JP4483467B2 - Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting - Google Patents

Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting Download PDF

Info

Publication number
JP4483467B2
JP4483467B2 JP2004225171A JP2004225171A JP4483467B2 JP 4483467 B2 JP4483467 B2 JP 4483467B2 JP 2004225171 A JP2004225171 A JP 2004225171A JP 2004225171 A JP2004225171 A JP 2004225171A JP 4483467 B2 JP4483467 B2 JP 4483467B2
Authority
JP
Japan
Prior art keywords
layer
cutting
inclination angle
degrees
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004225171A
Other languages
Japanese (ja)
Other versions
JP2006043791A (en
Inventor
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004225171A priority Critical patent/JP4483467B2/en
Publication of JP2006043791A publication Critical patent/JP2006043791A/en
Application granted granted Critical
Publication of JP4483467B2 publication Critical patent/JP4483467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、特に各種の鋼や鋳鉄などの被削材の断続切削加工を、高切り込みや高送りなどの重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention exhibits excellent chipping resistance even when the cutting material such as various steels and cast irons is cut under heavy cutting conditions such as high cutting and high feed. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム(以下、α型Al23層という)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as α-type Al 2 O 3 layer) layer in which the upper layer has an average layer thickness of 1 to 15 μm and has an α-type crystal structure in a chemical vapor deposited state;
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above, and this coated cermet tool can be used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known to be used.

また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
Further, in the above-described coated cermet tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は切削条件のうちの切り込みや送りをなどを高くした重切削条件で行われる傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを強い機械的衝撃が繰り返し付加される前記の重切削条件で断続切削加工を行うのに用いた場合には、硬質被覆層を構成するα型Al23層が十分な耐衝撃性を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. However, in the above-mentioned conventional coated cermet tool, there is no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron. When this is used to perform intermittent cutting under the above-mentioned heavy cutting conditions in which strong mechanical impact is repeatedly applied, the α-type Al 2 O 3 layer constituting the hard coating layer has sufficient impact resistance. Since it is not provided, chipping (slight chipping) easily occurs in the hard coating layer, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記のα型Al23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記α型Al23層の耐衝撃性向上を図るべく研究を行った結果、
下部層としてTi化合物層を形成した後の工具基体の表面に、上部層としてのα型Al23層を蒸着形成するに際して、これの蒸着形成に先だって、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C24:0.01〜0.3%、SF:0.01〜0.2%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、Al23核を前記表面に分散分布した状態で形成し、この場合、走査型電子顕微鏡を用い、10000倍の倍率で観察して、Al23核が平均値で5.1〜92.5個/μmの割合で分散分布するのが望ましく、ついで、装置内雰囲気を圧力:3〜13kPaのAr雰囲気に変え、装置内温度を930〜1050℃に昇温した条件で前記Al23核に加熱処理を施した状態で、
硬質被覆層の上部層としてのα型Al23層を通常の条件で蒸着形成すると、この結果の前記加熱処理Al23核形成後に蒸着形成されたα型Al23層は、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、工具基体表面と平行な表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記測定範囲を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来α型Al23層は、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記Al23核形成のα型Al23層は、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、前記Al23核の分布割合を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変わること。
The present inventors have, from the viewpoint as described above, focuses on coated cermet tool α type the Al 2 O 3 layer described above constituting the upper layer of the hard coating layer, in particular the α-type the Al 2 O 3 layer As a result of research to improve the impact resistance of
When the α-type Al 2 O 3 layer as the upper layer is vapor-deposited on the surface of the tool base after the Ti compound layer is formed as the lower layer, prior to the vapor-deposition formation, for example, with a normal chemical vapor deposition apparatus ,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, SF 6 : 0.01 to 0.2 %, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under the low temperature condition, the Al 2 O 3 nuclei are formed in a state of being distributed and distributed on the surface. In this case, using a scanning electron microscope, the Al 2 O 3 nuclei are observed at an average value of 10,000 times. It is desirable to disperse and distribute at a rate of 5.1 to 92.5 / μm 2. Then, the atmosphere in the apparatus was changed to an Ar atmosphere having a pressure of 3 to 13 kPa, and the temperature in the apparatus was increased to 930 to 1050 ° C. In a state where the Al 2 O 3 nucleus is subjected to heat treatment under conditions,
When the α-type Al 2 O 3 layer as the upper layer of the hard coating layer is formed by vapor deposition under normal conditions, the α-type Al 2 O 3 layer formed by vapor deposition after the heat treatment Al 2 O 3 nucleation as a result is Using a field emission scanning electron microscope, a crystal having a hexagonal crystal lattice existing within a measurement range of a surface polished surface parallel to the tool substrate surface as shown in the schematic explanatory diagrams of FIGS. 1 (a) and 1 (b) Each particle is irradiated with an electron beam, and using an electron backscatter diffraction image apparatus, the measurement range is 0.1 μm / step at an interval of 0.1 μm / step with respect to the normal of the surface polished surface. An inclination angle formed by a normal line of a (0001) plane is measured, and among the measurement inclination angles, a measurement inclination angle within a range of 0 to 45 degrees is divided for each pitch of 0.25 degrees. If you have created a slope angle distribution graph that is an aggregation of the frequencies existing in the Conventional α-type the Al 2 O 3 layer, whereas show the unbiased inclination angle frequency distribution graph in the range of distribution of 0-45 degrees measurement angle of inclination (0001) plane, the Al 2 O 3 nuclei In the formed α-type Al 2 O 3 layer, a sharp maximum peak appears at a specific position of the tilt angle section, and this sharp maximum peak is changed on the horizontal axis of the graph by changing the distribution ratio of the Al 2 O 3 nuclei. The position that appears in the tilt angle section changes.

(b)上記のAl23核形成のα型Al23層は上記従来α型Al23層に比して著しく耐衝撃性の向上したものとなるので、これを硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具は、特に断続切削加工を高切り込みや高送りなどの重切削条件で行うのに用いた場合にも、同じく前記従来α型Al23層を蒸着形成してなる従来被覆サーメット工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮するようになること。 (B) The α 2 Al 3 O 3 layer formed with Al 2 O 3 nuclei has significantly improved impact resistance as compared with the conventional α type Al 2 O 3 layer. The coated cermet tool formed by vapor deposition as the upper layer of the above-mentioned conventional α-type Al 2 O 3 layer is also used when the intermittent cutting process is performed under heavy cutting conditions such as high cutting and high feed. Compared to the conventional coated cermet tool formed by vapor deposition, the hard coating layer should exhibit superior chipping resistance.

(c)試験結果によれば、上記加熱処理Al23核の分布割合を平均値で5.1〜92.5個/μmとすると、上記シャープな最高ピークが傾斜角区分の39〜43度の範囲内に現れると共に、33〜43度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜73%の割合を占める傾斜角度数分布グラフを示すようになり、この結果の傾斜角度数分布グラフで39〜43度の範囲内に傾斜角区分の最高ピークが現れ、かつ33〜43度の範囲内に存在する度数割合が45〜73%の割合を占めるα型Al23層を硬質被覆層の上部層として、下部層のTi化合物層と共存した状態で蒸着形成してなる被覆サーメット工具は、上記の従来被覆サーメット工具に比して、特に断続切削加工を重切削条件で行った場合に一段とすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) According to the test results, when the distribution ratio of the heat-treated Al 2 O 3 nuclei is an average value of 5.1 to 92.5 / μm 2 , the sharpest peak is the inclination angle section of 39 to As shown in the slope angle distribution graph that appears in the range of 43 degrees and the sum of the frequencies that are in the range of 33 to 43 degrees occupies a ratio of 45 to 73 % of the entire frequency in the slope angle distribution graph. In the inclination angle distribution graph of this result, the highest peak of the inclination angle section appears in the range of 39 to 43 degrees, and the frequency ratio existing in the range of 33 to 43 degrees occupies a ratio of 45 to 73 %. The coated cermet tool formed by vapor deposition with the α-type Al 2 O 3 layer as the upper layer of the hard coating layer and coexisting with the lower Ti compound layer is particularly intermittent compared to the conventional coated cermet tool described above. Cutting with heavy cutting conditions It shows the more excellent chipping resistance in a case where Tsu, to come to exert a superior cutting performance over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有するα型Al 2 3 層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具において、
上記(b)のα型Al 2 3 層を、
反応ガス組成:容量%で、AlCl 3 :3〜10%、CO 2 :0.5〜3%、C 2 4 :0.01〜0.3%、SF :0.01〜0.2%、H 2 :残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で化学蒸着形成し、かつ加熱処理を施したAl 2 3 核を介して、α型Al 2 3 層の通常の形成条件に相当する条件で化学蒸着形成してなると共に
電界放出型走査電子顕微鏡を用い、上記工具基体の表面と平行な表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記測定範囲を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、39〜43度の範囲内の傾斜角区分に最高ピークが存在すると共に、33〜43度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜73%の割合を占める傾斜角度数分布グラフを示すα型Al23層、
で構成してなる、硬質被覆層が断続重切削加工ですぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) a Ti compound layer in which the lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has an overall average layer thickness of 3 to 20 μm,
(B) an α-type Al 2 O 3 layer whose upper layer has an average layer thickness of 1 to 15 μm ;
In the coated cermet tool formed by forming the hard coating layer composed of (a) and (b) above,
The α-type Al 2 O 3 layer of (b) above is
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, SF 6 : 0.01 to 0.2 %, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Chemical vapor deposition under low temperature conditions and chemical vapor deposition under conditions corresponding to normal formation conditions of the α-type Al 2 O 3 layer through the Al 2 O 3 nucleus subjected to heat treatment ,
Using a field emission scanning electron microscope, an electron beam is irradiated to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface parallel to the surface of the tool base, and an electron backscatter diffraction image device is formed. The measurement range is measured at an interval of 0.1 μm / step, and the inclination angle formed by the normal of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal of the surface-polished surface, In the inclination angle distribution graph formed by dividing the measurement inclination angles within the range of 0 to 45 degrees among the measurement inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section. The highest peak is present in the inclination angle section in the range of 39 to 43 degrees, and the total of the frequencies existing in the range of 33 to 43 degrees is a ratio of 45 to 73 % of the entire degrees in the inclination angle frequency distribution graph. Angle distribution graph occupying Α-type the Al 2 O 3 layer indicated,
The hard coating layer is characterized by a coated cermet tool that exhibits excellent chipping resistance in intermittent heavy cutting.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)下部層のTi化合物層
Ti化合物層は、α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度向上に寄与するほか、工具基体とα型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Hereinafter, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described.
(A) Lower Ti compound layer The Ti compound layer exists as a lower layer of the α-type Al 2 O 3 layer, and the hard coating layer contributes to the improvement of the high temperature strength by the excellent high temperature strength possessed by itself. The substrate and the α-type Al 2 O 3 layer are firmly adhered to each other, thereby improving the adhesion of the hard coating layer to the tool substrate. However, when the average layer thickness is less than 3 μm, the above-described operation is sufficiently achieved. On the other hand, when the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting with high heat generation, which causes uneven wear. Was determined to be 3 to 20 μm.

(b)上部層のα型Al23
上記の傾斜角度数分布グラフで、33〜43度の範囲内の傾斜角区分に最高ピークを示すα型Al23層は、Al23自体のもつ高硬度とすぐれた耐熱性に加えて、すぐれた耐衝撃性を有し、したがって、強い機械的衝撃が繰り返し付加される断続重切削加工で、上記の従来被覆サーメット工具の硬質被覆層を構成するα型Al23層に比して、一段とすぐれた耐チッピング性を発揮するが、その平均層厚が1μm未満では、所望のすぐれた耐摩耗性を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(B) Upper α-type Al 2 O 3 layer In the above inclination angle number distribution graph, the α-type Al 2 O 3 layer showing the highest peak in the inclination angle section within the range of 33 to 43 degrees is the Al 2 O 3 in addition to the high hardness and excellent heat resistance possessed by itself, excellent have impact resistance, therefore, a strong mechanical shock intermittent heavy cutting that is repeatedly added, hard coating of the above-described conventional coated cermet tool Compared to the α-type Al 2 O 3 layer constituting the layer, the chipping resistance is further improved. However, if the average layer thickness is less than 1 μm, the desired excellent wear resistance can be sufficiently exhibited. On the other hand, if the average layer thickness exceeds 15 μm and becomes too thick, chipping tends to occur. Therefore, the average layer thickness was set to 1 to 15 μm.

(c)加熱処理Al23
この発明の被覆サーメット工具の硬質被覆層を構成するα型Al23層に関して、傾斜角度数分布グラフで最高ピークを示す傾斜角区分と加熱処理Al23核の分布割合との間には密接な関係があり、この場合試験結果によれば、前記加熱処理Al23核の分布割合を平均値で5.1〜92.5個/μmの範囲内で変化させると、最高ピークが39〜43度の範囲内の傾斜角区分に現れると共に、33〜43度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜73%の割合を占める傾斜角度数分布グラフを示すようになるものであり、したがって、前記加熱処理Al23核の分布割合が、5.1個/μm未満では、これの上に蒸着形成されるα型Al23層の傾斜角度数分布グラフの39〜43度の範囲内に現れるピーク高さが不十分、すなわち、33〜43度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、この場合上記の通り、前記α型Al23層に所望のすぐれた耐衝撃性を確保することができず、一方その分布割合が、92.5個/μmを越えると、最高ピークの現れる傾斜角区分が39〜43度の範囲から外れるようになることから、硬質被覆層を構成するTi化合物層上に形成される前記加熱処理Al23核の分布割合を平均値で5.1〜92.5個/μmとしたのである。
(C) Heat-treated Al 2 O 3 nucleus Regarding the α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool of the present invention, the tilt angle segment showing the highest peak in the tilt angle number distribution graph and the heat-treated Al 2 There is a close relationship between the distribution ratio of the O 3 nuclei, and in this case, according to the test results, the average distribution of the distribution ratio of the heat-treated Al 2 O 3 nuclei is 5.1 to 92.5 / μm. When the variation is within the range of 2 , the highest peak appears in the inclination angle section in the range of 39 to 43 degrees, and the total of the frequencies existing in the range of 33 to 43 degrees is the entire frequency in the inclination angle distribution graph. An inclination angle number distribution graph occupying a ratio of 45 to 73 % of the heat treatment Al 2 O 3 nuclei is less than 5.1 particles / μm 2 . inclination of α type the Al 2 O 3 layer is deposited formed thereon Insufficient peak height appearing in the range of 39 to 43 degrees of the frequency distribution graph, i.e., percentage of total power present in the range of 33-43 degrees, less than 45% of the total power at the inclination angle frequency distribution graph In this case, as described above, the desired excellent impact resistance cannot be ensured in the α-type Al 2 O 3 layer, while the distribution ratio exceeds 92.5 / μm 2 . Since the inclination angle section where the highest peak appears is out of the range of 39 to 43 degrees, the distribution ratio of the heat-treated Al 2 O 3 nuclei formed on the Ti compound layer constituting the hard coating layer is determined. The average value was 5.1 to 92.5 / μm 2 .

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を、強い機械的衝撃を伴なう断続切削加工を重切削条件で行うのに用いた場合にも、硬質被覆層の上部層を構成するα型Al23層が、Al23自身のもつすぐれた高温硬さと耐熱性による耐摩耗性に加えて、一段とすぐれた耐衝撃性を具備することから、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cermet tool of the present invention can be used to cut various types of steel and cast iron, etc., when performing intermittent cutting with strong mechanical impact under heavy cutting conditions. The constituting α-type Al 2 O 3 layer has excellent impact resistance in addition to the excellent high temperature hardness and heat resistance of Al 2 O 3 itself, so it has excellent chipping resistance. The service life can be further extended.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、VC粉末、Cr 3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A,C,Fをそれぞれ製造した。 As raw material powders, WC powder, VC powder, Cr 3 C 2 powder , and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the blending composition shown in Table 1, Further, wax was added and mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact was in a range of 1370 to 1470 ° C. in a vacuum of 5 Pa. Vacuum sintering under the condition of holding at a predetermined temperature for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm to have a throwaway tip shape defined in ISO · CNMG160412 Tool bases A, C, and F made of WC-base cemented carbide were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a,c,d,eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a, c, d, and e made of TiCN-based cermet having a standard / CNMG 160412 chip shape were formed.

ついで、これらの工具基体A,C,Fおよび工具基体a,c,d,eのそれぞれを、Al23核分布割合測定用試験片と共に、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、
反応ガス組成:容量%で、AlCl3:6.5%、CO2:1.6%、C24:0.13%、SF:0.12%、H2:残り、
反応雰囲気温度:820℃、
反応雰囲気圧力:8kPa、
の低温条件でAl23核を形成した後、
装置内雰囲気を圧力:8kPaのAr雰囲気に変え、かつ装置内温度を1000℃に昇温した条件で前記Al23核に加熱処理を施して加熱処理Al23核とし、
この時点で前記試験片を装置から取り出し、引続いて、同じく表3に示される条件で、同じく表4に示される目標層厚のα型Al23層を硬質被覆層の上部層として蒸着形成することにより本発明被覆サーメット工具1〜7をそれぞれ製造した。
Next, each of these tool bases A, C, F and tool bases a, c, d, e , together with Al 2 O 3 nucleus distribution ratio measurement specimens, was charged into a normal chemical vapor deposition apparatus. Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically long crystal structure described in JP-A-6-8010. Otherwise, the conditions for forming a normal granular crystal structure are shown. The Ti compound layer having the target layer thickness shown in Table 4 is deposited as a lower layer of the hard coating layer under the conditions shown in FIG.
Reaction gas composition:% by volume, AlCl 3 : 6.5%, CO 2 : 1.6%, C 2 H 4 : 0.13%, SF 6 : 0.12%, H 2 : remaining,
Reaction atmosphere temperature: 820 ° C.
Reaction atmosphere pressure: 8 kPa,
After forming Al 2 O 3 nuclei under low temperature conditions,
The device ambience pressure changed to an Ar atmosphere at 8 kPa, and the device temperature of the Al 2 O 3 nuclei heat treatment for heat-treatment Al 2 O 3 nuclei conditions the temperature was raised to 1000 ° C.,
At this time, the test piece is taken out from the apparatus, and subsequently an α-type Al 2 O 3 layer having the target layer thickness shown in Table 4 is deposited as an upper layer of the hard coating layer under the conditions shown in Table 3 as well. The coated cermet tools 1 to 7 of the present invention were produced by forming the respective cermet tools.

また、上記のAl23核分布割合測定用試験片における加熱処理Al23核の分布割合については、走査型電子顕微鏡を用い、10000倍の倍率で観察して、3μm×3μmの範囲内に存在するAl23核の数を任意箇所5ヶ所について測定し、この測定結果を表4に単位面積(μm)当たりの平均値で示した。 The distribution ratio of the heat-treated Al 2 O 3 nuclei in the Al 2 O 3 nucleus distribution ratio measurement test piece was observed at a magnification of 10,000 using a scanning electron microscope, and the range was 3 μm × 3 μm. The number of Al 2 O 3 nuclei present inside was measured at five arbitrary locations, and the measurement results are shown in Table 4 as an average value per unit area (μm 2 ).

また、比較の目的で、表5に示される通り、硬質被覆層のα型Al23層を形成するに先だって、上記の加熱処理Al23核の形成を行なわない以外は同一の条件で従来被覆サーメット工具1〜7をそれぞれ製造した。 For comparison purposes, as shown in Table 5, the same conditions except that the above heat-treated Al 2 O 3 nuclei were not formed prior to forming the α-type Al 2 O 3 layer of the hard coating layer. Conventionally, coated cermet tools 1 to 7 were produced.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成するα型Al23層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記のα型Al23層の表面を上記工具基体の表面と平行な研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜核のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, with respect to the α-type Al 2 O 3 layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool, the number of tilt angles is measured using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Each distribution graph was created.
That is, the inclination angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope with the surface of the α-type Al 2 O 3 layer being a polished surface parallel to the surface of the tool base. Irradiating the polished surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface; Using an electron backscatter diffraction image apparatus, a normal of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal of the surface-polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step The measured tilt angle is measured, and based on the measurement result, among the measured tilt nuclei, the measured tilt angle within the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, and within each section It was created by counting the frequencies existing in

この結果得られた各種のα型Al23層の傾斜角度数分布グラフにおいて、(0001)面が最高ピークを示す傾斜角区分、並びに33〜43度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表4,5にそれぞれ示した。 In the inclination angle number distribution graphs of various α-type Al 2 O 3 layers obtained as a result, the (0001) plane is present in the inclination angle section showing the highest peak, and in the inclination angle section in the range of 33 to 43 degrees. Tables 4 and 5 show the ratios of the tilt angle numbers to the tilt angle number distribution graph as a whole.

上記の各種のα型Al23層の傾斜角度数分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆サーメット工具の加熱処理Al23核上に形成されたα型Al23層は、いずれも(0001)面の測定傾斜角の分布が39〜43度の範囲内の傾斜角区分に最高ピークが現れ、かつ33〜43度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45〜73%である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具のα型Al23層は、いずれも(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、33〜43度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。 In the inclination angle number distribution graphs of the various α-type Al 2 O 3 layers, α-type Al formed on the heat-treated Al 2 O 3 core of the coated cermet tool of the present invention as shown in Tables 4 and 5, respectively. In the 2 O 3 layer, the highest peak appears in the tilt angle section where the distribution of the measured tilt angle on the (0001) plane is in the range of 39 to 43 degrees, and in the tilt angle section in the range of 33 to 43 degrees. While the inclination angle number distribution graph in which the ratio of the existing inclination angle number is 45 to 73 % is shown, the α-type Al 2 O 3 layer of the conventional coated cermet tool has a measured inclination angle of the (0001) plane. An inclination angle in which the distribution of the angle is unbiased within the range of 0 to 45 degrees, the highest peak does not exist, and the ratio of the number of inclination angles existing in the inclination angle section within the range of 33 to 43 degrees is 30% or less. A number distribution graph was shown.

また、この結果得られた本発明被覆サーメット工具1〜7および従来被覆サーメット工具1〜7の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 7 and the conventional coated cermet tools 1 to 7 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement) , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜7および従来被覆サーメット工具1〜7の各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min、
切り込み:4.0mm、
送り:0.25mm/rev、
切削時間:10分、
の条件(切削条件Aという)での合金鋼の乾式断続高切り込み切削試験(通常の切り込みは2.0mm)、
被削材:JIS・S40Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:180m/min、
切り込み:2.0mm、
送り:0.5mm/rev、
切削時間:5分、
の条件(切削条件Bという)での炭素鋼の乾式断続高送り切削試験(通常の送りは0.25mm/rev)、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min、
切り込み:5.0mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件Cという)での鋳鉄の乾式断続高切り込み切削試験(通常の切り込みは2.0mm)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the various coated cermet tools of the present invention coated cermet tools 1 to 7 and the conventional coated cermet tools 1 to 7 , all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 200 m / min,
Cutting depth: 4.0 mm,
Feed: 0.25mm / rev,
Cutting time: 10 minutes,
Dry interrupted high cutting test of alloy steel under the conditions (referred to as cutting condition A) (normal cutting is 2.0 mm),
Work material: JIS · S40C lengthwise equal length 4 round bar with round groove,
Cutting speed: 180 m / min,
Cutting depth: 2.0 mm
Feed: 0.5mm / rev,
Cutting time: 5 minutes
Of carbon steel under the above conditions (referred to as cutting condition B) (normal feed is 0.25 mm / rev),
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 250 m / min,
Cutting depth: 5.0mm,
Feed: 0.3mm / rev,
Cutting time: 10 minutes,
The cast iron was subjected to a dry interrupted high cutting test (normal cutting was 2.0 mm) under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting blade was measured in any cutting test. The measurement results are shown in Table 6.

Figure 0004483467
Figure 0004483467

Figure 0004483467
Figure 0004483467

Figure 0004483467
Figure 0004483467

Figure 0004483467
Figure 0004483467

Figure 0004483467
Figure 0004483467

Figure 0004483467
Figure 0004483467

表4〜6に示される結果から、本発明被覆サーメット工具1〜7は、いずれも硬質被覆層の上部層が、(0001)面の傾斜角が39〜43度の範囲内の傾斜角区分で最高ピークを示すと共に、33〜43度の傾斜角区分範囲内に存在する度数の合計割合が45〜73%を占める傾斜角度数分布グラフを示すα型Al23層で構成され、すぐれた耐衝撃性を有することから、鋼および鋳鉄の強い機械的衝撃を伴なう断続重切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層が、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すα型Al23層で構成された従来被覆サーメット工具1〜7においては、いずれも上記の断続重切削加工では、前記α型Al23層の耐衝撃性不足が原因で硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, in the coated cermet tools 1 to 7 of the present invention, the upper layer of the hard coating layer is an inclination angle section in which the inclination angle of the (0001) plane is in the range of 39 to 43 degrees. It was composed of an α-type Al 2 O 3 layer showing the highest peak and showing an inclination angle number distribution graph in which the total ratio of the frequencies existing in the inclination angle range of 33 to 43 degrees accounted for 45 to 73 %. Because it has impact resistance, it exhibits excellent chipping resistance in intermittent heavy cutting with strong mechanical impact of steel and cast iron, and exhibits excellent cutting performance over a long period of time. The upper layer of the hard coating layer is an α-type Al 2 O 3 layer showing an inclination angle number distribution graph in which the distribution of measured inclination angles on the (0001) plane is unbiased within the range of 0 to 45 degrees and there is no highest peak. Contact with the conventional coated cermet tools 1 to 7 in configured Te, in both the above intermittent heavy cutting, the chipping occurs in the hard coating layer because the impact resistance insufficient α type the Al 2 O 3 layer, apparently can lead to a relatively short time using life It is.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に断続切削加工を重切削条件で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has excellent resistance not only to continuous cutting and interrupted cutting under normal conditions such as various types of steel and cast iron, but particularly when interrupted cutting is performed under heavy cutting conditions. Since it exhibits chipping performance and excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting processing, and further cost reduction. .

硬質被覆層を構成するα型Al23層における結晶粒の(0001)面の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle of the crystal grains (0001) plane in the hard coating layer α type the Al 2 O 3 layer constituting the.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造および1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆サーメット製切削工具において、
上記(b)の酸化アルミニウム層を、
反応ガス組成:容量%で、AlCl 3 :3〜10%、CO 2 :0.5〜3%、C 2 4 :0.01〜0.3%、SF :0.01〜0.2%、H 2 :残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で化学蒸着形成し、かつ加熱処理を施した酸化アルミニウム核を介して、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層の通常の形成条件に相当する条件で化学蒸着形成してなると共に
電界放出型走査電子顕微鏡を用い、工具基体表面と平行な表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記測定範囲を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、39〜43度の範囲内の傾斜角区分に最高ピークが存在すると共に、33〜43度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜73%の割合を占める傾斜角度数分布グラフを示す酸化アルミニウム層、
で構成したことを特徴とする、硬質被覆層が断続重切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer formed by chemical vapor deposition. And a Ti compound layer having an overall average layer thickness of 3 to 20 μm,
(B) an aluminum oxide layer having an α-type crystal structure and an average layer thickness of 1 to 15 μm in an upper layer formed by chemical vapor deposition;
In the cutting tool made of surface-coated cermet formed by forming the hard coating layer composed of (a) and (b) above,
The aluminum oxide layer of (b) above is
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, SF 6 : 0.01 to 0.2 %, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Chemical vapor deposition under low-temperature conditions, and chemical vapor deposition under conditions equivalent to the normal formation conditions of an aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition through heat-treated aluminum oxide nuclei As well as
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface parallel to the tool substrate surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used. The measurement range is measured at an interval of 0.1 μm / step, and the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface. 39. In the inclination angle number distribution graph formed by dividing the measured inclination angles in the range of 0 to 45 degrees out of the inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section, The highest peak exists in the inclination angle section within the range of ˜43 degrees, and the total of the frequencies existing within the range of 33 to 43 degrees accounts for 45 to 73 % of the total degrees in the inclination angle frequency distribution graph. An inclination angle number distribution graph is shown. Aluminum layer,
A surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting processing, characterized by comprising
JP2004225171A 2004-08-02 2004-08-02 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting Expired - Fee Related JP4483467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225171A JP4483467B2 (en) 2004-08-02 2004-08-02 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225171A JP4483467B2 (en) 2004-08-02 2004-08-02 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting

Publications (2)

Publication Number Publication Date
JP2006043791A JP2006043791A (en) 2006-02-16
JP4483467B2 true JP4483467B2 (en) 2010-06-16

Family

ID=36022935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225171A Expired - Fee Related JP4483467B2 (en) 2004-08-02 2004-08-02 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting

Country Status (1)

Country Link
JP (1) JP4483467B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483110B2 (en) * 2010-09-30 2014-05-07 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6288606B2 (en) * 2014-03-28 2018-03-07 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer

Also Published As

Publication number Publication date
JP2006043791A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4512989B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4730522B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4793750B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer
JP2007167987A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2005279912A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP4483467B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP4530141B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2005238437A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP2005313245A (en) Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance
JP4438559B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP2006043802A (en) Surface coated cermet cutting tool having hard coated layer exhibiting excellent wear resistance in high-speed cutting
JP2005279915A (en) Surface-coated cermet cutting tool exhibiting superior chipping resistance in hard-coated layer
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2005279914A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP4816904B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP4747385B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4483467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees