JP6288606B2 - Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer Download PDF

Info

Publication number
JP6288606B2
JP6288606B2 JP2014069050A JP2014069050A JP6288606B2 JP 6288606 B2 JP6288606 B2 JP 6288606B2 JP 2014069050 A JP2014069050 A JP 2014069050A JP 2014069050 A JP2014069050 A JP 2014069050A JP 6288606 B2 JP6288606 B2 JP 6288606B2
Authority
JP
Japan
Prior art keywords
layer
aluminum oxide
degrees
inclination angle
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069050A
Other languages
Japanese (ja)
Other versions
JP2015188980A (en
Inventor
亮介 山口
亮介 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014069050A priority Critical patent/JP6288606B2/en
Publication of JP2015188980A publication Critical patent/JP2015188980A/en
Application granted granted Critical
Publication of JP6288606B2 publication Critical patent/JP6288606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、各種の鋼や鋳鉄などの切削加工を、高熱発生を伴う高速切削条件で行った場合にも、硬質被覆層が長期の使用にわたってすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface in which a hard coating layer exhibits excellent chipping resistance and wear resistance over a long period of use even when various types of steel and cast iron are cut under high-speed cutting conditions with high heat generation. The present invention relates to a coated cutting tool (hereinafter referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層として、酸化アルミニウム層、
上記(a)、(b)からなる硬質被覆層を蒸着形成してなる被覆工具が良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiCO) A Ti compound layer comprising one or more of a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) As an upper layer, an aluminum oxide layer,
A coated tool formed by vapor-depositing a hard coating layer comprising the above (a) and (b) is well known.

上記従来の被覆工具において、その工具性能の向上を図るため種々の提案がなされている。
例えば、特許文献1に示すように、前記(b)の酸化アルミニウム層の形成に際し、優れた熱遮蔽性と機械的・熱的にすぐれた耐衝撃性を有するZr含有κ−Al層と、すぐれた高温硬さと耐熱性を備える加熱変態α−Al層とを交互に積層することで上部層を形成すると、切れ刃に大きな負荷が作用する重切削加工において、耐チッピング性、耐摩耗性の向上が図られることが知られている。
In the conventional coated tool, various proposals have been made to improve the tool performance.
For example, as shown in Patent Document 1, in forming the aluminum oxide layer (b), a Zr-containing κ-Al 2 O 3 layer having excellent heat shielding properties and excellent mechanical and thermal shock resistance In addition, when the upper layer is formed by alternately laminating heat-transformed α-Al 2 O 3 layers having excellent high-temperature hardness and heat resistance, chipping resistance in heavy cutting work where a large load acts on the cutting edge It is known that the wear resistance is improved.

特許第5029825号公報Japanese Patent No. 5029825

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化される傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削に用いた場合には問題はないが、特にこれを、高い発熱を伴う高速切削条件に用いた場合には、硬質被覆層の上部層のκ型結晶構造のAl(以下、κ型結晶構造のAlを「κ―Al」で示し、また、α型結晶構造のAlを「α―Al」で示す。)のκ型結晶構造からα型結晶構造への変態に伴う体積収縮によって、上部層内に残留応力が発生し、クラックの進展が促進されるため、特に、刃先にチッピング、欠損、剥離が生じやすくなり、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor-saving and energy-saving in cutting work, and cost reduction. In the conventional coated tool, there is no problem when this is used for continuous cutting under normal conditions such as steel and cast iron, but especially when this is used for high-speed cutting conditions with high heat generation, Al 2 O 3 of the κ-type crystal structure of the upper layer of the hard coating layer (hereinafter, κ-type crystal structure Al 2 O 3 is represented by “κ-Al 2 O 3 ”, and α-type crystal structure of Al 2 O 3 3 is represented by “α-Al 2 O 3 ”). Residual stress is generated in the upper layer by the volume shrinkage accompanying the transformation from the κ-type crystal structure to the α-type crystal structure, and the progress of cracks is promoted. For this reason, chipping, chipping and peeling are particularly likely to occur at the cutting edge. Ri, as a result, at present, leading to a relatively short time service life.

そこで、本発明者等は、上述のような観点から、高速切削加工における硬質被覆層の耐チッピング性、耐摩耗性の向上を図るべく鋭意研究を行った結果、次のような知見を得た。   Therefore, the present inventors have conducted earnest research to improve the chipping resistance and wear resistance of the hard coating layer in high-speed cutting from the above viewpoint, and as a result, obtained the following knowledge. .

本発明者等は、被覆工具の硬質被覆層を構成するAl層内のκ→α変態に伴う体積変化を緩和させるためには、硬質被覆層をκ―Al層を素地として、該素地中にα―Alを一定の比率で分散分布させると、κ→α変態に伴う体積収縮を低減し得ることから、κ―Al層素地にα―Alが分散する層構造によって、耐チッピング性が向上することを見出した。 In order to alleviate the volume change associated with the κ → α transformation in the Al 2 O 3 layer constituting the hard coating layer of the coated tool, the present inventors used the κ-Al 2 O 3 layer as a base material. When α-Al 2 O 3 is dispersed and distributed in the substrate at a certain ratio, volume shrinkage due to the κ → α transformation can be reduced. Therefore, α-Al 2 is added to the κ-Al 2 O 3- layer substrate. It has been found that the chipping resistance is improved by the layer structure in which O 3 is dispersed.

また、硬質被覆層のκ―Al層素地中にα―Alを一定の比率で分散分布させるにあたり、成膜が進み上部層厚さが厚くなるにしたがい、α―Al結晶粒は成長粗大化する傾向を有するため、硬質被覆層の素地を構成するκ―Al層が所定厚さになったところで成膜を一次中断し、α―Al結晶粒の成長を分断する分断層を形成した後、引き続き、素地のκ―Al層の成膜を行い(なお、この場合、α―Al結晶粒の成長もまた開始される)、素地のκ―Al層の成膜と分断層の形成とを交互に繰り返し行うと、硬質被覆層中には粗大化したα―Al結晶粒が形成されないため、耐チッピング性の向上に加えて、硬質被覆層の耐摩耗性が向上することを見出した。 Further, in the α-Al 2 O 3 in κ-Al 2 O 3 layer in the matrix of the hard coat layer to disperse distribution at a constant rate, in accordance with the upper layer thickness deposition proceeds becomes thicker, alpha-Al 2 Since the O 3 crystal grains tend to grow and become coarse, when the κ-Al 2 O 3 layer constituting the substrate of the hard coating layer reaches a predetermined thickness, the film formation is temporarily interrupted, and α-Al 2 O 3 After forming the dividing line that divides the growth of the crystal grains, the base κ-Al 2 O 3 layer is subsequently formed (in this case, the growth of the α-Al 2 O 3 crystal grains is also started). If the film formation of the κ-Al 2 O 3 layer and the split layer are alternately repeated, coarse α-Al 2 O 3 crystal grains are not formed in the hard coating layer. It has been found that the wear resistance of the hard coating layer is improved in addition to the improvement of chipping resistance.

さらに、本発明者等は、κ―Al層素地にα―Al結晶粒を分散させ、κ→α変態に伴う体積収縮を緩和するに際し、α―Al結晶粒の配向に注目し、工具基体側のκ―Al層素地に分散するα―Al結晶粒の(11−20)配向度を高めると、高温下でα―Al結晶粒が層厚方向に大きく体積膨張し、これは、κ→α変態に伴う体積収縮を相殺する方向に作用することを見出した。
但し、(11−20)配向度の高いα―Al結晶粒は、耐摩耗性が不十分であるため、硬質被覆層表面側のκ―Al層素地に分散するα―Al結晶粒は、耐摩耗性に優れた(10−14)配向度の高いα―Al結晶粒で構成することが望ましい。
つまり、硬質被覆層のκ―Al層素地中に分散するα―Al結晶粒は、工具基体側では(11−20)配向度の高いα―Al結晶粒で構成し、一方、硬質被覆層表面側では(10−14)配向度の高いα―Al結晶粒で構成することが望ましい。
そして、硬質被覆層がこのような層構造を備えることによって、高熱発生を伴う高速切削条件であっても、耐チッピング性に優れるばかりか、より一段とすぐれた耐摩耗性を発揮することを見出したのである。
Furthermore, the present inventors have, κ-Al 2 O 3 layer green body is dispersed α-Al 2 O 3 crystal grains, upon relaxing the volumetric shrinkage due to the kappa → alpha transformation, α-Al 2 O 3 crystal grains When the (11-20) orientation degree of the α-Al 2 O 3 crystal grains dispersed in the κ-Al 2 O 3 layer substrate on the tool base side is increased, the α-Al 2 O 3 is increased at a high temperature. It has been found that the crystal grains undergo a large volume expansion in the layer thickness direction, which acts in a direction to cancel the volume shrinkage associated with the κ → α transformation.
However, (11-20) α-Al 2 O 3 crystal grains having a high degree of orientation have insufficient wear resistance, and therefore α- dispersed in the κ-Al 2 O 3 layer substrate on the hard coating layer surface side. The Al 2 O 3 crystal grains are desirably composed of α-Al 2 O 3 crystal grains having a high degree of orientation (10-14) having excellent wear resistance.
That is dispersed in κ-Al 2 O 3 layer in the matrix of the hard layer α-Al 2 O 3 crystal grains, a tool substrate side (11-20) of high degree of orientation α-Al 2 O 3 crystal grains On the other hand, it is desirable that the hard coating layer surface side is composed of α-Al 2 O 3 crystal grains having a high degree of (10-14) orientation.
And it has been found that the hard coating layer has such a layer structure, so that it has not only excellent chipping resistance but also excellent wear resistance even under high-speed cutting conditions with high heat generation. It is.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と上部層からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなる合計平均層厚3〜20μmのTi化合物層からなり、
(b)前記上部層は、2〜15μmの平均層厚を有し、分断層を介して酸化アルミニウム層が3層以上交互に積層された交互積層構造からなり、
(c)前記交互積層構造の酸化アルミニウム層は、一層あたり0.5〜4μmの平均層厚を有し、かつ、κ型結晶構造のAl素地中にα型結晶構造のAl結晶粒からなる分散相が分散分布した構造を有し、
(d)前記交互積層構造の酸化アルミニウム層の縦断面で測定したκ型結晶構造のAl素地中に占める前記分散相の平均面積割合は20〜60面積%であり、
(e)前記交互積層構造の酸化アルミニウム層の表面側から少なくとも第1層までの酸化アルミニウム層における分散相は、電界放出型走査電子顕微鏡を用い、前記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める前記傾斜角度数分布グラフを示し、
(f)前記分断層は、一層あたり0.1〜1.5μmの平均層厚を有するTi炭化物層、窒化物層および炭窒化物層のいずれかからなることを特徴とする表面被覆切削工具。
(2)(1)に記載の表面被覆切削工具において、
前記交互積層構造酸化アルミニウム層基体側から少なくとも第1層までの酸化アルミニウム層における分散相は、電界放出型走査電子顕微鏡を用い、前記工具基体の表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、前記傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示ことを特徴とする(1)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer composed of a lower layer and an upper layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The lower layer has a total average layer thickness of 3 to 20 μm composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. Consisting of a Ti compound layer,
(B) The upper layer has an average layer thickness of 2 to 15 μm, and has an alternately stacked structure in which three or more aluminum oxide layers are alternately stacked via a dividing layer,
(C) The alternately laminated aluminum oxide layers have an average layer thickness of 0.5 to 4 μm per layer, and Al 2 O having an α-type crystal structure in an Al 2 O 3 substrate having a κ-type crystal structure. Having a structure in which a dispersed phase composed of three crystal grains is dispersed and distributed;
(D) The average area ratio of the dispersed phase in the Al 2 O 3 substrate of the κ-type crystal structure measured in the longitudinal section of the aluminum oxide layer of the alternately laminated structure is 20 to 60 area%,
(E) The dispersion phase in the aluminum oxide layer from the surface side of the aluminum oxide layer having the alternately laminated structure to at least the first layer is measured using a field emission scanning electron microscope, and the measurement range of the polished surface parallel to the tool substrate surface The crystal grains having a hexagonal crystal lattice existing therein are irradiated with an electron beam, and the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the polished surface Of the measured tilt angles, and the measured tilt angles within the range of 0 to 45 degrees are divided into pitches of 0.25 degrees, and the tilt angles obtained by counting the frequencies existing in each section In the number distribution graph, the highest peak exists in the inclination angle section within the range of 30 to 45 degrees, and the total of the frequencies existing within the range of 30 to 45 degrees is 50 of the entire degrees in the inclination angle number distribution graph. % Or more Indicates the inclination angle frequency distribution graph occupied,
(F) The surface-coated cutting tool, wherein the dividing layer is composed of any one of a Ti carbide layer, a nitride layer, and a carbonitride layer having an average layer thickness of 0.1 to 1.5 μm per layer.
(2) In the surface-coated cutting tool according to (1),
Dispersed phase in the aluminum oxide layer from the substrate side of the aluminum oxide layer to at least a first layer of the alternate laminated structure, using a field emission scanning electron microscope, within the measuring range of the surface and parallel to the polishing surface of the tool substrate Irradiate each individual crystal grain having a hexagonal crystal lattice with an electron beam, and measure the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal of the polished surface And, among the measured tilt angles, the measured tilt angles within a range of 45 to 90 degrees are divided into pitches of 0.25 degrees, and the tilt angle number distribution is obtained by counting the frequencies existing in each section. In the graph, the highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees is 50% of the entire degrees in the inclination angle number distribution graph. Above The surface-coated cutting tool according to, characterized in that shows the inclination angle frequency distribution graph occupying (1). "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層について、詳細に説明する。
図1に、本発明被覆工具の硬質被覆層の縦断面模式図を示す。
図2に、工具基体表面に蒸着形成した下部層のうえに分断層を蒸着し、酸化アルミニウム層を蒸着する前の成膜途中段階の概略模式図を示す。
Below, the hard coating layer of the coated tool of this invention is demonstrated in detail.
In FIG. 1, the longitudinal cross-sectional schematic diagram of the hard coating layer of this invention coated tool is shown.
FIG. 2 is a schematic diagram showing a middle stage of film formation before a separation layer is vapor-deposited on the lower layer vapor-deposited on the tool base surface and an aluminum oxide layer is vapor-deposited.

下部層:
図1に示すように、下部層のTi化合物層は、Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層または2層以上で構成する。
Ti化合物層は、交互積層構造からなる上部層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と上部層のいずれにも強固に密着し、硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Lower layer:
As shown in FIG. 1, the lower Ti compound layer includes Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide ( It is composed of one or more of (TiCNO) layers.
The Ti compound layer exists as the lower layer of the upper layer composed of an alternating layered structure, and contributes to improving the high temperature strength of the hard coating layer by its excellent high temperature strength, and is strong to both the tool base and the upper layer. It has an effect of improving the adhesion of the hard coating layer to the tool substrate, but if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be fully exhibited, while the average layer thickness is 20 μm. If it exceeds, especially high-speed cutting accompanied by generation of high heat is likely to cause thermoplastic deformation, which causes uneven wear, so the average layer thickness was determined to be 3 to 20 μm.

上部層:
図1に示すように、上部層は、分断層を介して酸化アルミニウム層が交互に積層された交互積層構造からなる。
分断層を介在形成することによって、成膜が進み上部層厚さが厚くなるにしたがい、酸化アルミニウム層中に分散分布するα―Al結晶粒が成長粗大化することを防止する。
上部層の平均層厚は、2μm未満では、長期の使用にわたって十分な耐摩耗性を発揮することはできず、一方、15μmを超えると、チッピング、欠損、剥離等の異常損傷が発生し易くなるので、上部層の平均層厚は、2〜15μmと定めた。
Upper layer:
As shown in FIG. 1, the upper layer has an alternate stacked structure in which aluminum oxide layers are alternately stacked via a dividing layer.
By forming the dividing layer, the α-Al 2 O 3 crystal grains dispersed and distributed in the aluminum oxide layer are prevented from growing and coarsening as the film formation progresses and the upper layer thickness increases.
If the average thickness of the upper layer is less than 2 μm, sufficient wear resistance cannot be exhibited over a long period of use. On the other hand, if it exceeds 15 μm, abnormal damage such as chipping, chipping or peeling tends to occur. Therefore, the average layer thickness of the upper layer was set to 2 to 15 μm.

分断層:
図1に示すように、分断層は、下部層と上部層の間に形成されているとともに、さらに、上部層の酸化アルミニウム層を分断し、上部層を交互積層構造として構成する層である。
分断層は、0.1〜1.5μmの層厚を有するTi炭化物層、窒化物層および炭窒化物層のいずれかからなる。
化学蒸着装置によって、工具基体表面に形成した下部層上に酸化アルミニウム層を蒸着形成するに先立って、上記分断層を介在形成し、さらに、酸化アルミニウム層を分断層で分断することによって、酸化アルミニウム層と分断層との交互積層構造からなる上部層を形成する。
酸化アルミニウム層を分断層で分断することによって、酸化アルミニウム層中のα―Al結晶粒の粗大化を防止することができるため、上部層の高硬度を維持することができるとともに、表面平滑性に優れた上部層を形成することができる。
分断層の層厚は、一層あたり0.1μm未満では、α―Al結晶粒の成長粗大化を抑制するための分断効果が少なく、一方、分断層の層厚が一層あたり1.5μmを超えると、上部層の耐摩耗性が低下傾向を示すことから、分断層の層厚は、一層あたり0.1〜1.5μmと定めた。
Split fault:
As shown in FIG. 1, the dividing line is a layer that is formed between the lower layer and the upper layer, further divides the upper aluminum oxide layer, and configures the upper layer as an alternately laminated structure.
The dividing layer is composed of any one of a Ti carbide layer, a nitride layer, and a carbonitride layer having a layer thickness of 0.1 to 1.5 μm.
Before the aluminum oxide layer is vapor-deposited on the lower layer formed on the surface of the tool base by the chemical vapor deposition apparatus, the split layer is formed by interposition, and further, the aluminum oxide layer is divided by the split layer to thereby form aluminum oxide. An upper layer having an alternately laminated structure of layers and dividing layers is formed.
By dividing the aluminum oxide layer with a dividing layer, it is possible to prevent the α-Al 2 O 3 crystal grains in the aluminum oxide layer from becoming coarse, so that the high hardness of the upper layer can be maintained, and the surface An upper layer having excellent smoothness can be formed.
If the layer thickness of the dividing layer is less than 0.1 μm per layer, the dividing effect for suppressing the growth coarsening of α-Al 2 O 3 crystal grains is small, while the layer thickness of the dividing layer is 1.5 μm per layer. Since the wear resistance of the upper layer tends to be lower than the upper limit, the layer thickness of the dividing layer is determined to be 0.1 to 1.5 μm per layer.

分断層の形成:
分断層におけるTi炭化物層、窒化物層および炭窒化物層については、従来から知られている蒸着方法にしたがって形成すればよい。
さらに、上記分断層の成膜後、例えば、
通常の化学蒸着装置により、
反応ガス(容積%):
TiCl4: 0.5〜1.5%、
CO2: 3〜10%、
Ar: 25〜35%、
2:残り、
反応雰囲気温度: 880〜980℃、
反応雰囲気圧力:4〜70kPa、
反応時間:1〜30min
の条件にて、分断層表面にTi酸化物形成処理を行う。
Ti酸化物形成処理が施された分断層表面に酸化アルミニウム層を成膜することで、κ―Al結晶粒を素地として、該素地中にα―Al結晶粒が分散相として分散分布する組織構造をもった酸化アルミニウム層を形成することができる。
Formation of a split fault:
The Ti carbide layer, nitride layer, and carbonitride layer in the split layer may be formed according to a conventionally known vapor deposition method.
Furthermore, after film formation of the dividing line, for example,
With normal chemical vapor deposition equipment,
Reaction gas (volume%):
TiCl 4: 0.5~1.5%,
CO 2 : 3 to 10%,
Ar: 25-35%
H 2 : Remaining
Reaction atmosphere temperature: 880-980 ° C.,
Reaction atmosphere pressure: 4 to 70 kPa,
Reaction time: 1-30 min
Under the conditions, Ti oxide formation processing is performed on the surface of the dividing layer.
By forming an aluminum oxide layer on the surface of the split layer subjected to the Ti oxide formation treatment, κ-Al 2 O 3 crystal grains are used as a base material, and α-Al 2 O 3 crystal grains are dispersed in the base material. As a result, an aluminum oxide layer having a distributed structure can be formed.

図2に示すように、分断層表面に上記Ti酸化物形成処理を行うと、分断層表面に組成式:TiOで表されるTi酸化物が形成されるが、該Ti酸化物が主として中間層の粒界に選択的に形成されることから、κ―Al結晶粒を素地とする酸化アルミニウム層におけるα―Al結晶粒の成長及び含有割合に影響を及ぼす。
即ち、分断層表面に酸化アルミニウム層を成膜するにあたり、分断層表面に形成されたTi酸化物(より正確に言えば、中間層の粒界に選択的に形成されたTi酸化物)上には、α―Al結晶粒が優先的に成長し、一方、それ以外の領域には、κ―Al結晶粒が優先的に成長することから、酸化アルミニウム層の構造として、κ―Al結晶粒を素地として、該素地中にα―Al結晶粒が分散相として分散分布する組織構造をもった酸化アルミニウム層を形成することができる。
なお、基体側第1層目の酸化アルミニウム層の蒸着形成に際し、下部層の最表面層がTi炭化物層、窒化物層および炭窒化物層のいずれかからなる層で形成してあれば、これが分断層に相当することになるから、あらためて下部層のうえに分断層を形成する必要はないが、この上にTi酸化物形成処理を行う必要がある。
As shown in FIG. 2, when the Ti oxide formation process is performed on the surface of the dividing layer, a Ti oxide represented by the composition formula: TiO X is formed on the surface of the dividing layer. Since it is selectively formed at the grain boundary of the layer, it affects the growth and content ratio of the α-Al 2 O 3 crystal grains in the aluminum oxide layer based on the κ-Al 2 O 3 crystal grains.
That is, when forming an aluminum oxide layer on the surface of the dividing layer, on the Ti oxide formed on the surface of the dividing layer (more precisely, Ti oxide selectively formed on the grain boundary of the intermediate layer). Since α-Al 2 O 3 crystal grains grow preferentially, while κ-Al 2 O 3 crystal grains preferentially grow in other regions, the structure of the aluminum oxide layer is as follows: By using κ-Al 2 O 3 crystal grains as a base, an aluminum oxide layer having a structure in which α-Al 2 O 3 crystal grains are dispersed and distributed as a dispersed phase in the base can be formed.
If the outermost surface layer of the lower layer is formed of any one of a Ti carbide layer, a nitride layer, and a carbonitride layer during vapor deposition of the first aluminum oxide layer on the substrate side, this is Since it corresponds to a dividing line, it is not necessary to form a dividing line on the lower layer again, but it is necessary to perform a Ti oxide formation process on this.

上部層の酸化アルミニウム層:
上部層の交互積層を構成する酸化アルミニウム層は、κ−Al結晶粒からなる素地中にα−Al結晶粒からなる分散相が分散分布した組織構造を有する。
そして、このような組織構造により、鋼や鋳鉄などの高い発熱を伴う高速切削条件における上部層のκ→α変態に伴う体積収縮を低減することができ、上部層内における残留応力の発生を抑制し得る。その結果、上部層内におけるクラックの進展を抑制することができ、刃先の耐チッピング性が向上する。
上部層の交互積層を構成する酸化アルミニウム層は、一層あたり0.5〜4μmの平均層厚を有することが必要である。
交互積層を構成する酸化アルミニウム層の一層あたりの層厚が0.5μm未満では、長期の使用にわたって満足できる耐摩耗性を発揮することができず、一方、一層あたりの層厚が4μmを超える場合には、κ−Al結晶粒からなる素地中に分散分布するα−Al結晶粒からなる分散相が粗大成長するために、上部層の表面粗さが増大し、耐チッピング性、耐摩耗性が低下傾向を示すため、一層あたりの層厚は0.5〜4μmとすることが必要である。
Upper aluminum oxide layer:
An aluminum oxide layer constituting an alternating stack of upper layers has a structure in which dispersed phases composed of α-Al 2 O 3 crystal grains are dispersed and distributed in a base composed of κ-Al 2 O 3 crystal grains.
And with such a structure, volume shrinkage due to κ → α transformation of the upper layer in high-speed cutting conditions with high heat generation such as steel and cast iron can be reduced, and the occurrence of residual stress in the upper layer is suppressed. Can do. As a result, the progress of cracks in the upper layer can be suppressed, and the chipping resistance of the cutting edge is improved.
The aluminum oxide layer constituting the alternating lamination of the upper layers needs to have an average layer thickness of 0.5 to 4 μm per layer.
When the layer thickness per layer of the aluminum oxide layers constituting the alternating lamination is less than 0.5 μm, satisfactory wear resistance cannot be exhibited over a long period of use, while the layer thickness per layer exceeds 4 μm. In this case, since the dispersed phase composed of α-Al 2 O 3 crystal grains dispersed and distributed in the substrate composed of κ-Al 2 O 3 crystal grains grows coarsely, the surface roughness of the upper layer increases, and chipping resistance The layer thickness per layer needs to be 0.5 to 4 μm because the properties and wear resistance tend to decrease.

上部層を構成する酸化アルミニウム層に占める分散相の割合:
前記酸化アルミニウム層について、その垂直縦断面を後方散乱電子回折装置(EBSD)を備えた走査型電子顕微鏡(SEM)にて観察し、得られた結晶方位マッピング像の画像解析により、κ−Al素地中に占めるα−Al結晶粒からなる分散相の面積割合を測定した場合、分散相の面積割合が20面積%未満である場合には、κ→α変態に伴う体積収縮を低減する効果が不十分であり、一方、その面積割合が60面積%を超えるとκ−Al素地による熱遮蔽効果が不十分であるから、κ−Al素地中に占める分散相の面積割合は、20〜60面積%とする。
Ratio of dispersed phase in the aluminum oxide layer constituting the upper layer:
The vertical vertical section of the aluminum oxide layer was observed with a scanning electron microscope (SEM) equipped with a backscattering electron diffractometer (EBSD), and image analysis of the obtained crystal orientation mapping image revealed that κ-Al 2 When the area ratio of the dispersed phase composed of α-Al 2 O 3 crystal grains in the O 3 substrate is measured and the area ratio of the dispersed phase is less than 20% by area, the volume shrinkage accompanying the κ → α transformation On the other hand, if the area ratio exceeds 60 area%, the heat shielding effect by the κ-Al 2 O 3 substrate is insufficient, and therefore the κ-Al 2 O 3 substrate is occupied. The area ratio of the dispersed phase is 20 to 60 area%.

分散相の結晶方位:
κ−Al素地中にα−Al結晶粒からなる分散相が分散分布することによって、κ→α変態に伴う体積変化が緩和されるが、分散相であるα−Al結晶粒の面配向によって、上部層の備える特性が大きく影響される。
即ち、α−Al結晶粒は、(0001)面の法線方向に対して垂直な方向(a軸方向)よりも、平行な方向(c軸方向)の方が熱膨張係数が大きい。そのため、分散相のα−Al結晶粒の(11−20)配向度を高めると高温下でα−Al結晶粒が層厚方向に大きく体積膨張することで、素地を構成するκ−Al結晶粒のκ→α変態に伴う体積収縮を相殺する方向に作用する。
しかし、(11−20)配向度の高いα−Al結晶粒は、(10−14)配向度の高いα−Al結晶粒に比して耐摩耗性が不十分である。
そこで、鋼や鋳鉄などの高い発熱を伴う高速切削条件における耐チッピング性と耐摩耗性との両者を満足させるためには、図1に示すように、交互積層構造を構成する酸化アルミニウム層のうちの基体側から少なくとも第1層までに位置する酸化アルミニウム層については、(11−20)配向度の高いα−Al結晶粒からなる分散相を分散分布させ、一方、交互積層構造を構成する酸化アルミニウム層のうちの表面側から少なくとも第1層までに位置する酸化アルミニウム層については、(10−14)配向度の高いα−Al結晶粒からなる分散相を分散分布させることが望ましい。
Crystal orientation of the dispersed phase:
Dispersion distribution of the dispersed phase composed of α-Al 2 O 3 crystal grains in the κ-Al 2 O 3 substrate alleviates the volume change due to the κ → α transformation, but the dispersed phase is α-Al 2. The characteristics of the upper layer are greatly affected by the plane orientation of the O 3 crystal grains.
That is, α-Al 2 O 3 crystal grains have a larger coefficient of thermal expansion in the parallel direction (c-axis direction) than in the direction perpendicular to the normal direction of the (0001) plane (a-axis direction). . Therefore, if the (11-20) orientation degree of the α-Al 2 O 3 crystal grains in the dispersed phase is increased, the α-Al 2 O 3 crystal grains are subjected to large volume expansion in the layer thickness direction at a high temperature, thereby forming a substrate. It acts in a direction to cancel the volume shrinkage accompanying the κ → α transformation of the κ-Al 2 O 3 crystal grains.
However, (11-20) α-Al 2 O 3 crystal grains having a high degree of orientation have insufficient wear resistance compared to α-Al 2 O 3 crystal grains having a high degree of (10-14) orientation. .
Therefore, in order to satisfy both chipping resistance and wear resistance in high-speed cutting conditions with high heat generation such as steel and cast iron, as shown in FIG. For the aluminum oxide layer positioned from the substrate side to at least the first layer, the dispersed phase composed of (11-20) highly oriented α-Al 2 O 3 crystal grains is dispersed and distributed, while the alternate stacked structure is formed. For the aluminum oxide layer located from the surface side to at least the first layer of the constituent aluminum oxide layers, a dispersed phase composed of α-Al 2 O 3 crystal grains having a high degree of orientation (10-14) is dispersed and distributed. It is desirable.

分散相の結晶方位配向度の測定:
分散相の結晶方位配向度は、以下のとおり行うことができる。
即ち、基体側から少なくとも第1層までに位置する酸化アルミニウム層中の分散相の(11−20)面の配向度を測定するためには、電界放出型走査電子顕微鏡を用い、工具基体の表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、75〜90度の範囲内に存在する度数の合計を求め、その度数の合計が、傾斜角度数分布グラフにおける度数全体に占める割合を算出することによって、(11−20)面の配向度を求めることができる。
上記で求めた傾斜角度数分布グラフにおいて、75〜90度の範囲内の傾斜角区分に度数の最高ピークが存在し、かつ、75〜90度の傾斜角区分に存在する度数割合が50%以上である場合には、基体側から少なくとも第1層までに位置する酸化アルミニウム層中の分散相の(11−20)面配向度が高く、基体側において、κ→α変態に伴う体積変化の緩和が十分に行われ、耐チッピング性向上が図られることから、前記傾斜角度数分布グラフにおいて、75〜90度の範囲内の傾斜角区分に度数の最高ピークが存在し、かつ、該傾斜角区分に存在する度数割合が50%以上であることが望ましい。
Measurement of crystal orientation in the dispersed phase:
The crystal orientation of the dispersed phase can be performed as follows.
That is, in order to measure the degree of orientation of the (11-20) plane of the dispersed phase in the aluminum oxide layer located from the substrate side to at least the first layer, a field emission scanning electron microscope is used. The crystal grains having a hexagonal crystal lattice existing in the measurement range of the polished surface parallel to the electron beam are irradiated with an electron beam, and are the crystal planes of the crystal grains with respect to the normal line of the polished surface (0001) The inclination angle formed by the normal of the surface is measured, and among the measurement inclination angles, the measurement inclination angles within the range of 45 to 90 degrees are divided for each pitch of 0.25 degrees and exist in each division. In the inclination angle frequency distribution graph obtained by counting the frequencies, the sum of the frequencies existing in the range of 75 to 90 degrees is obtained, and the ratio of the total frequency to the entire frequency in the inclination angle frequency distribution graph is calculated. By (11-20) plane Mukodo can be obtained.
In the inclination angle number distribution graph obtained above, the highest peak of frequency exists in the inclination angle section within the range of 75 to 90 degrees, and the frequency ratio existing in the inclination angle section of 75 to 90 degrees is 50% or more. In this case, the (11-20) plane orientation degree of the dispersed phase in the aluminum oxide layer located from the substrate side to at least the first layer is high, and on the substrate side, the volume change associated with the κ → α transformation is alleviated. Is sufficiently performed and chipping resistance is improved. In the inclination angle number distribution graph, the highest peak of the frequency exists in the inclination angle section within the range of 75 to 90 degrees, and the inclination angle section It is desirable that the frequency ratio existing in is 50% or more.

また、表面側から少なくとも第1層までに位置する酸化アルミニウム層中の分散相の(10−14)面の配向度を測定するためには、電界放出型走査電子顕微鏡を用い、工具基体の表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、30〜45度の範囲内に存在する度数の合計を求め、その度数の合計が、傾斜角度数分布グラフにおける度数全体に占める割合を算出することによって、(10−14)面の配向度を求めることができる。
上記で求めた傾斜角度数分布グラフにおいて、30〜45度の範囲内の傾斜角区分に度数の最高ピークが存在し、かつ、30〜45度の傾斜角区分に存在する度数割合が50%以上である場合には、表面側から少なくとも第1層までに位置する酸化アルミニウム層中の分散相の(10−14)面配向度が高く、上部層表面側において、高硬度が担保され耐摩耗性向上が図られることから、前記傾斜角度数分布グラフにおいて、30〜45度の範囲内の傾斜角区分に度数の最高ピークが存在し、かつ、該傾斜角区分に存在する度数割合が50%以上であることが望ましい。
Further, in order to measure the degree of orientation of the (10-14) plane of the dispersed phase in the aluminum oxide layer located from the surface side to at least the first layer, a field emission scanning electron microscope was used to measure the surface of the tool substrate. The crystal grains having a hexagonal crystal lattice existing in the measurement range of the polished surface parallel to the electron beam are irradiated with an electron beam, and are the crystal planes of the crystal grains with respect to the normal line of the polished surface (0001) The tilt angle formed by the normal of the surface is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees and exist in each section. In the inclination angle frequency distribution graph obtained by counting the frequencies, the total of the frequencies existing in the range of 30 to 45 degrees is obtained, and the ratio of the total frequency to the total frequency in the inclination angle frequency distribution graph is calculated. By (10-14) plane arrangement Degree can be obtained.
In the inclination angle number distribution graph obtained above, the highest peak of frequency exists in the inclination angle section within the range of 30 to 45 degrees, and the frequency ratio existing in the inclination angle section of 30 to 45 degrees is 50% or more. In this case, the (10-14) plane orientation degree of the dispersed phase in the aluminum oxide layer located from the surface side to at least the first layer is high, and high hardness is ensured on the surface side of the upper layer and wear resistance. Since the improvement is intended, in the inclination angle distribution graph, the highest peak of the frequency exists in the inclination angle section within the range of 30 to 45 degrees, and the frequency ratio existing in the inclination angle section is 50% or more. It is desirable that

上部層の形成:
上部層は、まず、下部層表面に所定層厚の分断層を成膜し、この上に所定層厚の酸化アルミニウム層を成膜し、分断層の成膜と酸化アルミニウム層の成膜を交互に目標積層数、目標平均層厚になるまで繰り返し行うことによって形成する。
分断層の成膜法については、既に述べたとおりであるが、酸化アルミニウム層については、以下のとおり成膜することができる。
Formation of the upper layer:
For the upper layer, first, a dividing layer having a predetermined layer thickness is formed on the surface of the lower layer, an aluminum oxide layer having a predetermined layer thickness is formed thereon, and the forming of the dividing layer and the forming of the aluminum oxide layer are alternately performed. To the target number of layers and the target average layer thickness.
The method of forming the dividing layer is as described above, but the aluminum oxide layer can be formed as follows.

≪基体側から少なくとも第1層までに位置する酸化アルミニウム層の成膜≫
例えば、通常の化学蒸着装置により、
反応ガス(容積%):
AlCl:1〜5%、
CO2:3〜7%、
HCl:0.3〜3%、
S:0.02〜0.4%、
:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:20〜30kPa、
という条件で蒸着することによって、基体側から少なくとも第1層までに位置するκ−Al結晶粒を素地とする酸化アルミニウム層が形成され、この際、同時に、傾斜角度数分布グラフにおいて、75〜90度の範囲内の傾斜角区分に度数の最高ピークが存在し、かつ、該傾斜角区分に存在する度数割合が50%以上であるα−Al結晶粒((11−20)面配向度の高いα−Al結晶粒)からなる分散相が、κ−Al結晶粒素地に分散分布される。
<< Filming of an aluminum oxide layer located from the substrate side to at least the first layer >>
For example, with a normal chemical vapor deposition device,
Reaction gas (volume%):
AlCl 3 : 1 to 5%,
CO 2: 3~7%,
HCl: 0.3-3%,
H 2 S: 0.02~0.4%,
H 2 : Remaining
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 20-30 kPa,
By vapor deposition under the conditions, an aluminum oxide layer having a base of κ-Al 2 O 3 crystal grains located from the substrate side to at least the first layer is formed. At the same time, in the inclination angle number distribution graph, Α-Al 2 O 3 crystal grains ((11-20) in which the highest peak of power exists in the tilt angle section in the range of 75 to 90 degrees and the power ratio in the tilt angle section is 50% or more. The dispersed phase consisting of (a) α-Al 2 O 3 crystal grains having a high degree of plane orientation is dispersed and distributed in the κ-Al 2 O 3 crystal grain base.

≪表面側から少なくとも第1層までに位置する酸化アルミニウム層の成膜≫
例えば、通常の化学蒸着装置により、
反応ガス(容積%):
AlCl:3〜10%、
CO2:0.5〜3%、
HCl:0.3〜3%、
SF:0.01〜0.2%、
:0.01〜0.3%、
:残り、
反応雰囲気温度:950〜1000℃、
反応雰囲気圧力:20〜30kPa、
という条件で蒸着することによって、表面側から少なくとも第1層までに位置するκ−Al結晶粒を素地とする酸化アルミニウム層が形成され、この際、同時に、傾斜角度数分布グラフにおいて、30〜45度の範囲内の傾斜角区分に度数の最高ピークが存在し、かつ、該傾斜角区分に存在する度数割合が50%以上であるα−Al結晶粒((10−14)面配向度の高いα−Al結晶粒)からなる分散相が、κ−Al結晶粒素地に分散分布される。
<< Formation of an aluminum oxide layer located from the surface side to at least the first layer >>
For example, with a normal chemical vapor deposition device,
Reaction gas (volume%):
AlCl 3 : 3 to 10%,
CO 2: 0.5~3%,
HCl: 0.3-3%,
SF 6 : 0.01 to 0.2%,
C 2 H 4: 0.01~0.3%,
H 2 : Remaining
Reaction atmosphere temperature: 950 to 1000 ° C.
Reaction atmosphere pressure: 20-30 kPa,
By vapor deposition under the conditions, an aluminum oxide layer based on κ-Al 2 O 3 crystal grains located from the surface side to at least the first layer is formed, and at the same time, in the inclination angle number distribution graph, Α-Al 2 O 3 crystal grains ((10-14) in which the highest peak of frequency exists in the inclination angle section within the range of 30 to 45 degrees and the frequency ratio existing in the inclination angle section is 50% or more. The dispersed phase consisting of (a) α-Al 2 O 3 crystal grains having a high degree of plane orientation is dispersed and distributed in the κ-Al 2 O 3 crystal grain base.

本発明の被覆工具は、硬質被覆層の上部層が酸化アルミニウム層と分断層の交互積層構造として構成され、酸化アルミニウム層中には、α−Al結晶粒からなる分散相が分散分布し、また、分散相の結晶方位配向度を特定していることによって、κ→α変態に伴う体積変化が緩和され、α−Al結晶粒の成長粗大化が防止され、表面側の酸化アルミニウム層が特に高硬度を備えることから、各種の鋼や鋳鉄などの切削加工を、高熱発生を伴う高速切削条件で行った場合でも、耐チッピング性及び耐摩耗性にすぐれ、長期の使用にわたってすぐれた切削性能を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated tool of the present invention, the upper layer of the hard coating layer is configured as an alternately laminated structure of an aluminum oxide layer and a split layer, and a dispersed phase composed of α-Al 2 O 3 crystal grains is dispersed and distributed in the aluminum oxide layer. In addition, by specifying the crystal orientation degree of the dispersed phase, the volume change associated with the κ → α transformation is relaxed, the growth coarsening of α-Al 2 O 3 crystal grains is prevented, and the surface side Since the aluminum oxide layer has particularly high hardness, it has excellent chipping resistance and wear resistance even when cutting various types of steel and cast iron under high-speed cutting conditions with high heat generation. It exhibits excellent cutting performance and enables further extension of the service life.

本発明被覆工具の硬質被覆層の縦断面模式図を示す。The longitudinal cross-sectional schematic diagram of the hard coating layer of this invention coated tool is shown. 工具基体表面に蒸着形成した下部層のうえに、分断層を蒸着した成膜途中段階の概略模式図を示す。The schematic diagram of the middle stage of the film-forming which vapor-deposited the dividing layer on the lower layer vapor-deposited on the tool base surface is shown. 本発明被覆工具の酸化アルミニウム層の工具基体側から第1層目について測定・作成した傾斜角度数分布グラフの一例を示す。An example of the inclination angle number distribution graph measured and created about the 1st layer from the tool base | substrate side of the aluminum oxide layer of this invention coated tool is shown. 本発明被覆工具の酸化アルミニウム層の表面側から第1層目について測定・作成した傾斜角度数分布グラフの一例を示す。An example of the inclination angle number distribution graph measured and created about the 1st layer from the surface side of the aluminum oxide layer of this invention coated tool is shown. 比較例被覆工具の酸化アルミニウム層について作成した傾斜角度数分布グラフの一例を示す。An example of the inclination angle number distribution graph created about the aluminum oxide layer of the comparative example covering tool is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有する表1に示される粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ作製した。   As raw material powders, the powders shown in Table 1 each having an average particle diameter of 1 to 3 μm were prepared. These raw material powders were blended into the blending composition shown in Table 1, and further wax was added in acetone. After ball mill mixing for a period of time and drying under reduced pressure, the green compact was press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was held at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. WC-based cemented carbide tool substrate A having an insert shape defined in ISO / CNMG120408 by performing a sintering process under vacuum conditions and performing a honing process of R: 0.07 mm on the cutting edge after sintering. Each E was produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有する表2に示される粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体a〜eを作製した。   In addition, as the raw material powder, the powders shown in Table 2 each having an average particle diameter of 0.5 to 2 μm were prepared, and these raw material powders were blended into the blending composition shown in Table 2 and wetted by a ball mill for 24 hours. After mixing and drying, the green compact was press-molded into a green compact at a pressure of 98 MPa, and the green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour and after sintering. Then, the tool bases a to e made of TiCN-based cermet having an ISO standard / CNMG120408 insert shape were produced by performing a honing process of R: 0.07 mm on the cutting edge portion.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成した。
ついで、表3に示される条件にて、目標層厚の分断層を蒸着形成し、さらに表4に示される種別記号a1〜a4のうちのいずれか一つの条件で、分断層表面にTi酸化物形成処理を施した。
ついで、表5に示される種別記号AまたはBいずれかの条件で、上部層の酸化アルミニウム層を蒸着形成し、また、表3および表4に示される条件で分断層を蒸着形成し、酸化アルミニウム層と分断層を交互に蒸着形成することにより表7に示される目標層厚の交互積層構造からなる上部層を蒸着形成することにより、硬質被覆層として、表6に示す下部層と表7に示す分断層及び酸化アルミニウム層を備えた本発明被覆工具1〜5、参考例被覆工具6〜10をそれぞれ製造した。
即ち、本発明被覆工具1〜5、参考例被覆工具6〜10の酸化アルミニウム層内に分散分布する分散相であるα―Al結晶粒は、酸化アルミニウム層の基体側第1層から最表面の層に至るまで、おなじ結晶配向性を備えているが、本発明被覆工具1〜5は、表5に示される種別記号Bの条件で、また、参考例被覆工具6〜10は、表5に示される種別記号Aの条件で、それぞれの上部層の酸化アルミニウム層を蒸着形成している
Next, each of these tool bases A to E and tool bases a to e was charged into a normal chemical vapor deposition apparatus, and Table 3 (l-TiCN in Table 3 is described in JP-A-6-8010). The target layer thicknesses shown in Table 6 under the conditions shown in Table 6 are the conditions for forming a TiCN layer having a vertically grown crystal structure. The Ti compound layer was deposited as a lower layer of the hard coating layer.
Next, a split layer having a target layer thickness is formed by vapor deposition under the conditions shown in Table 3, and Ti oxide is formed on the surface of the split layer under any one of the type symbols a1 to a4 shown in Table 4. A forming process was applied.
Next, an upper aluminum oxide layer is formed by vapor deposition under the conditions of either type symbol A or B shown in Table 5, and a separation layer is formed by vapor deposition under the conditions shown in Table 3 and Table 4. By alternately depositing layers and dividing layers, an upper layer having an alternate laminated structure having a target layer thickness shown in Table 7 is formed by vapor deposition. As a hard coating layer, lower layers shown in Table 6 and Table 7 are formed. Present invention coated tools 1 to 5 and reference example coated tools 6 to 10 each having a dividing line and an aluminum oxide layer shown were manufactured.
That is, α-Al 2 O 3 crystal grains, which are dispersed phases in the aluminum oxide layers of the inventive coated tools 1 to 5 and the reference example coated tools 6 to 10, are dispersed from the first layer on the substrate side of the aluminum oxide layer. The same crystal orientation is provided up to the outermost layer, but the coated tools 1 to 5 of the present invention are the conditions of the type symbol B shown in Table 5, and the reference coated tools 6 to 10 are: Under the condition of the type symbol A shown in Table 5, the aluminum oxide layer of each upper layer is formed by vapor deposition .

また、酸化アルミニウム層内に分散分布する分散相であるα―Al結晶粒の配向による影響をみるために、酸化アルミニウム層の基体側では(11−20)配向度の高いα―Al結晶粒を形成し、一方、酸化アルミニウム層の表面側では(10−14)配向度の高いα―Al結晶粒を形成した本発明被覆工具11〜20をそれぞれ製造した。
即ち、上記本発明被覆工具1〜10の製造工程において、表3に示される条件にて、目標層厚の中間層とTi酸化物薄層からなる分断層を蒸着形成した後、基体側は、表5に示すAの条件で酸化アルミニウム層を成膜して、(11−20)配向度の高いα―Al結晶粒を形成し、一方、表面側では、表5に示すBの条件で酸化アルミニウム層を成膜して、(10−14)配向度の高いα―Al結晶粒を形成することにより、硬質被覆層として、表に示す下部層と表8に示す分断層及び酸化アルミニウム層を備えた本発明被覆工具11〜20をそれぞれ製造した。
Further, in order to examine the influence of the orientation of α-Al 2 O 3 crystal grains, which are dispersed phases distributed and distributed in the aluminum oxide layer, α-Al having a high degree of orientation (11-20) on the substrate side of the aluminum oxide layer. 2 O 3 to form a crystal grain, on the other hand, had a surface of the aluminum oxide layer present invention coated tool 11 to 20 forming the (10-14) high orientation degree alpha-Al 2 O 3 crystal grains produced respectively.
That is, in the manufacturing process of the present invention coated tools 1 to 10, under the conditions shown in Table 3, after forming a partial layer consisting of an intermediate layer having a target layer thickness and a Ti oxide thin layer, the substrate side is An aluminum oxide layer is formed under the conditions of A shown in Table 5 to form α-Al 2 O 3 crystal grains having a high degree of (11-20) orientation, while on the surface side, B shown in Table 5 is formed. By forming an aluminum oxide layer under the conditions and forming α-Al 2 O 3 crystal grains having a high degree of (10-14) orientation, the hard coating layer is shown in the lower layer shown in Table 6 and in Table 8. The coated tools 11 to 20 of the present invention each having a split layer and an aluminum oxide layer were manufactured.

比較のため、前記工具基体A,B,Cおよび工具基体a,b,cのそれぞれを、通常の化学蒸着装置に装入し、表3に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成した。
ついで、表5に示される種別記号Cの条件で通常のκ―Al層を所定の一層目標層厚で蒸着形成し、さらに、表5に示される種別記号Dの条件で通常のα―Al層を所定の一層目標層厚で蒸着形成し、これを交互に繰り返し行うことにより、κ―Al層とα―Al層の交互積層構造からなる酸化アルミニウム層を目標層厚になるように形成し、表5に示す下部層と表9に示す酸化アルミニウム層を備えた比較例被覆工具1〜6をそれぞれ製造した。
For comparison, each of the tool bases A, B, and C and the tool bases a, b, and c is charged into a normal chemical vapor deposition apparatus, and the target layer shown in Table 6 is used under the conditions shown in Table 3. A thick Ti compound layer was deposited as a lower layer of the hard coating layer.
Next, a normal κ-Al 2 O 3 layer is deposited at a predetermined target layer thickness under the condition of the type symbol C shown in Table 5, and the normal α is added under the condition of the type symbol D shown in Table 5. -Al 2 O 3 layer is formed by vapor deposition with a predetermined target layer thickness, and this is alternately repeated to form an aluminum oxide having an alternating laminated structure of κ-Al 2 O 3 layers and α-Al 2 O 3 layers The layers were formed so as to have a target layer thickness, and comparative example-coated tools 1 to 6 each having a lower layer shown in Table 5 and an aluminum oxide layer shown in Table 9 were produced.

さらに比較のため、前記工具基体D,Eおよび工具基体d,eのそれぞれを、通常の化学蒸着装置に装入し、表3に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成した。
ついで、表5に示される種別記号Dの条件で通常のα―Al層の単相からなる酸化アルミニウム層を目標層厚になるように形成し、表5に示す下部層と表9に示す酸化アルミニウム層を備えた比較例被覆工具7〜10をそれぞれ製造した。
Further, for comparison, each of the tool bases D and E and the tool bases d and e is charged into a normal chemical vapor deposition apparatus, and Ti having the target layer thickness shown in Table 6 under the conditions shown in Table 3 is used. The compound layer was deposited as a lower layer of the hard coating layer.
Next, a normal α-Al 2 O 3 single-layer aluminum oxide layer was formed to a target layer thickness under the condition of the type symbol D shown in Table 5, and the lower layer shown in Table 5 and Table 9 were formed. Comparative example-coated tools 7 to 10 each having an aluminum oxide layer shown in FIG.

前記本発明被覆工具1〜5、11〜20、参考例被覆工具6〜10について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、上部層の酸化アルミニウム層中に分散相として存在するα−Al結晶粒の面積割合を求めるとともに、α−Al結晶粒の(11−20)面あるいは(10−14)面配向度を測定した。
即ち、α−Al結晶粒の面積割合は、以下のようにして測定した。
前記酸化アルミニウム層について、その垂直縦断面を後方散乱電子回折装置(EBSD)を備えた走査型電子顕微鏡(SEM)にて観察し、得られた結晶方位マッピング像の画像解析により、κ−Al素地中に占めるα−Al結晶粒からなる分散相の面積割合を測定した。
About the said invention coated tools 1-5 , 11-20 , and reference example coated tools 6-10 , as a disperse phase in the aluminum oxide layer of an upper layer using a field emission type scanning electron microscope and an electron backscattering diffraction image apparatus together determine the area ratio of the present α-Al 2 O 3 crystal grains were measured α-Al 2 O 3 crystal grains (11-20) plane or (10-14) plane orientation degree.
That is, the area ratio of α-Al 2 O 3 crystal grains was measured as follows.
The vertical vertical section of the aluminum oxide layer was observed with a scanning electron microscope (SEM) equipped with a backscattering electron diffractometer (EBSD), and image analysis of the obtained crystal orientation mapping image revealed that κ-Al 2 The area ratio of the dispersed phase consisting of α-Al 2 O 3 crystal grains in the O 3 substrate was measured.

また、(11−20)面配向度については、基体側から所定の層数までの酸化アルミニウム層断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、工具基体の表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成し、最高ピークが存在する傾斜角区分を求めるとともに、75〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体に占める割合を求めることにより、(11−20)面配向度を求めた。   The (11-20) plane orientation degree was set in a lens barrel of a field emission scanning electron microscope with the aluminum oxide layer cross section from the substrate side to the predetermined number of layers as a polished surface, and the tool substrate. Each of the crystal grains having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the surface is irradiated with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA, Using an electron backscatter diffraction image apparatus, the normal of the (0001) plane, which is the crystal plane of the crystal grain, is defined with respect to the normal of the polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step. Measure the tilt angle, and divide the measured tilt angles within the range of 45 to 90 degrees for each pitch of 0.25 degrees, and totalize the frequencies existing in each section. Create a slope angle distribution graph that will be the highest peak In addition to obtaining the existing inclination angle section, the degree of (11-20) plane orientation is obtained by obtaining the ratio of the total frequency existing in the range of 75 to 90 degrees to the entire frequency in the inclination angle frequency distribution graph. It was.

また、(10−14)面配向度については、表面側から所定の層数までの酸化アルミニウム層断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、工具基体の表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成し、最高ピークが存在する傾斜角区分を求めるとともに、30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体に占める割合を求めることにより、(10−14)面配向度を求めた。   The (10-14) plane orientation degree was set in the barrel of a field emission scanning electron microscope with the aluminum oxide layer cross section from the surface side to the predetermined number of layers as a polished surface, and the tool substrate Each of the crystal grains having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the surface is irradiated with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA, Using an electron backscatter diffraction image apparatus, the normal of the (0001) plane, which is the crystal plane of the crystal grain, is defined with respect to the normal of the polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step. Measure the inclination angle to be made, divide the measurement inclination angle within the range of 0-45 degrees out of the measurement inclination angle for each pitch of 0.25 degree, and totalize the frequency existing in each division Create a slope angle number distribution graph that (10-14) The degree of orientation of the plane is obtained by obtaining the ratio of the existing inclination angle and obtaining the ratio of the total frequency existing in the range of 30 to 45 degrees to the whole frequency in the inclination angle frequency distribution graph. It was.

また、比較例被覆工具1〜10についても、前記と同様にして傾斜角度数分布グラフを作成し、(11−20)面配向度、(10−14)面配向度を測定した。
表7〜表9に、これらの結果を示す。
なお、図3〜5には、測定・作成した傾斜角度数分布グラフの一例を示すが、図3の本発明被覆工具は基体側の酸化アルミニウム中の分散相の(11−20)配向度が高く、図4の本発明被覆工具は表面側の酸化アルミニウム中の分散相の(10−14)配向度が高いことが分かる。
これに対して、図5に示す比較例被覆工具(酸化アルミニウム層中に分散相は存在しない)では、特段の配向性を示していないことが分かる。
In addition, for the comparative coated tools 1 to 10, the inclination angle number distribution graph was prepared in the same manner as described above, and the (11-20) plane orientation degree and (10-14) plane orientation degree were measured.
Tables 7 to 9 show these results.
FIGS. 3 to 5 show examples of measured and created inclination angle number distribution graphs. The coated tool of the present invention in FIG. 3 has a (11-20) orientation degree of the dispersed phase in the aluminum oxide on the substrate side. It can be seen that the inventive coated tool of FIG. 4 has a high degree of (10-14) orientation of the dispersed phase in the aluminum oxide on the surface side.
On the other hand, it can be seen that the comparative coated tool shown in FIG. 5 (the dispersed phase does not exist in the aluminum oxide layer) does not show special orientation.

さらに、本発明被覆工具1〜5、11〜20、参考例被覆工具6〜10および比較被覆工具1〜6の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
表7〜表9に、上記の結果を示す。
Further, the thicknesses of the constituent layers of the hard coating layers of the inventive coated tools 1 to 5 , 11 to 20, the reference example coated tools 6 to 10 and the comparative example coated tools 1 to 6 are measured using a scanning electron microscope. As a result of (longitudinal section measurement), all showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.
Tables 7 to 9 show the above results.













つぎに、上記の本発明被覆工具1〜5、11〜20、参考例被覆工具6〜10、比較被覆工具1〜10について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の丸棒、
切削速度:420m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件Aという)での合金鋼の乾式高速切削試験を行い、切刃の逃げ面摩耗幅を測定し、切刃の損傷形態を観察した。
10に、この結果を示す。
Next, for the above-described inventive coated tools 1 to 5 , 11 to 20, reference example coated tools 6 to 10 and comparative example coated tools 1 to 10 , all are screwed with a fixing jig at the tip of the tool steel tool. In the stopped state,
Work material: JIS / SCM440 round bar,
Cutting speed: 420 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
The dry high-speed cutting test of the alloy steel under the above conditions (referred to as cutting condition A) was performed, the flank wear width of the cutting edge was measured, and the damage form of the cutting edge was observed.
Table 10 shows the results.

表6〜9から、本発明被覆工具1〜参考例被覆工具6〜10は、硬質被覆層の上部層のκ−Al結晶粒素地に、α―Al結晶粒からなる分散相が分散分布していることによって、本発明被覆工具1〜に微小チッピングの発生は認められるもののすぐれた耐摩耗性を示し、また、参考例被覆工具6〜10についてはチッピングの発生もなくすぐれた耐摩耗性を示している。
また、本発明被覆工具11〜20は、硬質被覆層の上部層の基体側のκ−Al結晶粒素地に、(11−20)配向度が高いα―Al結晶粒からなる分散相が分散分布し、また、硬質被覆層の上部層の表面側のκ−Al結晶粒素地に、(10−14)配向度が高いα―Al結晶粒からなる分散相が分散分布していることによって、より一段と耐チッピング性、耐摩耗性が向上する。
From Tables 6 to 9, the present invention coated tools 1 to 5 and the reference example coated tools 6 to 10 are formed from α-Al 2 O 3 crystal grains on the κ-Al 2 O 3 crystal base material of the upper layer of the hard coating layer. The dispersed phase to be distributed shows excellent wear resistance although fine chipping is observed in the coated tools 1 to 5 of the present invention, and chipping occurs in the reference coated tools 6 to 10. Excellent wear resistance.
Further, the present invention coated tool 11-20, the base side of the κ-Al 2 O 3 grain matrix of the upper layer of the hard layer, from (11-20) is higher orientation degree α-Al 2 O 3 crystal grains The dispersed phase is dispersed and distributed, and the κ-Al 2 O 3 crystal base material on the surface side of the upper layer of the hard coating layer is made of α-Al 2 O 3 crystal grains having a high degree of orientation (10-14). When the dispersed phase is dispersed and distributed, chipping resistance and wear resistance are further improved.

これに対して、比較被覆工具1〜6では、チッピングを伴う摩耗発生により、また、比較被覆工具7〜10では、刃先の変形を伴う摩耗発生により、短時間で寿命に至ることが明らかである。
In contrast, in Comparative Example coated tools 1 to 6, the wear occurs involving chipping, In Comparative coated tool 7 to 10, the abrasion occurs with the deformation of the cutting edge, is clear that the lead in a short time in the life is there.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に、高熱発生を伴う高速切削加工でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。






















As described above, the coated tool of the present invention exhibits excellent chipping resistance not only in continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, but also in high-speed cutting with high heat generation. Since it exhibits excellent wear resistance over a long period of time, it can satisfactorily respond to higher performance of the cutting device, labor saving and energy saving of the cutting work, and lower cost.






















Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と上部層からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなる合計平均層厚3〜20μmのTi化合物層からなり、
(b)前記上部層は、2〜15μmの平均層厚を有し、分断層を介して酸化アルミニウム層が3層以上交互に積層された交互積層構造からなり、
(c)前記交互積層構造の酸化アルミニウム層は、一層あたり0.5〜4μmの平均層厚を有し、かつ、κ型結晶構造のAl素地中にα型結晶構造のAl結晶粒からなる分散相が分散分布した構造を有し、
(d)前記交互積層構造の酸化アルミニウム層の縦断面で測定したκ型結晶構造のAl素地中に占める前記分散相の平均面積割合は20〜60面積%であり、
(e)前記交互積層構造の酸化アルミニウム層の表面側から少なくとも第1層までの酸化アルミニウム層における分散相は、電界放出型走査電子顕微鏡を用い、前記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、30〜45度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜45度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める前記傾斜角度数分布グラフを示し、
(f)前記分断層は、一層あたり0.1〜1.5μmの平均層厚を有するTiの炭化物層、窒化物層および炭窒化物層のいずれかからなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer and an upper layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The lower layer has a total average layer thickness of 3 to 20 μm composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. Consisting of a Ti compound layer,
(B) The upper layer has an average layer thickness of 2 to 15 μm, and has an alternately stacked structure in which three or more aluminum oxide layers are alternately stacked via a dividing layer,
(C) The alternately laminated aluminum oxide layers have an average layer thickness of 0.5 to 4 μm per layer, and Al 2 O having an α-type crystal structure in an Al 2 O 3 substrate having a κ-type crystal structure. Having a structure in which a dispersed phase composed of three crystal grains is dispersed and distributed;
(D) The average area ratio of the dispersed phase in the Al 2 O 3 substrate of the κ-type crystal structure measured in the longitudinal section of the aluminum oxide layer of the alternately laminated structure is 20 to 60 area%,
(E) The dispersion phase in the aluminum oxide layer from the surface side of the aluminum oxide layer having the alternately laminated structure to at least the first layer is measured using a field emission scanning electron microscope, and the measurement range of the polished surface parallel to the tool substrate surface The crystal grains having a hexagonal crystal lattice existing therein are irradiated with an electron beam, and the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the polished surface Of the measured tilt angles, and the measured tilt angles within the range of 0 to 45 degrees are divided into pitches of 0.25 degrees, and the tilt angles obtained by counting the frequencies existing in each section In the number distribution graph, the highest peak exists in the inclination angle section within the range of 30 to 45 degrees, and the total of the frequencies existing within the range of 30 to 45 degrees is 50 of the entire degrees in the inclination angle number distribution graph. % Or more Indicates the inclination angle frequency distribution graph occupied,
(F) The surface-coated cutting tool, wherein the dividing layer is composed of any one of a Ti carbide layer, a nitride layer, and a carbonitride layer having an average layer thickness of 0.1 to 1.5 μm per layer. .
請求項1に記載の表面被覆切削工具において、
前記交互積層構造酸化アルミニウム層基体側から少なくとも第1層までの酸化アルミニウム層における分散相は、電界放出型走査電子顕微鏡を用い、前記工具基体の表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、75〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜90度の範囲内に存在する度数の合計が、前記傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示ことを特徴とする請求項1に記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1,
Dispersed phase in the aluminum oxide layer from the substrate side of the aluminum oxide layer to at least a first layer of the alternate laminated structure, using a field emission scanning electron microscope, within the measuring range of the surface and parallel to the polishing surface of the tool substrate Irradiate each individual crystal grain having a hexagonal crystal lattice with an electron beam, and measure the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal of the polished surface And, among the measured tilt angles, the measured tilt angles within a range of 45 to 90 degrees are divided into pitches of 0.25 degrees, and the tilt angle number distribution is obtained by counting the frequencies existing in each section. In the graph, the highest peak exists in the inclination angle section in the range of 75 to 90 degrees, and the total of the frequencies existing in the range of 75 to 90 degrees is 50% of the entire degrees in the inclination angle number distribution graph. Above The surface-coated cutting tool according to claim 1, characterized in that shows the inclination angle frequency distribution graph occupy.
JP2014069050A 2014-03-28 2014-03-28 Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer Active JP6288606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069050A JP6288606B2 (en) 2014-03-28 2014-03-28 Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069050A JP6288606B2 (en) 2014-03-28 2014-03-28 Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer

Publications (2)

Publication Number Publication Date
JP2015188980A JP2015188980A (en) 2015-11-02
JP6288606B2 true JP6288606B2 (en) 2018-03-07

Family

ID=54423947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069050A Active JP6288606B2 (en) 2014-03-28 2014-03-28 Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer

Country Status (1)

Country Link
JP (1) JP6288606B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483467B2 (en) * 2004-08-02 2010-06-16 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP2006334757A (en) * 2005-06-06 2006-12-14 Mitsubishi Materials Corp Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2007168029A (en) * 2005-12-22 2007-07-05 Mitsubishi Materials Corp Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP5029825B2 (en) * 2007-09-28 2012-09-19 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP2013006255A (en) * 2011-06-27 2013-01-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Also Published As

Publication number Publication date
JP2015188980A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5257535B2 (en) Surface coated cutting tool
JP5831707B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
WO2015182746A1 (en) Surface-coated cutting tool
JP5582409B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5907406B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6233575B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2016165789A (en) Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance
JP5838789B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5286891B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5995082B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP5892472B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP6288606B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer
JP4530141B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2014136268A (en) Surface coating cutting tool with hard coating layer exhibiting superior chipping resistance in heavy intermittent cutting
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180115

R150 Certificate of patent or registration of utility model

Ref document number: 6288606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180128