • FIG. 7 is a schematic diagram showing a light source device according to the third embodiment.
  • the light source device 1B according to the third embodiment is different from the light source device 1 according to the first embodiment in that the short-pass filter 61 is not provided and the arrangement of the long-pass filter 62 is is different from the light source device 1 in the other respects.
  • the long-pass filter 62 is interposed between the highly nonlinear fiber 41 (fusion splicer 43) and the photodetector element 50, not in the path of the output light from the wavelength shift fiber 30 to the output fiber 40. It is also, the short-pass filter 61 is not interposed in the front stage of the photodetector element 50 . Therefore, in the present embodiment as well, the light detected by the photodetector 50 is light in the partial wavelength band Pw1 corresponding to the soliton pulse generated by passing through the wavelength shift fiber 30 .
  • the light source device 1B it is possible to easily and reliably determine whether or not mode locking occurs based on the output value of the photodetector 50 by the same adjustment method as in the first embodiment. , the driving current of the excitation light source 2b of the fiber laser 10 can be adjusted.
  • FIG. 8 is a schematic diagram showing a light source device according to the fourth embodiment.
  • the light source device 1C according to the fourth embodiment is different from the light source device 1 according to the first embodiment in that the short-pass filter 61 is not provided and the output fiber 40 is a highly nonlinear fiber. 41 and the arrangement of the long-pass filter 62 are different from the light source device 1, and the other points are the same.
  • the photodetector element 50 is arranged so as to face the optical fiber 36 connecting the wavelength shift fiber 30 and the output fiber 40 (optical fiber 42) and the fusion splicing portion 45 of the optical fiber 42. there is The photodetector 50 detects leaked light from the fusion splicing portion 45 .
  • a long-pass filter 62 is interposed between the photodetector 50 and the fusion splicing portion 45 . Therefore, in the present embodiment as well, the light detected by the photodetector 50 is light in the partial wavelength band Pw1 corresponding to the soliton pulse generated by passing through the wavelength shift fiber 30 .
  • the light source device 1C it is possible to easily and reliably determine whether or not mode locking occurs based on the output value of the photodetector 50 by the same adjustment method as in the first embodiment. , the driving current of the excitation light source 2b of the fiber laser 10 can be adjusted.
  • another long-pass filter 62 is provided for the optical fiber 42 in the light source device 1C.
  • the highly nonlinear fiber 41 does not intervene in the path of the output light from the wavelength shift fiber 30 to the output fiber 40 . Therefore, the output light (during mode-locking) from the light source device 1C is not supercontinuum light as shown in FIG.
  • the long-pass filter 62 By cutting the short wavelength side by the long-pass filter 62, it becomes a soliton pulse of a part of the wavelength band Pw1 on the long wavelength side (for example, 1650 nm or longer).
  • the light source devices 1 to 1C can output various kinds of output light.
  • the light source device according to the present disclosure can be arbitrarily modified from the light source devices 1 to 1C described above.
  • control unit 60 sets the drive current of the excitation light source 2b to the lower limit value in step S1, and increases the drive current of the excitation light source 2b in step S3.
  • control unit 60 may set the driving current of the excitation light source 2b sufficiently high in step S1, and obtain the specified current value while decreasing the driving current of the excitation light source 2b in step S3.
  • the specified current value is obtained as the upper limit value of the drive current range in which the excitation light source 2b is mode-locked. to the same extent).
  • the control unit 60 changes the drive current of the excitation light source 2b in one direction according to the output value of the photodetector 50, thereby increasing the output value of the photodetector 50 to a specified value or more. It is possible to acquire the prescribed current value of the drive current that is
  • the photodetector elements 50 are arranged so as to face the fusion spliced portion between the optical fibers, and detect light leaking from the fusion spliced portion.
  • the photodetector element 50 may be configured to detect light branched by an optical coupler provided on each path of the light source devices 1 to 1C.
  • control unit 60 may further have a function of detecting and reporting an error by detecting the extinguishing of the output light (supercontinuum light, soliton pulse) based on the output signal from the photodetector element 50. good.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Automation & Control Theory (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

励起光源を含み、前記励起光源からの励起光に応じて発生したパルス光を出力するためのファイバレーザと、前記ファイバレーザから出力された前記パルス光が入力され、当該パルス光を増幅して出力するためのファイバ増幅器と、前記ファイバ増幅器から出力された前記パルス光が入力され、当該パルス光の波長をシフトして出力するための波長シフトファイバと、前記波長シフトファイバから出力された前記パルス光が入力され、当該パルス光を外部に出力するための出力ファイバと、出力ファイバにおいて、少なくとも前記波長シフトファイバを経た前記パルス光を検出するための光検出素子と、前記励起光源の駆動電流を制御するための制御部と、を備える光源装置。

Description

光源装置
 本開示は、光源装置に関する。
 特許文献1には、スーパーコンティニュアム光源が示されている。この光源は、ファイバレーザと、ファイバ増幅器と、波長シフトファイバと、高非線形光ファイバと、を有している。ファイバ増幅器は、偏波保持型のEDFと、偏波保持型の光カプラと、励起光源と、を有している。励起光源は、励起光を出力するレーザダイオードである。励起光源からの励起光は、光カプラを介してEDFに入力される。
特開2017-67804号公報
 特許文献1に記載の光源では、高非線形光ファイバからのスーパーコンティニュアム光の一部を光カプラにより分岐させてスペクトル測定装置に入力する。スペクトル測定装置は、スーパーコンティニュアム光のスペクトル、すなわち波長ごとの強度分布を計測する。これにより、この光源では、スーパーコンティニュアム光の強度によってファイバ増幅器の励起光の強度をフィードバック制御することで、スーパーコンティニュアム光の出力及びスペクトルの安定化を図っている。このように、上記技術分野では、出力光の安定化の要求がある。ただし、特許文献1の光源では、ファイバレーザ内にも励起光源が設けられているものの、そのフィードバック制御については言及されていない。
 ところで、上記光源のファイバレーザ内には、カーボンナノチューブシート(CNTシート)を可飽和吸収体として設ける場合がある。CNTシートには寿命があり交換が必要となる。本発明者によれば、現在、このCNTシートを含むユニットをユーザ側にて交換可能とすることについての検討が進められている。
 ただし、CNTシートごとにモードロックが生じるLD電流値にばらつきがあるため、CNTシートを交換した場合には、モードロックを生じさせるために、例えば、上記スーパーコンティニュアム光源のように出力光のスペクトルを計測しながらLD電流値を調整する必要がある。しかしながら、そのためには、スペクトルアナライザ等の高価な装置が必要となり、ユーザ側でこれを行うことが困難である。
 そこで、本開示は、スペクトルを計測することなく、モードロックが生じるように励起光源を調整可能な光源装置を提供することを目的とする。
 本開示に係る光源装置は、励起光源を含み、励起光源からの励起光に応じて発生したパルス光を出力するためのファイバレーザと、ファイバレーザから出力されたパルス光が入力され、当該パルス光を増幅して出力するためのファイバ増幅器と、ファイバ増幅器から出力されたパルス光が入力され、当該パルス光の波長をシフトして出力するための波長シフトファイバと、波長シフトファイバから出力されたパルス光が入力され、当該パルス光を外部に出力するための出力ファイバと、出力ファイバにおいて、少なくとも波長シフトファイバを経たパルス光を検出するための光検出素子と、励起光源の駆動電流を制御するための制御部と、を備え、光検出素子は、波長シフトファイバを経たパルス光のうちの一部の波長帯の光を検出し、制御部は、光検出素子の出力値に応じて、励起光源の駆動電流を一方向に変化させることにより、光検出素子の出力値が規定値以上となる駆動電流の規定電流値を取得する取得処理を実行する。
 この光源装置では、励起光源からの励起光に応じて発生されたパルス光がファイバレーザから出力され、ファイバ増幅器で増幅された後に波長シフトファイバに入力される。波長シフトファイバに入力されたパルス光は、波長シフトを受けた後に出力ファイバから出力される。したがって、この出力ファイバから出力される光のスペクトルを計測しつつ、モードロックが生じるように励起光源の駆動電流を調整することも考えられる。しかしながら、スペクトルの計測は必ずしも容易ではない。
 これに対して、この光源装置では、少なくとも波長シフトファイバを経たパルス光を検出するための光検出素子が、波長シフトファイバを経たパルス光のうちの一部の波長帯の光を検出する。したがって、光検出素子では、波長シフトを受けた光の一部の波長帯の光に応じた出力信号が生成される。光検出素子の出力信号は、当該光のスペクトルの全体が入力された場合には、ファイバレーザにおいてモードロックが生じているか否かで変化しないが、一部の波長帯に限定すると、ファイバレーザにおいてモードロックが生じているか否かで変化するのである。したがって、制御部が、光検出素子の出力値に応じて励起光源の駆動電流を変化させ、光検出素子の出力値が規定値以上となる励起光源の規定電流値を取得する取得処理を実行することができる。これにより、当該規定電流値で励起光源を駆動することにより、ファイバレーザにおいてモードロックを生じさせることが可能となる。このように、この光源装置によれば、スペクトルの計測を行うことなく、モードロックが生じるように励起光源を調整可能である。
 本開示に係る光源装置では、一部の波長帯の光は、波長シフトファイバを経ることでパルス光に生じる波長帯に起因する波長成分を含んでもよい。このように、波長シフトファイバで生じる一部の波長帯の光の強度は、モードロックが生じているか否かで変化が生じやすい。したがって、当該波長帯に起因する波長成分の光を光検出素子で検出することにより、モードロックが生じる励起光源の規定電流値をより確実に取得可能となる。
 本開示に係る光源装置では、制御部は、取得処理の後に、励起光源の駆動電流を規定電流値から一方向にさらに変化させ、励起光源の駆動電流として設定する設定処理を実行してもよい。この場合、ファイバレーザにおいてモードロックをより安定して生じさせるせることが可能となる。
 本開示に係る光源装置では、制御部は、取得処理では、光検出素子の出力値に応じて、励起光源の駆動電流を下限値から増加させるように変化させてもよい。この場合、不必要に大きな駆動電流での励起光源の駆動が避けられる。この結果、ファイバレーザが例えばCNTシートを含む場合には、当該CNTシートの損耗が抑制される。
 本開示に係る光源装置では、光検出素子は、出力ファイバから出力されたパルス光を検出するように配置されていてもよい。この場合、光源装置は、波長シフトファイバを経たパルス光のうちの一部の波長帯の光が光検出素子に入射するように、波長シフトファイバと光検出素子との間に設けられたフィルタを備え、出力ファイバは、非線形ファイバを含み、フィルタは、非線形ファイバを経たパルス光のうちの短波長側の一部の波長帯の光が光検出素子に入射するように、非線形ファイバと光検出素子との間に設けられたショートパスフィルタを含んでもよい。このように、非線形ファイバを経た光では、ファイバレーザにおいてモードロックが生じているか否かに応じて、短波長側の一部の波長帯の光の強度が変化しやすくなる。よって、この場合には、非線形ファイバを経た光の短波長側の一部を、ショートパスフィルタを介して光検出素子で検出することにより、モードロックが生じているか否かを容易且つ確実に判定し、励起光源の規定電流値をより確実に取得可能となる。
 本開示に係る光源装置では、光検出素子は、出力ファイバに入力されるパルス光を検出するように配置されていてもよい。この場合、光源装置は、波長シフトファイバを経たパルス光のうちの一部の波長帯の光が光検出素子に入射するように、波長シフトファイバと光検出素子との間に設けられたフィルタを備え、フィルタは、波長シフトファイバを経たパルス光のうちの長波長側の一部の波長帯の光が光検出素子に入射するように、波長シフトファイバと光検出素子との間に設けられたロングパスフィルタを含んでもよい。このように、波長シフトファイバを経て出力ファイバに入力される前の光では、ファイバレーザにおいてモードロックが生じているか否かにおいて、長波長側の一部の波長帯の光の強度が変化しやすい。よって、この場合には、波長シフトファイバを経た光の長波長側の一部を、ロングパスフィルタを介して光検出素子で検出することにより、モードロックが生じているか否かを容易且つ確実に判定し、励起光源の規定電流値をより確実に取得可能となる。
 本開示によれば、スペクトルを計測することなく、モードロックが生じるように励起光源を調整可能な光源装置を提供することができる。
図1は、第1実施形態に係る光源装置を示す模式図である。 図2は、図1に示されたファイバレーザを示す模式図である。 図3は、高非線形ファイバを経た光のスペクトルの一例を示す図である。 図4は、本実施形態に係る駆動電流の調整方法の一工程を示すフローチャートである。 図5は、波長シフトファイバを経た光のスペクトルの一例を示す図である。 図6は、第2実施形態に係る光源装置を示す模式図である。 図7は、第3実施形態に係る光源装置を示す模式図である。 図8は、第4実施形態に係る光源装置を示す模式図である。
 以下、一実施形態に係る光源装置について、図面を参照して説明する。なお、各図の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を省略する場合がある。
[第1実施形態]
 図1は、第1実施形態に係る光源装置を示す模式図である。図1に示される光源装置1は、広帯域スペクトル光源であって、例えばスーパーコンティニューム光を出力するスーパーコンティニューム光源である。光源装置1は、ファイバレーザ10、ファイバ増幅器20、波長シフトファイバ30、出力ファイバ40、光検出素子50、及び、制御部60を備えている。
 図2は、図1に示されたファイバレーザを示す模式図である。図2に示されるように、ファイバレーザ10は、リング型のレーザ発振器である。ファイバレーザ10は、超短パルス(フェムト秒)レーザ装置であって、ファイバ増幅器2及び可飽和吸収体3を備えている。ファイバ増幅器2は、増幅用ファイバ2a、励起光源2b、及び、光カプラ2cを有している。増幅用ファイバ2aは、例えば、エルビウムがコアに添加されたエルビウム添加ファイバ(EDF)である。励起光源2bは、例えばレーザダイオード(LD)であって、増幅用ファイバを励起するための励起光として、連続光を出力する。光カプラ2cは、例えば波長分割多重光カプラ(WDM光カプラ)である。励起光源2bから出力された励起光(連続光)は光カプラ2cを介して増幅用ファイバ2aに入力され、一方向に循環する。
 可飽和吸収体3は、例えばカーボンナノチューブを含む。可飽和吸収体3は、入射光強度に依存して光透明度が変化する材料である。可飽和吸収体3は、シート状の樹脂材料と、樹脂材料中に分散された複数のカーボンナノチューブと、を含む。樹脂材料としては、耐熱性に優れた材料が用いられている。カーボンナノチューブは、1560nm帯の光を吸収し、入射光強度が高いレベルに達すると当該吸収が減少する可飽和吸収特性を有する。可飽和吸収体3は、光ファイバ3aと光ファイバ3bとの突き合わせ端面に保持されている。
 増幅用ファイバ2aから光は、光カプラ4及び光ファイバ3aを介して可飽和吸収体3に入射される。可飽和吸収体3は、入射光強度が弱い線形領域では当該入射光を吸収する。可飽和吸収体3では、入射光強度が高いレベルに達すると吸収が減少し、当該入射光は可飽和吸収体3を透過する。発振するレーザ光の振幅が雑音成分により時間的に高周波数で変動しているために、入射光強度が高いレベルの光は可飽和吸収体3で吸収されずに透過し、パルス光となる。
 ファイバレーザ10では、パルス光は、巡回する連続光に重畳されて、誘導放出が促進されて強度が大きくなり、更に、可飽和吸収体3を透過し易くなる。このようにしてパルス光が成長しながら巡回する間に、可飽和吸収体3の可飽和吸収特性とファイバ非線形効果と波長分散効果とによって、パルス光が生成される。生成されたパルス光は、光カプラ4を介して部分的にファイバレーザ10から出力される。このように、ファイバレーザ10は、励起光源2bを含み、励起光源2bからの励起光に応じて発生したパルス光を出力する。
 図1に示されるように、ファイバレーザ10から出力されたパルス光は、光ファイバ15を介してファイバ増幅器20に入力される。光ファイバ15は、例えば偏波保持型のシングルモードファイバ(PM-SMF)であり、例えば、ファイバレーザ10からパルス光のパルス幅を拡大して波形を成形するためのものである。
 ファイバ増幅器20は、増幅用ファイバ21、光カプラ22、及び、励起光源23を有する。増幅用ファイバ21は、例えば、エルビウムがコアに添加されたエルビウム添加ファイバ(EDF)である。光カプラ22は、例えば波長分割多重光カプラ(WDM光カプラ)である。励起光源23は、例えばレーザダイオードであって、増幅用ファイバ21を励起するための励起光を出力する。励起光源23から励起光は、光カプラ22において、光ファイバ15からの(ファイバレーザ10からの)パルス光と合波されて増幅用ファイバ21に入力される。これにより、増幅用ファイバ21においてパルス光が増幅される。このように、ファイバ増幅器20は、ファイバレーザ10から出力されたパルス光が入力され、当該パルス光を増幅して出力するためのものである。
 ファイバ増幅器20から出力されたパルス光は、光アイソレータ16を介して波長シフトファイバ30に入力される。波長シフトファイバは、例えば偏波保持型のシングルモードファイバ(PM-SMF)である。波長シフトファイバ30は、ファイバ増幅器20から出力されたパルス光の波長をシフトして出力する。
 波長シフトファイバ30から出力されたパルス光は、出力ファイバ40に入力される。出力ファイバ40は、パルス光を外部に出力するためのものである。本実施形態では、出力ファイバ40は、高非線形ファイバ(非線形ファイバ、HNLF)41と、高非線形ファイバ41に接続された光ファイバ42と、を有している。高非線形ファイバ41と光ファイバ42とは、融着接続により接続され、融着接続部43を形成している。高非線形ファイバ41は、波長シフトファイバ30からのパルス光が入力され、非線形光学効果により当該パルス光のスペクトル幅を拡張する。これにより、広帯域スペクトルを有するスーパーコンティニューム光が生成されて出力される。
 なお、波長シフトファイバ30と高非線形ファイバ41との間には、ロングパスフィルタ(LPF)62が介在されている。ロングパスフィルタ62は、波長シフトファイバ30から出力されたパルス光のうちの長波長側(例えば1650nm以上)の一部の波長帯の光を透過させる。ロングパスフィルタ62は、一例として、図5の(a)に示されるように、波長シフトファイバ30で生じたソリトンパルスに相当する一部の波長帯Pw1を透過させる。したがって、高非線形ファイバ41は、ロングパスフィルタ62を介してソリトンパルスを入力し、当該ソリトンパルスをスーパーコンティニューム光に変換して出力する。なお、図3の(a)には、高非線形ファイバ41から出力されるスーパーコンティニューム光の(モードロック時の)スペクトルSmの一例が示されている。
 光検出素子50は、例えばフォトダイオードである。光検出素子50は、出力ファイバ40において、少なくとも波長シフトファイバ30を経たパルス光を検出するためのものである。本実施形態では、光検出素子50は、出力ファイバ40のうち、高非線形ファイバ41と光ファイバ42との融着接続部43に臨むように配置されており、融着接続部43からの漏れ光を検出する。したがって、ここでは、光検出素子50は、波長シフトファイバ30に加えて高非線形ファイバ41を経たパルス光(スーパーコンティニューム光)を検出することができる。
 光検出素子50は、制御部60に電気的に接続され、光検出素子50の出力信号は、制御部60に送信される。これにより、制御部60は、光検出素子50の出力値を取得することが可能とされている。光検出素子50と融着接続部43(高非線形ファイバ41)との間には、ショートパスフィルタ61が設けられている。ショートパスフィルタ61は、図3の(a)に示されるように、高非線形ファイバ41を経たパルス光のうちの短波長側(例えば1400nm以下)の一部の波長帯Pw2を透過し、光検出素子50に入射させる。
 高非線形ファイバ41を経たパルス光は、波長シフトファイバ30で生じてロングパスフィルタ62を透過したソリトンパルスから生成されている。換言すれば、ショートパスフィルタ61により光検出素子50に入射される一部の波長帯Pw2は、波長シフトファイバ30を経ることで生じる(ソリトンパルスに相当する)波長帯Pw1に起因する波長成分を含んでいる。このように、ショートパスフィルタ61及びロングパスフィルタ62は、波長シフトファイバ30を経たパルス光のうちの一部の波長帯Pw2の光が光検出素子50に入射するように、波長シフトファイバ30と光検出素子50との間に設けられたフィルタとして機能する。換言すれば、本実施形態では、光検出素子50は、波長シフトファイバ30を経たパルス光のうちの一部の波長帯Pw2の光を検出する。
 制御部60は、処理部、記憶部及び入出力部等を有している。処理部はプロセッサ、メモリ等を含むマイコン等を含む基板で構成されている。処理部ではマイコン内の記憶部に書き込まれたプログラムを実行する。制御部60は、光検出素子50の出力値に基づいてファイバレーザ10内の励起光源2bの駆動電流を制御する。
 ここで、本発明者によれば、現在、ファイバレーザ10が、可飽和吸収体3としてCNTシートを含む場合、このCNTシートを含むユニット(例えば、光ファイバ3a,3bと可飽和吸収体3とを含む構造体)をユーザ側にて交換可能とすることについての検討が進められている。
 ただし、CNTシートごとにモードロックが生じるLD電流値にばらつきがあるため、CNTシートを交換した場合には、例えば、出力光のスペクトルを計測しながらLD電流値を調整する必要がある。しかしながら、そのためには、スペクトルアナライザ等の高価な装置が必要となり、ユーザ側でこれを行うことが困難である。
 本実施形態でも、可飽和吸収体3を含むユニットを交換すると、ファイバレーザ10においてモードロックが掛かる励起光源2bの駆動電流が変化する場合がある。このため、交換前後で一定の駆動電流で励起光源2bを駆動していたとしても、モードロックが掛からない場合がある。図3の(a)は、出力ファイバ40から出力される光のモードロック時のスペクトルSmを示す図であり、図3の(b)は、出力ファイバ40から出力される光の非モードロック時のスペクトルSnを示す図である。
 図3に示されるように、出力光のスペクトルの形状は、モードロック時と非モードロック時(モードロック不安定時)とで全体的に異なるが、これらの全体のパワーが略同一であるため、光検出素子50の出力値での判別は困難である。これに対して、光検出素子50に入射する光を一部の波長帯に限定すると、モードロック時と非モードロック時とで光検出素子50の出力値の変化が検出可能である。一例として、波長シフトファイバ30及び高非線形ファイバ41を経たパルス光のうちの相対的に短波長側(例えば1400nm以下)の一部の波長帯Pw2において、モードロック時と非モードロック時との間の強度変化が顕著である。具体的には、この波長帯Pw2では、モードロック時よりも非モードロック時において強度が顕著に低下する。
 上述したように、本実施形態に係る光源装置1では、この一部の波長帯Pw2が光検出素子50に入射するようにフィルタが設けられている。したがって、本実施形態に係る光源装置1では、制御部60が、波長帯Pw2を検出したときの光検出素子50の出力値を利用して、ファイバレーザ10でモードロックが生じるように励起光源2bの駆動電流の調整を行うことができる。引き続いて、この励起光源2bの駆動電流の調整方法について説明する。
 図4は、本実施形態に係る駆動電流の調整方法の一工程を示すフローチャートである。この方法では、まず、制御部60が、励起光源2bの駆動電流を下限値に設定する(工程S1:取得処理)。続いて、制御部60が、光検出素子50の出力値が規定値以上であるか否かの判定を行う(工程S2:取得処理)。ここでは、工程S1において駆動電流を下限値に設定しているため、ファイバレーザ10からは、下限の駆動電流にて駆動された励起光源2bからの励起光に応じたパルス光が出力される。これにより、光検出素子50には、そのパルス光に応じた出力光の一部の波長帯Pw2が入射することとなる。
 工程S2の判定の結果、光検出素子50の出力値が規定値未満である場合(工程S2:No)、制御部60が、励起光源2bの駆動電流を(例えば1mA程度)増加させる(工程S3:取得処理)。これにより、ファイバレーザ10からは、増加後の電流値にて駆動された励起光源2bからの励起光に応じたパルス光が出力される。これにより、光検出素子50には、そのパルス光に応じた出力光の一部の波長帯Pw2が入射することとなる。
 続く工程では、制御部60が、再び、光検出素子50の出力値が規定値以上であるか否かの判定を行う(工程S2:取得処理)。工程S2の判定の結果、光検出素子50の出力値が規定値未満である場合(工程S2:No)、制御部60が、再び、励起光源2bの駆動電流を増加させる(工程S3:取得処理)。このように、制御部60は、光検出素子50の出力値が規定値以上となるまで、工程S2及び工程S3繰り返し実施する。これにより、制御部60は、光検出素子50の出力値が規定値以上となる励起光源2bの駆動電流の値を取得することができる。
 すなわち、制御部60は、光検出素子50の出力値に応じて、励起光源2bの駆動電流を増加方向に変化させることにより、光検出素子50の出力値が規定値以上となる励起光源2bの駆動電流の規定電流値を取得する取得処理を実行することとなる。
 その後、制御部60は、工程S2の判定の結果、光検出素子50の出力値が規定値以上である場合(工程S2:YES)、励起光源2bの駆動電流を規定電流値からさらに増加させる(工程S4:設定処理)。これは、ファイバレーザ10では、励起光源2bの駆動電流の一定の範囲でモードロックが生じるが、工程S2,S3の繰り返しにより得られる規定電流値が当該一定の範囲の下限値であるため、さらに駆動電流を増加させることにより、より安定してモードロックが生じるようにすることを図るためである。なお、このときに増加させられる値は、モードロックが生じる励起光源2bの駆動電流の範囲の半分程度の値(例えば数十mA程度)とすることができる。以上により、励起光源2bの駆動電流が設定される。
 このように、制御部60は、取得処理の後に、励起光源2bの駆動電流を規定電流値から一方向(増加方向)にさらに変化させ、変化後の電流値を励起光源2bの駆動電流として設定する設定処理を実行することとなる。
 以上説明したように、本実施形態に係る光源装置1では、励起光源2bからの励起光に応じて発生されたパルス光がファイバレーザ10から出力され、ファイバ増幅器20で増幅された後に波長シフトファイバ30に入力される。波長シフトファイバ30に入力されたパルス光は、波長シフトを受けた後に出力ファイバ40から出力される。したがって、この出力ファイバ40から出力される光のスペクトルを計測しつつ、励起光源2bの駆動電流を調整すれば、モードロックを生じさせ得るとも考えられる。しかしながら、スペクトルの計測は必ずしも容易ではない。
 これに対して、本実施形態に係る光源装置1では、少なくとも波長シフトファイバ30を経たパルス光を検出するための光検出素子50が、波長シフトファイバ30を経たパルス光のうちの一部の波長帯Pw2の光を検出する。したがって、光検出素子50では、波長シフトを受けた光の一部の波長帯Pw2の光に応じた出力信号が生成される。光検出素子50の出力信号は、当該光のスペクトルの全体が入力された場合には、ファイバレーザ10においてモードロックが生じているか否かで変化しないが、一部の波長帯Pw2に限定すると、ファイバレーザ10においてモードロックが生じているか否かで出力値が変化するのである。
 したがって、制御部60が、光検出素子50の出力値に応じて励起光源2bの駆動電流を変化させ、光検出素子50の出力値が規定値以上となる励起光源2bの規定電流値を取得する取得処理を実行することにより、当該規定電流値で励起光源2bを駆動することができる。これにより、ファイバレーザ10においてモードロックを生じさせることが可能となる。このように、光源装置1によれば、スペクトルの計測を行うことなく、モードロックが生じるように励起光源2bを調整可能である。
 本実施形態に係る光源装置1では、一部の波長帯Pw2の光は、波長シフトファイバ30を経ることでパルス光に生じる(ソリトンパルスに相当する)波長帯Pw1に起因する波長成分を含んでいる。このように、波長シフトファイバ30で生じる一部の波長帯Pw1の光の強度は、モードロックが生じているか否かで変化が生じやすい。したがって、当該波長帯Pw1に起因する波長成分の光(波長帯Pw2の光)を光検出素子50で検出することにより、モードロックが生じる励起光源2bの規定電流値をより確実に取得可能となる。
 本実施形態に係る光源装置1では、制御部60は、取得処理の後に、励起光源2bの電流値を規定電流値から一方向にさらに変化させ、励起光源2bの駆動電流として設定する設定処理を実行する。このため、ファイバレーザ10においてモードロックをより安定して生じさせるせることが可能となる。
 本実施形態に係る光源装置1では、制御部60は、取得処理では、光検出素子50の出力値に応じて励起光源2bの駆動電流を下限値から増加させるように変化させる。このため、不必要に大きな駆動電流での励起光源2bの駆動が避けられる。この結果、ファイバレーザ10が例えばCNTシートを含む場合には、当該CNTシートの損耗が抑制される。
 本実施形態に係る光源装置1では、光検出素子50は、出力ファイバ40から出力されたパルス光を検出するように配置されている。特に、光源装置1は、波長シフトファイバ30を経たパルス光のうちの一部の波長帯Pw2の光を光検出素子50に入射させるフィルタ(ロングパスフィルタ62及びショートパスフィルタ61)を備える。出力ファイバ40は、高非線形ファイバ41を含み、フィルタは、高非線形ファイバ41を経たパルス光のうちの短波長側の一部の波長帯Pw2の光が光検出素子50に入射するように高非線形ファイバ41と光検出素子50との間に設けられたショートパスフィルタ61を含む。このように、高非線形ファイバ41を経た光では、ファイバレーザ10においてモードロックが生じているか否かに応じて、短波長側の一部の波長帯Pw2の光の強度が変化しやすくなる。よって、この場合には、高非線形ファイバ41を経た光の短波長側の一部を、ショートパスフィルタ61を介して光検出素子50で検出することにより、モードロックが生じているか否かを容易且つ確実に判定し、励起光源2bの規定電流値をより確実に取得可能となる。
[第2実施形態]
 図6は、第2実施形態に係る光源装置を示す模式図である。図6に示されるように、第2実施形態に係る光源装置1Aは、第1実施形態に係る光源装置1と比較して、ショートパスフィルタ61を備えていない点、及び、光検出素子50の配置において光源装置1と相違しており、その他の点で一致している。
 光源装置1Aでは、光検出素子50は、出力ファイバ40において、少なくとも波長シフトファイバ30を経たパルス光を検出するため、ロングパスフィルタ62と出力ファイバ40とを接続する光ファイバ35と、高非線形ファイバ41との融着接続部44に臨むように配置されている。光検出素子50は、融着接続部44からの漏れ光を検出する。これにより、光検出素子50は、出力ファイバ40(高非線形ファイバ41)に入力されるパルス光、すなわち、高非線形ファイバ41を経ていないパルス光を検出するように配置される。光検出素子50と融着接続部44との間には、フィルタが介在していない。
 したがって、光検出素子50が検出する光は、図5に示されるように、波長シフトファイバ30を経ることで生じるソリトンパルスに相当する一部の波長帯Pw1の光となる。すなわち、本実施形態では、フィルタは、波長シフトファイバ30を経たパルス光のうちの長波長側の一部の波長帯Pw1の光が光検出素子50に入射するように波長シフトファイバ30と光検出素子50との間に設けられたロングパスフィルタ62のみを含む。換言すれば、本実施形態では、光検出素子50は、波長シフトファイバ30を経たパルス光のうちの一部の波長帯Pw1の光を検出する。
 図5の(a)はモードロック時のスペクトルTmを示し、図5の(b)は非モードロック時のスペクトルTnを示す。図5に示されるように、波長シフトファイバ30を経て出力ファイバ40(高非線形ファイバ41)に入力される前の光では、ファイバレーザ10においてモードロックが生じているか否かにおいて、相対的に長波長側(例えば1650nm以上)の一部の波長帯Pw1の光の強度が変化しやすい。
 よって、この場合には、波長シフトファイバ30を経た光の長波長側の一部の波長帯Pw1を、ロングパスフィルタ62を介して光検出素子50で検出する。これにより、第1実施形態と同様の調整方法により、光検出素子50の出力値に基づいて、モードロックが生じているか否かを容易且つ確実に判定し、ファイバレーザ10の励起光源2bの駆動電流を調整可能である。このように、光検出素子50の検出対象は、スーパーコンティニューム光に限定されず、本実施形態のようにスーパーコンティニューム光に変換される前のソリトンパルスであってもよい。
[第3実施形態]
 図7は、第3実施形態に係る光源装置を示す模式図である。図7に示されるように、第3実施形態に係る光源装置1Bは、第1実施形態に係る光源装置1と比較して、ショートパスフィルタ61を備えていない点、及び、ロングパスフィルタ62の配置において光源装置1と相違しており、その他の点で一致している。
 光源装置1Bでは、ロングパスフィルタ62が、波長シフトファイバ30から出力ファイバ40を含む出力光の経路に介在せず、高非線形ファイバ41(融着接続部43)と光検出素子50との間に介在されている。また、光検出素子50の前段には、ショートパスフィルタ61が介在されていない。したがって、本実施形態でも、光検出素子50が検出する光は、波長シフトファイバ30を経ることで生じるソリトンパルスに相当する一部の波長帯Pw1の光となる。これにより、本実施形態に係る光源装置1Bでも、第1実施形態と同様の調整方法により、光検出素子50の出力値に基づいて、モードロックが生じているか否かを容易且つ確実に判定し、ファイバレーザ10の励起光源2bの駆動電流を調整可能である。
[第4実施形態]
 図8は、第4実施形態に係る光源装置を示す模式図である。図8に示されるように、第4実施形態に係る光源装置1Cは、第1実施形態に係る光源装置1と比較して、ショートパスフィルタ61を備えていない点、出力ファイバ40が高非線形ファイバ41を有していない点、及び、ロングパスフィルタ62の配置において光源装置1と相違しており、その他の点で一致している。
 光源装置1Cでは、光検出素子50が、波長シフトファイバ30と出力ファイバ40(光ファイバ42)とを接続する光ファイバ36と、光ファイバ42との融着接続部45に臨むように配置されている。光検出素子50は、融着接続部45からの漏れ光を検出する。光検出素子50と融着接続部45との間には、ロングパスフィルタ62が介在されている。したがって、本実施形態でも、光検出素子50が検出する光は、波長シフトファイバ30を経ることで生じるソリトンパルスに相当する一部の波長帯Pw1の光となる。これにより、本実施形態に係る光源装置1Cでも、第1実施形態と同様の調整方法により、光検出素子50の出力値に基づいて、モードロックが生じているか否かを容易且つ確実に判定し、ファイバレーザ10の励起光源2bの駆動電流を調整可能である。
 また、光源装置1Cでは、光ファイバ42に対して、別のロングパスフィルタ62が設けられている。一方で、光源装置1Cでは、波長シフトファイバ30から出力ファイバ40を含む出力光の経路には、高非線形ファイバ41が介在しない。したがって、光源装置1Cからの出力光(モードロック時)は、図3の(a)示されるようなスーパーコンティニューム光ではなく、図5の(a)に示されるスペクトルTmを有するパルス光から、ロングパスフィルタ62によって短波長側がカットされることにより、長波長側(例えば1650nm以上)の一部の波長帯Pw1のソリトンパルスとなる。このように、光源装置1~1Cでは、種々の出力光を出力可能である。
 以上の実施形態は、本開示の一側面を説明したものである。したがって、本開示に係る光源装置は、上記の光源装置1~1Cを任意に変形したものとされ得る。
 例えば、上記第1実施形態では、制御部60が、工程S1で励起光源2bの駆動電流を下限値に設定し、工程S3で励起光源2bの駆動電流を増加させながら規定電流値を取得する例について説明した。しかし、制御部60は、工程S1で励起光源2bの駆動電流を十分に高く設定し、工程S3で励起光源2bの駆動電流を減少させながら規定電流値を取得するようにしてもよい。
 この場合、規定電流値が、励起光源2bのモードロックが生じる駆動電流の範囲の上限値として取得されるため、工程S4において、励起光源2bの駆動電流を規定電流値からさらに(増加させる場合と同程度に)減少させればよい。このように、制御部60は、取得処理では、光検出素子50の出力値に応じて励起光源2bの駆動電流を一方向に変化させることにより、光検出素子50の出力値が規定値以上となる駆動電流の規定電流値を取得することができる。
 また、上記実施形態においては、光検出素子50が、いずれも、光ファイバ同士の融着接続部に臨むように配置され、当該融着接続部からの漏れ光を検出するようにされていた。しかし、光検出素子50は、光源装置1~1Cの各経路上に設けた光カプラにより分岐させた光を検出するように構成されてもよい。
 さらに、制御部60は、光検出素子50からの出力信号に基づいて、出力光(スーパーコンティニューム光、ソリトンパルス)の消灯を検知してエラーを検出・報知する機能をさらに有していてもよい。
 スペクトルを計測することなく、モードロックが生じるように励起光源を調整可能な光源装置を提供できる。
 1,1A,1B,1C…光源装置、2b…励起光源、10…ファイバレーザ、20…ファイバ増幅器、30…波長シフトファイバ、40…出力ファイバ、41…高非線形ファイバ(非線形ファイバ)、50…光検出素子、60…制御部、61…ショートパスフィルタ(フィルタ)、62…ロングパスフィルタ(フィルタ)。

Claims (8)

  1.  励起光源を含み、前記励起光源からの励起光に応じて発生したパルス光を出力するためのファイバレーザと、
     前記ファイバレーザから出力された前記パルス光が入力され、当該パルス光を増幅して出力するためのファイバ増幅器と、
     前記ファイバ増幅器から出力された前記パルス光が入力され、当該パルス光の波長をシフトして出力するための波長シフトファイバと、
     前記波長シフトファイバから出力された前記パルス光が入力され、当該パルス光を外部に出力するための出力ファイバと、
     出力ファイバにおいて、少なくとも前記波長シフトファイバを経た前記パルス光を検出するための光検出素子と、
     前記励起光源の駆動電流を制御するための制御部と、
     を備え、
     前記光検出素子は、前記波長シフトファイバを経た前記パルス光のうちの一部の波長帯の光を検出し、
     前記制御部は、前記光検出素子の出力値に応じて前記励起光源の駆動電流を一方向に変化させることにより、前記光検出素子の前記出力値が規定値以上となる前記駆動電流の規定電流値を取得する取得処理を実行する、
     光源装置。
  2.  前記一部の波長帯の光は、前記波長シフトファイバを経ることで前記パルス光に生じる波長帯に起因する波長成分を含む、
     請求項1に記載の光源装置。
  3.  前記制御部は、前記取得処理の後に、前記励起光源の前記電流値を前記規定電流値から前記一方向にさらに変化させ、前記励起光源の前記駆動電流として設定する設定処理を実行する、
     請求項1又は2に記載の光源装置。
  4.  前記制御部は、前記取得処理では、前記光検出素子の出力値に応じて、前記励起光源の駆動電流を下限値から増加させるように変化させる、
     請求項1~3のいずれか一項に記載の光源装置。
  5.  前記光検出素子は、前記出力ファイバから出力された前記パルス光を検出するように配置されている、
     請求項1~4のいずれか一項に記載の光源装置。
  6.  前記一部の波長帯の光が前記光検出素子に入射するように、前記波長シフトファイバと前記光検出素子との間に設けられたフィルタを備え、
     前記出力ファイバは、非線形ファイバを含み、
     前記フィルタは、前記非線形ファイバを経た前記パルス光のうちの短波長側の一部の波長帯の光が前記光検出素子に入射するように、前記非線形ファイバと前記光検出素子との間に設けられたショートパスフィルタを含む、
     請求項5に記載の光源装置。
  7.  前記光検出素子は、前記出力ファイバに入力される前記パルス光を検出するように配置されている、
     請求項1~4のいずれか一項に記載の光源装置。
  8.  前記一部の波長帯の光が前記光検出素子に入射するように、前記波長シフトファイバと前記光検出素子との間に設けられたフィルタを備え、
     前記フィルタは、前記波長シフトファイバを経た前記パルス光のうちの長波長側の一部の波長帯の光が前記光検出素子に入射するように、前記波長シフトファイバと前記光検出素子との間に設けられたロングパスフィルタを含む、
     請求項7に記載の光源装置。
PCT/JP2022/011990 2021-07-21 2022-03-16 光源装置 WO2023002690A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22845630.7A EP4358322A1 (en) 2021-07-21 2022-03-16 Light source device
CN202280050725.4A CN117678128A (zh) 2021-07-21 2022-03-16 光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021120280A JP2023016155A (ja) 2021-07-21 2021-07-21 光源装置
JP2021-120280 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023002690A1 true WO2023002690A1 (ja) 2023-01-26

Family

ID=84979905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011990 WO2023002690A1 (ja) 2021-07-21 2022-03-16 光源装置

Country Status (4)

Country Link
EP (1) EP4358322A1 (ja)
JP (1) JP2023016155A (ja)
CN (1) CN117678128A (ja)
WO (1) WO2023002690A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063042A (ja) * 2012-09-21 2014-04-10 Nagoya Univ スーパーコンティニュアム光源及び光断層計測装置
JP2015167823A (ja) * 2014-03-10 2015-09-28 国立大学法人名古屋大学 歯髄撮像装置及び歯髄観測方法
JP2017067804A (ja) 2015-09-28 2017-04-06 国立大学法人名古屋大学 スーパーコンティニュアム光源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063042A (ja) * 2012-09-21 2014-04-10 Nagoya Univ スーパーコンティニュアム光源及び光断層計測装置
JP2015167823A (ja) * 2014-03-10 2015-09-28 国立大学法人名古屋大学 歯髄撮像装置及び歯髄観測方法
JP2017067804A (ja) 2015-09-28 2017-04-06 国立大学法人名古屋大学 スーパーコンティニュアム光源

Also Published As

Publication number Publication date
EP4358322A1 (en) 2024-04-24
CN117678128A (zh) 2024-03-08
JP2023016155A (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
EP1018195B1 (en) Optical amplifier with actively controlled spectral gain
US20190296515A1 (en) Optical power monitoring device, laser device, and laser system
JP5529589B2 (ja) ファイバ出力安定化装置
US20080225914A1 (en) System of method for dynamic range extension
US20120062985A1 (en) Optical fiber amplifying module
Yang et al. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser
JP5064777B2 (ja) レーザ装置
JP2013197332A (ja) 光回路装置
WO2023002690A1 (ja) 光源装置
Harun et al. An efficient multiwavelength light source based on ASE slicing
Okamura Automatic optical loss compensation with erbium-doped fiber amplifier
JP4499132B2 (ja) 光源およびwdm光通信システム
CN105866069B (zh) 一种基于可调谐光纤激光器的气体成分测试系统
Sulaiman et al. Effect of hybrid optical amplifier in multiwavelength fiber laser utilizing Sagnac loop mirror interferometer
US6424663B1 (en) Power monitor for fiber gain medium
JP3065980B2 (ja) 光増幅器
JPH10335722A (ja) 光増幅器
JP4605662B2 (ja) ゲインクランプ型光増幅器
JP4976040B2 (ja) パルス光源およびパルス光源の制御方法
KR102037729B1 (ko) 레이저 공진기 및 레이저 공진기의 코히런스 조절 방법
JPS61102081A (ja) 半導体レ−ザの周波数安定化方法
Kasai et al. A 160 mW output, 5 kHz linewidth frequency-stabilized erbium silica fiber laser with a short cavity configuration
JP2018174206A (ja) レーザ装置
JP2010008568A (ja) 光出力制御装置
WO2008144849A1 (en) A mode-locked laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845630

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022845630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280050725.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022845630

Country of ref document: EP

Effective date: 20240117

NENP Non-entry into the national phase

Ref country code: DE