JP4487164B2 - 投影装置 - Google Patents

投影装置 Download PDF

Info

Publication number
JP4487164B2
JP4487164B2 JP2000327563A JP2000327563A JP4487164B2 JP 4487164 B2 JP4487164 B2 JP 4487164B2 JP 2000327563 A JP2000327563 A JP 2000327563A JP 2000327563 A JP2000327563 A JP 2000327563A JP 4487164 B2 JP4487164 B2 JP 4487164B2
Authority
JP
Japan
Prior art keywords
lens
refractive power
group
projection
positive refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000327563A
Other languages
English (en)
Other versions
JP2002131838A (ja
Inventor
重夫 久保田
直哉 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000327563A priority Critical patent/JP4487164B2/ja
Publication of JP2002131838A publication Critical patent/JP2002131838A/ja
Application granted granted Critical
Publication of JP4487164B2 publication Critical patent/JP4487164B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、投影装置、特に、レーザー光源とGLV(Grating Light Valve)デバイスを用いた投影装置において、歪曲収差を悪化させずに投影距離を短縮するための技術に関する。
【0002】
【従来の技術】
投影装置、所謂プロジェクター装置において、投影画像を作成する機構として、レーザー光源とGLV(Grating Light Valve)デバイスを用いたGLVプロジェクターと称されるものがある。
【0003】
GLVは、電圧の印加によって発生するクーロン引力を用いた変調可能なリボン構造を有する回折格子型空間変調器である。即ち、図17に原理的に示すように、GLV1は、例えば、表示画面の1画素(ピクセル)を構成する部分が3本の可動リボン1a、1a、1aと3本の固定リボン1b、1b、1bから成る6本のリボン(反射部)から成り、GLV1に電圧を印加すると、可動リボン1a、1a、1aが静電気力によって下降し、上記6本のリボンが単なる反射鏡から反射型回折格子に変化して、照射されたレーザー光を反射して回折光として出射するものである。
【0004】
GLV1は、上記したように、6本のリボンから成る1画素成分を、例えば、縦方向に1080画素分、シリコンチップ上に一列に配列したものである。
【0005】
GLVプロジェクターは、上記GLVをRGB各色に対応して3個使用し、各GLVに縦1列分の画素情報に相当する電気信号を同時に印加して、GLVによって回折されたレーザー光を合成すると共に、投影レンズ系によってスクリーン上に投影するものである。また、上記投影レンズ系の後には、スクリーン上を走査することによって縦1列分の画素情報に相当する光束からスクリーン上に所定の大きさの画像を構成するスキャンミラーが設けられている。例えば、画面の縦横比が9:16の場合では、スキャンミラーは、スクリーン上を1920画素分水平方向に走査し、全体で約200万画素分の画像情報を1分間に60フレームの速度でスクリーン上に投影する。
【0006】
図18に構成を概略的に示すように、上記のような構成を有するGLVプロジェクター2は、GLV1を発した光が、レンズ3を通過した後、シュリーレンフィルター4で±の1次光のみが透過され、レンズ3の焦点に実像5を構成する。尚、0次光は、シュリーレンフィルター4で遮断される。そして、実像5は、投影レンズ6を経て、スキャンミラー7によって反射されて、スクリーン8上を走査し、画像を表示するようにしたものである。
【0007】
以上に説明したような構成を有するGLVプロジェクター2は、基本的には長い焦点距離を有するフロントプロジェクターであって、GLVプロジェクター2をスクリーンの背面側から投影する、焦点距離が短いリアプロジェクターに適用すると、歪曲収差が実用限界以上に大きくなってしまう等の欠点があった。
【0008】
以下に、その理由を、図19及び図20を用いて具体的に説明する。即ち、図19に示すように、1080画素を有するGLVのサイズ(高さ=2h)は、具体的には、2h=27mmである。これを9:16の縦横比を有する対角50インチのスクリーンに投影するものとすると、スクリーンの高さは約623mmであるから、投影レンズ系の横倍率Mは23倍となる。
【0009】
GLVプロジェクターで用いられている投影レンズは、従来、焦点距離fが100mm程度のテレセントリックレンズである。GLVから等倍リレーされた光束は、上記投影レンズの前側(光源側)の焦点付近に結像し、この像を発した主光線は光軸と平行に投影レンズに入射し、該主光線は投影レンズの後側(スクリーン側)の焦点で交差した後にスクリーンに向かうから、この後側の焦点からスクリーンまでの距離は焦点距離fと投影レンズ系の横倍率Mとの積によって求めることができ、即ち、Mf=2300mmとなる。
【0010】
また、主光線のうち、最大傾斜角θを有するものの正接は、tanθ=h/f=0.135となる。ここで、図20に示すように、θ=7.7°であるので、スキャンミラーによって主光線を水平方向に9:16の縦横比を有する画面の端部まで振ると、そのスキャン角ψは13.5°となる。この時、スキャンミラーの回転中心からスクリーンまでの距離Mfは、2300mmであるから、Mf/cosψ=2365mmに伸び、Mfとの差65mmにtanθ=0.135を乗じた8.78mmだけ像高が大きくなることになる。
【0011】
画面の端部において像高が高くなってしまうということが、スキャンによって生じる歪曲収差Δyであって、像高311.5mmに対して約2.8%の歪曲が発生することになるが、3%以下の歪曲収差は、ディスプレーとしての用途では許容されるものである。
【0012】
しかしながら、上記と同サイズのスクリーンに短い投影距離で投影しようとすると、必然的に図19における角度θが大きくなり(即ち、tanθが大きくなる)、同時に、tanψ16/9tanθの関係によってスキャン角も増大するから、図21に示すように歪曲収差(%)Δy/y=(1/cosψ-1)tanθが急激に増大することは明らかである。
【0013】
従って、スキャンミラーを最終光学エレメントとする投影レンズ系は、歪曲収差が増大してしまうためリアプロジェクター等の短い投影距離Mfを有する装置に適用することが不可能であり、比較的長い投影距離を有するフロントプロジェクターにしか適用することができないものであった。
【0014】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑み、GLVプロジェクターの投影レンズ系において、歪曲収差等の光学性能を悪化させずに投影距離を短縮することを課題とする。
【0015】
【課題を解決するための手段】
上記課題を解決するために、本発明は、レーザー光源と位相を変調させる回折格子状素子が一次元に配列されて成る空間変調器とを有する色合成機構によって構成された縦又は横一列分の画像成分を含む光束をスキャンミラーによる走査によってスクリーン上に画像として投影する投影装置であって、物体側から像面側へと順に、前群及び後群によって構成される投影レンズ系を、上記前群と後群との間に空気間隔を空けて配置すると共に、上記スキャンミラーを前群及び後群との間の空気間隔に配置し、前群は、色合成機構11の側から順に、全体として正の屈折力を有する第1のレンズ及び第2のレンズからなる接合レンズと、正の屈折力を有する第3のレンズと、全体として正の屈折力を有する第4のレンズ及び第5のレンズからなる接合レンズと、正の屈折力を有する凸レンズである第6のレンズとによって構成され、後群は、前群に近い側から順に、負の屈折力を有する第7のレンズと、正の屈折力を有する第8のレンズと、負の屈折力を有する第9のレンズと、負の屈折力を有する非球面ミラーとによって構成されたものである。
【0016】
従って、スクリーンの端部における歪曲収差を悪化させずに焦点距離を短縮することが可能になる。
【0017】
【発明の実施の形態】
以下に本発明投影装置の実施の形態について、添付図面を参照して説明する。
【0018】
本発明投射装置は、回折格子型空間変調器であるGrating Light Valve(GLV)を用いたプロジェクター投影レンズ系において、リアプロジェクターにも適した短い投影距離を有するようにすると共に、レーザー光を光源とするGLVに必要とされる赤から青までの光の波長範囲で色収差と歪曲収差とを良好に補正した投影レンズ系を実現するものである。
【0019】
最初に、投影装置10の全体構成を説明する。
【0020】
投影装置10は、色合成機構11及び投影レンズ系12を有するものである。これら光学エンジンは、図1及び図2に示すように、光源(物体)側から投影面(像面:スクリーン)13側へと順に、色合成機構11と、全体として正の屈折力を有する前群GFと全体として負の屈折力を有する後群GR等から成る投影レンズ系12を配置すると共に、該投影レンズ系12の前群GF及び後群GRとの間の空気間隔に、色合成機構11によって構成された縦又は横一列分の画像成分を含む光束を反射させてスクリーン13上を走査することによって、スクリーン13上に画像を表示させるスキャンミラー14を配置して成るものである。尚、以下、色合成機構11によって構成される光束が、縦1列分の光束の場合についてのみ説明する。
【0021】
上記色合成機構11は、図1に示すように、回折格子型空間変調器であるGLV15及びレーザー光源16がRGB各色に対応させてそれぞれ3つずつ設けられている。そして、各レーザー光源16からの平行レーザー光はそれぞれ、GLV15によって回折反射された後、1つの光束として合成され、縦1列分の画素情報を含む光束が外部に出射される。尚、上記各GLV15は、位相を変調させる回折格子状素子が一次元に配列されて成る空間変調器である。
【0022】
色合成機構11から出射された光束は、それぞれ凹面、凸面、平面の反斜面を有する3つの反斜面の組み合わせによって構成される反射ミラー18によって光軸が折り曲げられると共に、シュリーレンフィルター17によって±の1次光のみが透過されて、投影レンズ系12に入射される。
【0023】
投影レンズ系12に入射した光束は、前群GFを経て、その後の後群GRとの間に配置されたスキャンミラー14に達する。スキャンミラー14よって反射され、スクリーン(投影面)13の横幅に対応した角度で光路を変更された光束は、更に、後群GRを経て、縦1列分の画素情報をスクリーン13上で1920画素分水平方向に走査し、全体で約200万画素分の画像情報を、1分簡に60フレームの速度でスクリーン(像面)13上に再生する。
【0024】
次に、上記投影レンズ系12について具体的に説明する。
【0025】
図4及び図5に投影装置10の構成エレメントを概略的に示す全体図、3次元概念図を示す。
【0026】
投影レンズ系12は前述のように、全体として正の屈折力を有する前群GFと全体として負の屈折力を有する後群GRを有し、正の屈折力を有するレンズ群と負の屈折力を有するレンズ群とを間に空気間隔を隔てて配置した、一般的に、レトロフォーカスレンズと称される光学配置の9群11枚構成のものである。
【0027】
図5の3次元概念図に示すように、色合成機構11の構造的特徴によって前群GFは、一つの直径上の部分しか使用しないため、比較的簡素化し易いが、スキャンミラー14の後の後群GRは、面上に使用されるため、比較的的複雑化する傾向となる。
【0028】
色合成機構11にGLV15を使用した投影装置10において、投影レンズ系12が満たすべき仕様は以下の通りである。即ち、GLV15の高さ(実像のサイズ)の1/2は13.5mmであることから、f=30mmのときの半画角が、tan-1(h/f)=24°である。一方、レーザー光源特有の干渉雑音スペックル消しの観点から、GLV15側(物体側)から見た投影レンズ系のFNOは2.5以上必要である。従って、物体側から見たFNOが2.5以上で半画角が24°の仕様を満たすレンズタイプは、レトロフォーカス構成かダブルガウス構成の何れかという経験則があるので、投影レンズ系12にはレトロフォーカス構成が採用されている。
【0029】
次に、投影レンズ系12の第1の数値実施例12Aについて詳述する。
【0030】
尚、以下の説明及び各表において、「ri」は物体側から数えてi番目の面及びその曲率半径、「di」は物体側から数えてi番目とi+1番目の面との光軸上における面間隔、「ni」は第iレンズの屈折率、「νi」は第iレンズのアッベ数をそれぞれ示すものとする。また、「rIMG」はスクリーン(像面)18の曲率半径、「dOBJ」は物体と面r1との間の面間隔、「dIMG」は面r22と像面との間の面間隔である。
【0031】
図6に示すように、前群GFは、色合成機構11の側(物体側)から順に、全体として正の屈折力を有する第1レンズL1と第2レンズL2との接合レンズから成る第1小群G1、負の屈折力を有するメニスカスレンズの第3レンズL3の第2小群G2、全体として正の屈折力を有する第4レンズL4と第5レンズL5との接合レンズから成る第3小群G3、正の屈折力を有する凸レンズである第6レンズL6の第4小群G4とによって構成される。
【0032】
また、後群GRは、負の屈折力を有する第7レンズL7の第5小群G5、正の屈折力を有する第8レンズL8の第6小群G6、負の屈折力を有する第9レンズL9の第7小群G7、負の屈折力を有する第10レンズL10の第8小群G8、正の屈折力を有する第11レンズL11の第9小群G9によって構成される。
【0033】
投影レンズ系12は、物体距離15mm、物体側開口数0.2、物体高さ(h/2)は13.5mm、倍率(M)は23倍、投影距離570mm、像高311mmである。
【0034】
以下の表1に上記投影レンズ系12を構成するレンズの各種数値を示す。
【0035】
【表1】
Figure 0004487164
【0036】
上記表1において、「STO」と付記した面r11は絞り面であって、「D」と付記したダミー面r12にはスキャンミラー14が配設され、水平方向に最大33.5光束が振られるようになっている。また、「ASP」を付記した面r13及びr22は軸対象一般非球面によって構成されている。
【0037】
投影レンズ系12に少なくとも1面の非球面を含むようにすると、像面湾曲及び色収差を効果的に補正することが可能になる。
【0038】
尚、非球面形状は、「z」を非球面の光軸方向の座標、「c」を曲率、「y」を光軸からの距離、「K」を円錐定数とすると、
z=cy2/[1+{1−(1+K)c221/2]+Ay4+By6+Cy8+Cy10
によって表されるものとする。ここで、A、B、C及びDはそれぞれ、4次、6次、8次及び10次の非球面係数である。
【0039】
以下の、表2に上記面r13及びr22の4次、6次、8次及び10次の非球面係数を示す。
【0040】
【表2】
Figure 0004487164
【0041】
尚、上記表2中の「E」は、10を底とする指数表現を意味するものとする(後述する表5においても同様)。
【0042】
また、上記第1小群G1乃至第9小群G9の各焦点距離f1乃至f9及び前群GF及び後群GRの焦点距離fa、fbは、以下の表3に示すとおりである。
【0043】
【表3】
Figure 0004487164
【0044】
上記表3に示すように、前群GFのパワー(屈折力)は、後群のパワーの1.08倍(絶対値)となる。また、前群GF及び後群GRのペッツバール和は、絶対値が略等しいため、レンズ全系のペッツバール和を等しく保つことができるので、像面湾曲を低減することが可能である。
【0045】
図7及び図8に投影レンズ系12の第1の数値実施例12Aの球面収差、非点収差、歪曲収差及び横収差を示す。各収差図において、実線は波長642.0nm、破線は波長532.0nm及び一点鎖線は波長460.0nmにおける値をそれぞれ示し、また、非点収差図においては、細線はサジタル像面、太線はメリディオナル像面における上記各波長の値をそれぞれ示し、横収差図において、左側のグラフはメリディオナル像面、左側のグラフはサジタル像面における上記各波長の値をそれぞれ示すものである(後述する図10、図11、図14及び図15においても同様)。尚、上記各収差図における値は、何れも、光軸を含む断面内での性能である(スキャンミラー14のスキャン角が0°に相当)。
【0046】
図7の歪曲収差図に示すように、歪曲収差は約1%である。また、各波長間のズレ量は0.08%以下である。これは、画素0.5ピクセル分に相当する。
【0047】
ところで、前述したように、具体的には、上記投影レンズ系12の焦点距離fは30mmである。GLV15の実像のサイズは27mmであり、これを、対角50インチの縦横比9:16のスクリーン13上に投影するとき、投影倍率Mは23倍となる。この投影倍率Mと上記焦点距離fとの関係から、概略の投影距離Mfは690mmとなるので、図3に示すように、投影装置10を、この投影距離Mf内に光路折り返しのための平面鏡19を配置したリアプロジェクタ20に適用すると、リアプロジェクタとしての奥行きは、投影距離Mfの約半分の350mm程度になると予想される。
【0048】
実際には、投影装置10における実際の投影距離Mfは、光軸上で第1レンズL1の面r1から計って約570mmであった。従って、この投影距離Mf内に1個の光路の折り返しのための平面鏡19を配置することにより、奥行きが約360mm程度のリアプロジェクタ20が実現可能であることが確認された。
【0049】
また、図7の各収差図にも示すように、前群GF及び後群GRの色収差は、符号が反対で、且つ、その絶対値も個々に小さくなるように補正されており、レーザー光を光源として使用した投影装置10に必要とされる青から赤までの波長範囲で、良好に色収差が補正されていることが明らかである。
【0050】
ところで、上記投影レンズ系12Aは、前述のように全系の焦点距離fは30mmであり、前群GFの焦点距離fa=51.22mm、後群GRの焦点距離fb=−55.43mmであるから、これら前群GF及び後群GRを薄肉レンズとして扱ったとき、前群GF及び後群GRとの間のレンズ間隔dは、
1/f=1/fa+1/fb―d/fa/fb
の関係から、d=90.43mmと算出される。また、倍率Mが23倍の時の物体から像面までの距離をTとすると、
0=d2―dT+T(fa+fb)+(M−1)2fafb/M
であるから、上記Tは837.7mmとなる。更に、物体距離Sは、
S={(M−1)d+T}/{(M−1)―Md/fa}=−80.2mm
となる。上記結果から、像面距離S′は、
S′=T+S−d=667mm
と計算される。
【0051】
従って、NA=0.2として瞳径を計算すると、半径で10.2mmとなる。スキャンミラー14はこれを受容しなくてはならないが、その慣性能率が大きくなると発熱量が増大するという傾向がある。
【0052】
以下に示す投影レンズ系12の第2の数値実施例12Bは、上記したように、瞳径が大きくなるとスキャンミラー14の発熱量が増大するということに鑑み、瞳径を小さくするために全系の焦点距離fを20mmにしたものである。
【0053】
図9に示すように、第2の数値実施例の投影レンズ系12Bにおいて、前群GFは、色合成機構11の側(物体側)から順に、全体として正の屈折力を有する第1レンズL1と第2レンズL2との接合レンズから成る第1小群G1、負の屈折力を有する第3レンズL3の第2小群G2、全体として正の屈折力を有する第4レンズL4と第5レンズL5との接合レンズから成る第3小群G3、正の屈折力を有する第6レンズL6の第4小群G4とによって構成される。
【0054】
また、後群GRは、負の屈折力を有する第7レンズL7の第5小群G5、正の屈折力を有する第8レンズL8の第6小群G6、負の屈折力を有する第9レンズL9の第7小群G7、負の屈折力を有する第10レンズL10の第8小群G8、負の屈折力を有する第11レンズL11の第9小群G9によって構成される。
【0055】
第2の数値実施例における投影レンズ系12Bは、物体距離10mm、物体側開口数0.2、物体高さ(h/2)は13.5mm、倍率(M)は23倍、投影距離570mm、像高311mmである。
【0056】
以下の表4に上記投影レンズ系12を構成するレンズの各種数値を示す。
【0057】
【表4】
Figure 0004487164
【0058】
上記表4において、「STO」と付記した面r11は絞り面であって、「D」と付記したダミー面r12にはスキャンミラー14が配設され、水平方向に最大33.5光束が振られるようになっている。また、「ASP」を付記した面r13及びr22は軸対象一般非球面によって構成されている。
【0059】
以下の、表5に上記面r13及びr22の4次、6次、8次及び10次の非球面係数を示す。
【0060】
【表5】
Figure 0004487164
【0061】
また、第2の数値実施例における投影レンズ系12Bを構成する上記第1小群G1乃至第9小群G9の各焦点距離f1乃至f9及び前群GF及び後群GRの焦点距離fa、fbは、以下の表6に示すとおりである。
【0062】
【表6】
Figure 0004487164
【0063】
上記表6に示すように、前群GFのパワーは、後群のパワーの約1.1倍(絶対値)となる。従って、前記投影レンズ系12の第1の数値実施例12Aの場合と同様に、前群GF及び後群GRのペッツバール和は、絶対値が略等しいため、レンズ全系のペッツバール和を等しく保つことができるので、像面湾曲を低減することが可能である。
【0064】
図10及び図11に投影レンズ系12の第2の数値実施例12Bの球面収差、非点収差、歪曲収差及び横収差を示す。尚、上記各収差図における値は、何れも、光軸を含む断面内での性能である(スキャンミラー14のスキャン角が0°に相当)。
【0065】
図10の歪曲収差図に示すように、歪曲収差は約2.5%である。また、各波長間のズレ量は0.08%以下である。これは、画素0.5ピクセル分に相当する。
【0066】
この第2の実施例における投影レンズ系12においても、投影装置10における実際の投影距離Mfは、光軸上で第1レンズL1の面r1から計って約570mmであった。従って、この投影距離Mf内に1個の反射ミラー18を用いた投影装置10では、奥行きが約360mm程度のリアプロジェクタが実現可能となる。
【0067】
また、図10の各収差図にも示すように、前群GF及び後群GRの色収差は、符号が反対で、且つ、その絶対値も個々に小さくなるように補正されており、レーザー光を光源として使用した投影装置10に必要とされる青から赤までの波長範囲で、良好に色収差が補正されていることが明らかである。
【0068】
ところで、上記投影レンズ系12は、前述のように全系の焦点距離fは20mmであり、前群GFの焦点距離fa=33.12mm、後群GRの焦点距離fb=−36.53mmであるから、これら前群GF及び後群GRを薄肉レンズとして扱ったとき、前群GF及び後群GRとの間のレンズ間隔dは、
1/f=1/fa+1/fb―d/fa/fb
の関係から、d=57.08mmと算出される。また、倍率Mが23倍の時の物体から像面までの距離をTとすると、
0=d2―dT+T(fa+fb)+(M−1)2fafb/M
であるから、上記Tは554.7mmとなる。更に、物体距離Sは、
S={(M−1)d+T}/{(M−1)―Md/fa}=−52.12mm
となる。上記結果から、像面距離S′は、
S′=T+S−d=445.5
と計算される。
【0069】
従って、NA=0.2として瞳径を計算すると、半径で6.6mmとなる。前記第1の数値実施例12Aにおける瞳径は10.2mmであったから、その60%に縮小されていることが確認された。これは、大まかには、全系の焦点距離の比に相当する。
【0070】
ところで、上記数値実施例2における投影レンズ係12Bは、最終レンズ(第11レンズ)L11は肉厚の厚い非球面レンズであり、且つ、その前の第10レンズL10と密着し、接合色消しレンズの形状を為すものである。上記接合レンズL10とL11とを非球面ミラーに置き換えることが考えられる。
【0071】
以下の投影レンズ系12の第3の数値実施例12Cは、図12に示すように、投影レンズ系の最終面を非球面ミラーとしたものである。この第3の数値実施例12Cにおいて、上記非球面ミラーは、光軸に垂直に配置されているが、光軸に対して傾斜させて、光軸を折り曲げる折り返しミラーとしての機能を兼ね備えさすことも可能である。
【0072】
図13に示すように、第3の数値実施例の投影レンズ系12Cにおいて、前群GFは、色合成機構11の側(物体側)から順に、全体として正の屈折力を有する第1レンズL1と第2レンズL2との接合レンズから成る第1小群G1、正の屈折力を有する第3レンズL3の第2小群G2、全体として正の屈折力を有する第4レンズL4と第5レンズL5との接合レンズから成る第3小群G3、正の屈折力を有する凸レンズの第6レンズL6の第4小群G4とによって構成される。
【0073】
また、後群GRは、負の屈折力を有する第7レンズL7の第5小群G5、正の屈折力を有する第8レンズL8の第6小群G6、負の屈折力を有する第9レンズL9の第7小群G7、負の屈折力を有する非球面ミラーREFLの第8小群G8によって構成される。
【0074】
第2の数値実施例における投影レンズ系12Cは、物体距離10mm、物体側開口数0.2、物体高さ(h/2)は13.5mm、倍率(M)は23倍、投影距離460mm、像高311mmである。
【0075】
以下の表7に上記投影レンズ系12Cを構成するレンズの各種数値を示す。
【0076】
【表7】
Figure 0004487164
【0077】
上記表7において、「STO」と付記した面r11は絞り面であって、「D」と付記したダミー面r12にはスキャンミラー14が配設され、水平方向に最大33.5光束が振られるようになっている。また、「ASP」を付記した面r13及びr19は軸対象一般非球面によって構成されている。
【0078】
以下の、表8に上記面r13及びr19の4次、6次、8次及び10次の非球面係数を示す。
【0079】
【表8】
Figure 0004487164
【0080】
また、第3の数値実施例における投影レンズ系12Cを構成する上記第1小群G1乃至第8小群G8の各焦点距離f1乃至f8及び前群GF及び後群GRの焦点距離fa、fbは、以下の表9に示すとおりである。
【0081】
【表9】
Figure 0004487164
【0082】
上記表9に示すように、前群GFのパワーは、後群のパワーの約25.8倍(絶対値)となり、パワーが前群GFに集中することとなる。
【0083】
図14及び図15に投影レンズ系12の第3の数値実施例12Cの球面収差、非点収差、歪曲収差及び横収差を示す。尚、上記各収差図における値は、何れも、光軸を含む断面内での性能である(スキャンミラー14のスキャン角が0°に相当)。
【0084】
図10の歪曲収差図に示すように、歪曲収差は−2%である。また、各波長間のズレ量は0.08%以下である。これは、画素0.5ピクセル分に相当する。
【0085】
上記投影レンズ系12の第1乃至第3の数値実施例12A、12B、12Cにおいて、前記スキャンミラー14で、水平方向に半画角で17.5°及び33.5°だけ光束を振った場合における投影レンズ系12の光学性能は、図7、図8、図10、図11、図14及び図15に示す各収差図に示した光軸を含む断面内での性能(スキャン角0°)と遜色ないものである。
【0086】
図16は、本発明投影装置10において、スクリーン(像面)13上における主光線の位置(波長:緑)を示すものである。即ち、図16は縦横比9:16のスクリーン13の上半分を示しているが、その対角位置でy方向には3%程度の歪曲収差が、x方向には5%程度の歪曲収差が認められる。この時のスキャンミラー13のスキャン角は、33.5°であるから、tan33.5°=0.66となる。従って、もし、これが従来の技術の欄で示したフロントプロジェクターの場合では、図21に示すように、y方向の歪曲収差は30%以上になってしまうこととなる。
【0087】
本発明投影装置10は、レーザー光源16と位相を変調させる回折格子状素子が一次元に配列されて成る空間変調器(GLV)15とを有する色合成機構11によって構成された縦又は横一列分の画像成分を含む光束をスキャンミラー14による走査によってスクリーン13上に画像として投影するものであり、物体側から像面側へと順に、全体として正の屈折力を有する前群GFと、全体として負の屈折力を有する後群GRとが間に空気間隔を空けて配置されると共に、スキャンミラー14が前群GF及び後群GRとの間の空気間隔に配置され、また、後群GRとスクリーン13との間の空気間隔内に光路を折り曲げる反射ミラー18が少なくとも一個配置されたものである。従って、スクリーンの端部における歪曲収差を悪化させずに焦点距離を短縮できるため、レーザー光源を使用したGLVプロジェクターを、リアプロジェクターに適用することが可能になる。
【0088】
尚、前記実施の形態において示した各部の具体的な形状及び構造は、何れも本発明を実施するに当たっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されることがあってはならないものである。
【0089】
【発明の効果】
以上に説明したように本発明は、レーザー光源と位相を変調させる回折格子状素子が一次元に配列されて成る空間変調器とを有する色合成機構によって構成された縦又は横一列分の画像成分を含む光束をスキャンミラーによる走査によってスクリーン上に画像として投影する投影装置であって、物体側から像面側へと順に、前群及び後群によって構成される投影レンズ系を、上記前群と後群との間に空気間隔を空けて配置すると共に、上記スキャンミラーを前群及び後群との間の空気間隔に配置し、前群は、色合成機構11の側から順に、全体として正の屈折力を有する第1のレンズ及び第2のレンズからなる接合レンズと、正の屈折力を有する第3のレンズと、全体として正の屈折力を有する第4のレンズ及び第5のレンズからなる接合レンズと、正の屈折力を有する凸レンズである第6のレンズとによって構成され、後群は、前群に近い側から順に、負の屈折力を有する第7のレンズと、正の屈折力を有する第8のレンズと、負の屈折力を有する第9のレンズと、負の屈折力を有する非球面ミラーとによって構成されているので、後群によって短焦点化したときに増大する歪曲収差を補正して、投影装置を投影距離の短いリアプロジェクターに適用することができるようになり、後群によって短焦点化したときに増大する歪曲収差を補正して、投影装置を投影距離の短いリアプロジェクターに適用することができるようになる。
【図面の簡単な説明】
【図1】図2及び図16と共に本発明投影装置の実施の形態を示すものであり、本図は投影装置を概略的に示す水平断面図である。
【図2】投影装置の縦断面図である
【図3】本発明投影装置をリアプロジェクターに適用した一例を概略的に示す縦断面図である。
【図4】投影レンズ系を概略的に示す断面図である。
【図5】全体の3次元概念図である。
【図6】図7及び図8と共に投影レンズ系の数値実施例1を示すものであり、本図はレンズ構成を示す拡大断面図である。
【図7】球面収差、非点収差及び歪曲収差を示す図である。
【図8】横収差を示す図である。
【図9】図10及び図11と共に投影レンズ系の数値実施例2を示すものであり、本図はレンズ構成を示す拡大断面図である。
【図10】球面収差、非点収差及び歪曲収差を示す図である。
【図11】横収差を示す図である。
【図12】図13乃至図15と共に投影レンズ系の数値実施例2を示すものであり、本図は全体の拡大断面図である。
【図13】レンズ構成を示す拡大断面図である。
【図14】球面収差、非点収差及び歪曲収差を示す図である。
【図15】横収差を示す図である。
【図16】像面における主光線の位置を示す図である
【図17】GLVの作動原理を概略的に示す図である。
【図18】図19乃至図21と共に従来のGLVを用いた投影装置を示すものであり、本図は基本構成を概略的に示す図である。
【図19】スクリーンへの画像の投影の原理を示す概略的に図である。
【図20】スクリーンの両端部において、歪曲収差が発生する様子を概略的に示す図である。
【図21】主光線の傾斜角と歪曲収差の発生程度との関係を示すグラフである。
【符号の説明】
10…投影装置、11…色合成機構、12…投影レンズ系、15…空間変調器、16…レーザー光源、GF…前群、GR…後群、REFL…非球面によって構成された反射面

Claims (1)

  1. レーザー光源と位相を変調させる回折格子状素子が一次元に配列されて成る空間変調器とを有する色合成機構によって構成された縦又は横一列分の画像成分を含む光束をスキャンミラーによる走査によってスクリーン上に画像として投影する投影装置であって、物体側から像面側へと順に、前群及び後群によって構成される投影レンズ系を、上記前群と後群との間に空気間隔を空けて配置すると共に、上記スキャンミラーを前群及び後群との間の空気間隔に配置し、
    前群は、色合成機構11の側から順に、全体として正の屈折力を有する第1のレンズ及び第2のレンズからなる接合レンズと、正の屈折力を有する第3のレンズと、全体として正の屈折力を有する第4のレンズ及び第5のレンズからなる接合レンズと、正の屈折力を有する凸レンズである第6のレンズとによって構成され、
    後群は、前群に近い側から順に、負の屈折力を有する第7のレンズと、正の屈折力を有する第8のレンズと、負の屈折力を有する第9のレンズと、負の屈折力を有する非球面ミラーとによって構成された
    ことを特徴とする投影装置。
JP2000327563A 2000-10-26 2000-10-26 投影装置 Expired - Fee Related JP4487164B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000327563A JP4487164B2 (ja) 2000-10-26 2000-10-26 投影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000327563A JP4487164B2 (ja) 2000-10-26 2000-10-26 投影装置

Publications (2)

Publication Number Publication Date
JP2002131838A JP2002131838A (ja) 2002-05-09
JP4487164B2 true JP4487164B2 (ja) 2010-06-23

Family

ID=18804552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000327563A Expired - Fee Related JP4487164B2 (ja) 2000-10-26 2000-10-26 投影装置

Country Status (1)

Country Link
JP (1) JP4487164B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084713B2 (ja) 2002-07-10 2008-04-30 富士フイルム株式会社 ディスプレイ装置
JP4400855B2 (ja) 2003-04-15 2010-01-20 株式会社リコー 光偏向装置、光偏向装置の製造方法、光偏向アレー、画像形成装置および画像投影表示装置
JP4363916B2 (ja) 2003-06-27 2009-11-11 株式会社リコー 光偏向装置の駆動方法、光偏向装置、光偏向アレー、画像形成装置および画像投影表示装置
JP4332780B2 (ja) * 2003-06-30 2009-09-16 ソニー株式会社 表示装置
JP4609015B2 (ja) * 2004-09-21 2011-01-12 セイコーエプソン株式会社 走査光学系、画像表示装置及び電子機器
JP2009037172A (ja) * 2007-08-03 2009-02-19 Sony Corp 光走査装置
KR102651647B1 (ko) * 2019-03-12 2024-03-26 루머스 리미티드 이미지 프로젝터
CN111580267B (zh) * 2020-06-29 2022-03-22 歌尔光学科技有限公司 光学系统及投影装置

Also Published As

Publication number Publication date
JP2002131838A (ja) 2002-05-09

Similar Documents

Publication Publication Date Title
WO2019151252A1 (ja) 投射光学系および画像表示装置
JP4890771B2 (ja) 投写光学系およびこれを用いた投写型表示装置
JP4015851B2 (ja) 結像光学系
EP3457191B1 (en) Projection optical system and projector
JP3753758B2 (ja) 液晶ビデオプロジェクタ
JP3982363B2 (ja) 投射レンズ、プロジェクション表示装置
US10082650B2 (en) Wide-angle lens, projection display device, and imaging apparatus
JP2010181672A (ja) 投射光学系及び投射型画像表示装置
JP4419243B2 (ja) 斜め投影光学系
JP2009104048A (ja) 投写レンズおよびこれを用いた投写型表示装置
KR20040032903A (ko) 투사렌즈
JP4750319B2 (ja) 投射用ズームレンズ
JP4340469B2 (ja) 投射用レンズおよび投射型画像表示装置
JP4487164B2 (ja) 投影装置
US20090251668A1 (en) Scanning image projector
JP7133398B2 (ja) 投射光学系および画像投射装置
JP2006078702A (ja) ズーム光学系
US7009778B2 (en) Imaging optical system, image display apparatus and imaging optical apparatus
JP2001264634A (ja) リアプロジェクション光学系
JP2006145671A (ja) 投写用ズームレンズおよびプロジェクタ装置
JP2006078701A (ja) ズーム光学系
JP4340468B2 (ja) 投射用レンズおよび投射型画像表示装置
JP4556112B2 (ja) 光走査装置及び画像生成装置
JP4340432B2 (ja) 投射用ズームレンズ
CN109564380A (zh) 投影型显示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees