JP2013006255A - Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance - Google Patents

Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance Download PDF

Info

Publication number
JP2013006255A
JP2013006255A JP2011142017A JP2011142017A JP2013006255A JP 2013006255 A JP2013006255 A JP 2013006255A JP 2011142017 A JP2011142017 A JP 2011142017A JP 2011142017 A JP2011142017 A JP 2011142017A JP 2013006255 A JP2013006255 A JP 2013006255A
Authority
JP
Japan
Prior art keywords
layer
type
phase
intermediate layer
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011142017A
Other languages
Japanese (ja)
Inventor
Masaki Okude
正樹 奥出
Kohei Tomita
興平 冨田
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011142017A priority Critical patent/JP2013006255A/en
Publication of JP2013006255A publication Critical patent/JP2013006255A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting.SOLUTION: In the surface coated cutting tool in which the hard coating layer formed of a lower layer, a middle layer and an upper layer is formed on the surface of a tool substrate by vapor deposition, (a) the lower layer is formed of a Ti compound layer, (b) the middle layer is formed of a Zr-contained κ-type AlOlayer (lower middle layer) in which Zr is contained by 0.004-0.12% (ratio of Zr with respect to the total composition in terms of atomic percent) in an AlOlayer of κ-type crystal structure and a TiOthin layer (upper middle layer) formed partially on the grain boundary of the lower middle layer, and (c) the upper layer has an α-κ mixture structure of the κ-type AlOlayer and an α-type AlOlayer formed on the TiOthin layer when the vertical cross section thereof is observed, and when the polished surface thereof is observed, the AlOlayer has an α-κ mixture network structure in which the α-type AlOlayer surrounds the κ-type AlOlayer.

Description

この発明は、特に各種の鋼や鋳鉄などの被削材の切削加工を、高熱発生を伴うとともに、切れ刃に対して、衝撃的かつ断続的高負荷が作用する高速断続切削条件で行った場合にも、硬質被覆層が長期の使用にわたってすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is especially when cutting of various materials such as steel and cast iron is performed under high-speed intermittent cutting conditions with high heat generation and impact and intermittent high load acting on the cutting edge. In particular, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) in which a hard coating layer exhibits excellent chipping resistance over a long period of use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層として、酸化アルミニウム層、
上記(a)、(b)からなる硬質被覆層を蒸着形成してなる被覆工具が良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiCO) A Ti compound layer comprising one or more of a layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) As an upper layer, an aluminum oxide layer,
A coated tool formed by vapor-depositing a hard coating layer comprising the above (a) and (b) is well known.

上記従来の被覆工具において、その工具性能の向上を図るため種々の提案がなされている。
例えば、特許文献1に示すように、上記(b)の酸化アルミニウム層を、平均粒径が1μm以下の微粒κ型Al粒子からなる下側Al層と、平均粒径が2μm以上の粗粒α型Al粒子からなる上側Al層との多層構造として形成した被覆工具が知られており、この被覆工具によれば、断続切削等の過酷な切削条件においても、下部層とAl層との間での剥離が抑制され、耐欠損性、耐摩耗性に優れ長寿命化が図られることが知られている。
In the conventional coated tool, various proposals have been made to improve the tool performance.
For example, as shown in Patent Document 1, the aluminum oxide layer (b) described above is composed of a lower Al 2 O 3 layer made of fine κ-type Al 2 O 3 particles having an average particle size of 1 μm or less, and an average particle size. A coated tool formed as a multilayer structure with an upper Al 2 O 3 layer composed of coarse α-type Al 2 O 3 particles of 2 μm or more is known. According to this coated tool, severe cutting conditions such as intermittent cutting are known. Also, it is known that peeling between the lower layer and the Al 2 O 3 layer is suppressed, and it is excellent in chipping resistance and wear resistance, thereby extending the life.

また、例えば、特許文献2に示すように、上記(b)の酸化アルミニウム層の形成に際し、高温強度と機械的・熱的にすぐれた耐衝撃性を有するZr含有κ型Al層と、すぐれた高温硬さと耐熱性を備える加熱変態α型Al層とを交互に積層することで上部層を形成すると、切れ刃に大きな負荷が作用する重切削加工において、耐チッピング性、耐摩耗性の向上が図られることが知られている。 For example, as shown in Patent Document 2, when forming the aluminum oxide layer of (b) above, a Zr-containing κ-type Al 2 O 3 layer having high-temperature strength and excellent mechanical and thermal impact resistance; When the upper layer is formed by alternately laminating heat-transformed α-type Al 2 O 3 layers having excellent high-temperature hardness and heat resistance, chipping resistance in heavy cutting work in which a large load acts on the cutting edge, It is known that the wear resistance can be improved.

特開2004−291162号公報JP 2004-291162 A 特開2009−83008号公報JP 2009-83008 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化される傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削に用いた場合には問題はないが、特にこれを、高い発熱を伴うとともに、切れ刃に断続的かつ衝撃的負荷が作用する高速断続切削条件に用いた場合には、硬質被覆層、特に、上部層の耐衝撃性が十分ではないため、チッピング、欠損の発生等を原因として、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor-saving and energy-saving in cutting work, and cost reduction. In conventional coated tools, there is no problem when this is used for continuous cutting under normal conditions such as steel and cast iron. However, this is accompanied by high heat generation and is intermittent and shocking to the cutting edge. When used in high-speed interrupted cutting conditions where a load is applied, the impact strength of the hard coating layer, especially the upper layer, is insufficient, so the service life is relatively short due to chipping and chipping. Is the current situation.

そこで、本発明者等は、上述のような観点から、硬質被覆層の耐衝撃性を高めるべく鋭意研究を行った結果、次のような知見を得た。   Therefore, the present inventors have earnestly studied to improve the impact resistance of the hard coating layer from the above viewpoint, and as a result, obtained the following knowledge.

まず、本発明者等は、高速断続切削において、硬質被覆層、特にAl層からなる上部層に作用する衝撃的かつ断続的負荷を緩和することによって、耐チッピング性の向上を図るべく、このような硬質被覆層の層構造について検討を進めたところ、κ型Al層とα型Al層を、その層厚方向に順次積層して構成した多層構造を備えた上記従来被覆工具に比して、図1(a)、(b)に示されるような、α−κ混合組織構造からなるAl層を備えた被覆工具のほうが、高熱発生を伴い、かつ、切れ刃に衝撃的かつ断続的高負荷が作用する高速断続切削条件で用いた場合には、耐摩耗性の低下を招くことなく、すぐれた耐チッピング性を発揮することを見出したのである。 First, the present inventors aim to improve chipping resistance by reducing the impact and intermittent load acting on the hard coating layer, particularly the upper layer made of the Al 2 O 3 layer, in high-speed intermittent cutting. As a result of studying the layer structure of such a hard coating layer, a multilayer structure in which a κ-type Al 2 O 3 layer and an α-type Al 2 O 3 layer were sequentially laminated in the layer thickness direction was provided. Compared to the conventional coated tool, the coated tool provided with an Al 2 O 3 layer having an α-κ mixed structure structure as shown in FIGS. 1A and 1B is accompanied by higher heat generation. And when it was used under high-speed intermittent cutting conditions in which impact and intermittent high load act on the cutting edge, it was found that it exhibits excellent chipping resistance without causing a decrease in wear resistance. .

この発明の上記α−κ混合組織構造からなるAl層(上部層)は、例えば、以下のような、下部中間層と上部中間層からなる中間層を介して、この上にAl層を成膜することによって形成することができる。
つまり、工具基体表面に、下部層としてのTi化合物層を形成した後、まず、所定Zr含有割合のZr含有κ型Al層を下部中間層として蒸着形成し、次いで、上部中間層としての酸化チタン薄層を下部中間層の粒界に部分的に形成し、その後、下部中間層と上部中間層からなる中間層の上に、Al層を蒸着することによって、上記α−κ混合組織構造からなるAl層(上部層)を形成することができる。
The Al 2 O 3 layer consisting of the alpha-kappa mixed organizational structure of the present invention (upper layer), for example, such as the following, via an intermediate layer consisting of lower intermediate layer and the upper intermediate layer, Al 2 thereon It can be formed by depositing an O 3 layer.
That is, after forming a Ti compound layer as a lower layer on the surface of the tool base, first, a Zr-containing κ-type Al 2 O 3 layer with a predetermined Zr content ratio is deposited as a lower intermediate layer, and then as an upper intermediate layer The titanium oxide thin layer is partially formed at the grain boundary of the lower intermediate layer, and then an Al 2 O 3 layer is deposited on the intermediate layer composed of the lower intermediate layer and the upper intermediate layer, thereby the α- An Al 2 O 3 layer (upper layer) having a κ mixed structure can be formed.

上記α−κ混合組織構造からなるAl層(上部層)の垂直断面を観察すると、例えば、図1(a)に示されるように、中間層の酸化チタン薄層が形成されていない表面部分(即ち、酸化チタン薄層によって覆われていないZr含有κ型Al層(下部中間層)の粒内部分)に連続して形成されているκ型Al相と、酸化チタン薄層上に連続して形成されたα型Al相のα−κ混合組織が観察され、さらに、上部層の最表面を観察すると、例えば、図1(b)に示されるように、κ型Al相の周囲をα型Al相が恰も囲繞しているかのようなα−κ網目状混合組織が観察される。 When a vertical cross section of the Al 2 O 3 layer (upper layer) having the above α-κ mixed structure structure is observed, for example, as shown in FIG. 1A, a thin titanium oxide layer as an intermediate layer is not formed. A κ-type Al 2 O 3 phase formed continuously on the surface portion (that is, the intragranular portion of the Zr-containing κ-type Al 2 O 3 layer (lower intermediate layer) not covered with the titanium oxide thin layer); An α-κ mixed structure of α-type Al 2 O 3 phase continuously formed on the titanium oxide thin layer is observed, and further, when the outermost surface of the upper layer is observed, for example, as shown in FIG. Thus, an α-κ network mixed structure is observed as if the α-type Al 2 O 3 phase surrounds the κ-type Al 2 O 3 phase.

この発明の上部層は、上記のごとき特異な組織構造を備え、そして、この組織構造によって、α型Alの備える耐熱性、高硬度とともに、κ型Al相の備える高靭性が発揮されるため、高熱発生を伴い、かつ、切れ刃に衝撃的かつ断続的高負荷が作用する高速断続切削において、従来被覆工具に比して、一段とすぐれた耐チッピング性を示すとともに、長期の使用にわたってすぐれた耐摩耗性を発揮することを、本発明者らは見出したのである。 The upper layer of the present invention has a unique structure as described above, and by this structure, heat resistance and high hardness provided by α-type Al 2 O 3 and high toughness provided by κ-type Al 2 O 3 phase. Therefore, in high-speed intermittent cutting with high heat generation and impact and intermittent high load acting on the cutting edge, it exhibits superior chipping resistance compared to conventional coated tools, The present inventors have found that excellent wear resistance is exhibited throughout the use of the present invention.

この発明は、上記の知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と中間層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計層厚を有するTi化合物層からなり、
(b)中間層は、下部中間層と上部中間層からなり、
下部中間層は、0.5〜3μmの層厚を有し、κ型結晶構造のAl層にZrを0.004〜0.12%(ただし、全体組成に対するZrの割合を原子%で示す)含むZr含有κ型Al層であり、
上部中間層は、0.02〜0.05μmの層厚を有し、下部中間層の粒界に部分的に形成された酸化チタン薄層であり、
(c)上部層は、1〜15μmの層厚を有するAl層からなり、該Al層は、上部層の垂直断面を観察した場合、κ型Al相と上記酸化チタン薄層上に形成されたα型Al相のα−κ混合組織を有し、さらに、上部層の表面研磨面を観察した場合、κ型Al相の周囲をα型Al相が囲繞するα−κ網目状混合組織を有する、
ことを特徴とする表面被覆切削工具。
(2) Zr含有κ型Al層からなる下部中間層の粒界に部分的に形成された酸化チタン薄層は、下部中間層と上部中間層の界面の垂直断面において、20〜60%の線分割合で形成されていることを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 上部層において、κ型Al相との合量に占めるα型Al相の占有割合は、上部層の垂直断面において、20〜60面積%、また、上部層の表面研磨面において、25〜65面積%であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total layer of 3 to 20 μm A Ti compound layer having a thickness;
(B) The intermediate layer consists of a lower intermediate layer and an upper intermediate layer,
The lower intermediate layer has a layer thickness of 0.5 to 3 μm, and Zr is 0.004 to 0.12% in the Al 2 O 3 layer having a κ-type crystal structure (however, the ratio of Zr to the whole composition is atomic%) Zr-containing κ-type Al 2 O 3 layer
The upper intermediate layer is a thin titanium oxide layer having a layer thickness of 0.02 to 0.05 μm and partially formed at the grain boundary of the lower intermediate layer,
(C) The upper layer is composed of an Al 2 O 3 layer having a layer thickness of 1 to 15 μm, and the Al 2 O 3 layer has a κ-type Al 2 O 3 phase and the above when the vertical cross section of the upper layer is observed. When the α-κ mixed structure of α-type Al 2 O 3 phase formed on the titanium oxide thin layer is present and the surface polished surface of the upper layer is observed, the periphery of the κ-type Al 2 O 3 phase is α An α-κ network mixed structure surrounded by a type Al 2 O 3 phase,
A surface-coated cutting tool characterized by that.
(2) The titanium oxide thin layer partially formed at the grain boundary of the lower intermediate layer composed of the Zr-containing κ-type Al 2 O 3 layer is 20 to 60 in a vertical cross section at the interface between the lower intermediate layer and the upper intermediate layer. The surface-coated cutting tool according to (1), wherein the surface-coated cutting tool is formed at a line segment ratio of%.
(3) In the upper layer, the occupation ratio of the α-type Al 2 O 3 phase in the total amount with the κ-type Al 2 O 3 phase is 20 to 60 area% in the vertical section of the upper layer, The surface-coated cutting tool according to (1) or (2), wherein the surface-polished surface is 25 to 65 area%. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層について、詳細に説明する。   Below, the hard coating layer of the coated tool of this invention is demonstrated in detail.

下部層:
Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層または2層以上で構成されたTi化合物層からなる下部層は、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と中間層(特に、Zr含有κ型Al層からなる下部中間層)のいずれにも強固に密着し、硬質被覆層の工具基体に対する密着性を向上させる作用を有する。
下部層の合計層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その合計層厚が20μmを越えると、特に高熱発生を伴う高速断続切削ではチッピング、欠損を発生しやすくなることから、その合計層厚は3〜20μmと定めた。
Lower layer:
It is composed of one or more of Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer. The lower layer made of the Ti compound layer contributes to improving the high temperature strength of the hard coating layer by its excellent high temperature strength, and also comprises a tool base and an intermediate layer (particularly, a Zr-containing κ-type Al 2 O 3 layer). It firmly adheres to any of the lower intermediate layers) and has the effect of improving the adhesion of the hard coating layer to the tool substrate.
If the total layer thickness of the lower layer is less than 3 μm, the above-mentioned effect cannot be fully exerted. On the other hand, if the total layer thickness exceeds 20 μm, chipping and chipping occur particularly in high-speed intermittent cutting with high heat generation. Since it becomes easy, the total layer thickness was determined to be 3 to 20 μm.

中間層:
下部中間層(Zr含有κ型Al層)と上部中間層(酸化チタン薄層)からなる中間層は、例えば、以下の方法で形成することができる。
Middle layer:
The intermediate layer composed of the lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer) and the upper intermediate layer (titanium oxide thin layer) can be formed, for example, by the following method.

通常の化学蒸着装置により、初期段階の1〜120分を、
反応ガス組成(容量%):AlCl:2〜5%、H2:残り
反応雰囲気温度:930〜980 ℃、
反応雰囲気圧力:5〜8 kPa、
の雰囲気中で下部層の処理を行い、続いて、
下部中間層(Zr含有κ型Al層)は、上記処理を施した下部層(Ti化合物層)の表面に、
反応ガス組成(容量%):AlCl:3〜6%、ZrCl:0.6〜1.8%、CO:6〜10%、HCl:1.0〜3.0%、H2S:0.1〜0.18%、H2:残り、
反応雰囲気温度:930〜980 ℃、
反応雰囲気圧力:5〜8 kPa、
の条件で成膜することによって、形成することができる。
上記蒸着で成膜されたZr含有κ型Al層は、化学蒸着した状態でκ型の結晶(Zr含有κ型Al結晶粒)構造を有し、高温強度にすぐれ、また、機械的・熱的にすぐれた耐衝撃性を具備する。
With an ordinary chemical vapor deposition device, the initial stage of 1 to 120 minutes
Reaction gas composition (volume%): AlCl 3 : 2 to 5%, H 2 : remaining reaction atmosphere temperature: 930 to 980 ° C.,
Reaction atmosphere pressure: 5 to 8 kPa,
The lower layer is processed in the atmosphere of
The lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer) is formed on the surface of the lower layer (Ti compound layer) subjected to the above treatment,
Reaction gas composition (volume%): AlCl 3 : 3 to 6%, ZrCl 4 : 0.6 to 1.8%, CO 2 : 6 to 10%, HCl: 1.0 to 3.0%, H 2 S : 0.1~0.18%, H 2: remainder,
Reaction atmosphere temperature: 930-980 ° C.
Reaction atmosphere pressure: 5 to 8 kPa,
It can form by forming into a film on these conditions.
The Zr-containing κ-type Al 2 O 3 layer formed by the above-described deposition has a κ-type crystal (Zr-containing κ-type Al 2 O 3 crystal grain) structure in the state of chemical vapor deposition, and has excellent high-temperature strength. Has excellent mechanical and thermal shock resistance.

ここで、上記成膜した下部中間層(Zr含有κ型Al層)において、全体組成に占めるZrの含有割合(Zr/(Al+Zr+O)×100%の値)は、原子%で、0.004%〜0.12%を満足することが必要である。
これは、Zrの含有割合が0.004%未満では、上部層のα型Al層の成長時に、その高い反応温度によりκ型Al層がα型Al層に加熱変態し、一方、0.12%を超えると、κ型Al層中にZrOが形成されてしまい、ZrO相のつくる粒界があることで、κ型Al相全体としての粒界強度が低下するという理由による。
また、下部中間層(Zr含有κ型Al層)の層厚は、0.5〜3μmであることが必要である。これは、層厚が0.5μm未満では、前記で述べたような優れた高温強度、また、機械的・熱的にすぐれた耐衝撃性を十分に発揮することができず、一方、層厚が3μmを超えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、層厚を0.5〜3μmと定めた。
Here, in the formed lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer), the content ratio of Zr in the entire composition (Zr / (Al + Zr + O) × 100% value) is 0% in atomic percent. It is necessary to satisfy 0.004% to 0.12%.
This is because when the content ratio of Zr is less than 0.004%, the κ-type Al 2 O 3 layer becomes an α-type Al 2 O 3 layer due to the high reaction temperature during the growth of the α-type Al 2 O 3 layer of the upper layer. On the other hand, when it is transformed by heating and exceeds 0.12%, ZrO 2 is formed in the κ-type Al 2 O 3 layer, and there is a grain boundary formed by the ZrO 2 phase, so that the κ-type Al 2 O 3 phase This is because the grain boundary strength as a whole is lowered.
Further, the layer thickness of the lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer) needs to be 0.5 to 3 μm. This is because when the layer thickness is less than 0.5 μm, the excellent high-temperature strength as described above and the excellent mechanical and thermal impact resistance cannot be sufficiently exhibited. When the thickness exceeds 3 μm, thermoplastic deformation that causes uneven wear tends to occur, and wear accelerates. Therefore, the layer thickness is set to 0.5 to 3 μm.

次に、上部中間層の酸化チタン(以下、「TiO」で示す)薄層を形成するためのTiOの核成長は、具体的には、例えば、通常の化学蒸着装置により、
反応ガス組成(容量%):TiCl:0.5〜1.5%、CO:3〜10%、Ar:25.0〜35.0%、H2:残り、
反応雰囲気温度:880〜980 ℃、
反応雰囲気圧力:3〜15kPa、
反応時間:1〜30min
の条件で処理を行うことで、形成することができる。
Next, the core growth of TiO X for forming a thin layer of titanium oxide (hereinafter referred to as “TiO X ”) of the upper intermediate layer is specifically performed by, for example, an ordinary chemical vapor deposition apparatus.
Reaction gas composition (volume%): TiCl 4 : 0.5 to 1.5%, CO 2 : 3 to 10%, Ar: 25.0 to 35.0%, H 2 : remaining,
Reaction atmosphere temperature: 880-980 ° C.,
Reaction atmosphere pressure: 3 to 15 kPa,
Reaction time: 1-30 min
It can be formed by performing the process under the conditions.

上記の核成長処理によって、下部中間層(Zr含有κ型Al層)の粒界には、部分的に、TiO薄層からなる上部中間層が形成される。
上記TiO薄層(上部中間層)の層厚は、0.02〜0.5μmであることが必要である。
これは、TiO薄層(上部中間層)の層厚が0.02μm未満であると、下部中間層(Zr含有κ型Al層)の全表面積に対して、目的の面積割合まで覆うことができず、上部層における、κ型Al相との合量に占めるα型Al相の占有割合が少なくなり、上部層の硬さが減少し、耐摩耗性が低下する。一方、その層厚が0.5μmを超えると、下部中間層(Zr含有κ型Al層)の全表面積に対して、目的の面積割合以上覆うことになり、上部層における、α型Al相との合量に占めるκ型Al相の占有割合が少なくなり上部層の靭性、耐衝撃性、耐チッピング性が低下するという理由による。
TiO薄層(上部中間層)は、下部中間層(Zr含有κ型Al層)の粒界と粒内に均一に析出形成されるのではなく、粒界に優先的に析出形成されるが、好ましくは、下部中間層と上部中間層の界面の垂直断面において、20〜60%の線分割合で形成されていることが望ましい。
これは、κ型Al相とα型Al相の混合組織として構成される上部層において、κ型Al相とα型Al相の生成比率が、上記TiO薄層(上部中間層)の生成割合(線分割合)に影響されるためである。
例えば、上記TiO薄層(上部中間層)の生成割合(線分割合)が相対的に大きい場合には、上部層における上記κ型Al相の生成割合が少なくなり、その結果、上部層の靭性、耐衝撃性、耐チッピング性が低下する。一方、上記TiO薄層(上部中間層)の生成割合(線分割合)が相対的に少ない場合には、上部層における上記α型Al相の生成割合が低下し、その結果、上部層の硬さが減少し、耐摩耗性が低下するためである。
By the above nucleus growth treatment, an upper intermediate layer made of a thin TiO X layer is partially formed at the grain boundary of the lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer).
The layer thickness of the TiO X thin layer (upper intermediate layer) needs to be 0.02 to 0.5 μm.
When the layer thickness of the TiO X thin layer (upper intermediate layer) is less than 0.02 μm, the total area of the lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer) is up to the target area ratio. The occupying ratio of the α-type Al 2 O 3 phase in the total amount of the κ-type Al 2 O 3 phase in the upper layer is reduced, the hardness of the upper layer is reduced, and the wear resistance is reduced. descend. On the other hand, when the layer thickness exceeds 0.5 μm, the entire surface area of the lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer) covers more than a desired area ratio. toughness of Al 2 O 3 phase and occupying the total amount κ-type Al 2 O 3 phase occupancy is less and less top layer of the impact resistance, by reason that the chipping resistance is lowered.
The TiO X thin layer (upper intermediate layer) is not precipitated uniformly at the grain boundaries and within the grains of the lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer), but preferentially formed at the grain boundaries. However, it is preferably formed at a line segment ratio of 20 to 60% in the vertical cross section of the interface between the lower intermediate layer and the upper intermediate layer.
This is in the upper layer composed of a mixed structure of κ-type Al 2 O 3 phase and the α-type Al 2 O 3 phase, production ratio of κ-type Al 2 O 3 phase and the α-type Al 2 O 3 phase, the This is because it is influenced by the generation ratio (line segment ratio) of the TiO X thin layer (upper intermediate layer).
For example, when the generation ratio (line segment ratio) of the TiO X thin layer (upper intermediate layer) is relatively large, the generation ratio of the κ-type Al 2 O 3 phase in the upper layer decreases, and as a result, Lower toughness, impact resistance and chipping resistance of the upper layer. On the other hand, when the generation ratio (line segment ratio) of the TiO X thin layer (upper intermediate layer) is relatively small, the generation ratio of the α-type Al 2 O 3 phase in the upper layer decreases, and as a result, This is because the hardness of the upper layer is reduced and the wear resistance is reduced.

上記TiO薄層(上部中間層)の層厚、割合(線分割合)は、核成長処理における、例えば、反応時間、反応ガス組成におけるTiClの含有割合によって調整することが可能であり、反応時間を短くした場合、或いは、反応ガス組成におけるTiClの含有割合を少なくした場合には、層厚が小さい、あるいは、生成割合(線分割合)の少ないTiO薄層(上部中間層)が形成される。 The layer thickness and ratio (line segment ratio) of the TiO X thin layer (upper intermediate layer) can be adjusted by, for example, the content ratio of TiCl 4 in the reaction time and reaction gas composition in the nucleus growth process, When the reaction time is shortened, or when the content ratio of TiCl 4 in the reaction gas composition is decreased, the TiO X thin layer (upper intermediate layer) with a small layer thickness or a small generation ratio (line segment ratio) Is formed.

上部層:
Al層からなる上部層の成膜は、上記の下部中間層と上部中間層からなる中間層の表面に、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:6〜10%、CO:10〜15%、HCl:3〜5%、HS:0.05〜0.2%、H:残り、
反応雰囲気温度:960〜1000℃、
反応雰囲気圧力:3〜5kPa、
の条件で蒸着形成することができる。
そして、この条件によってAl層を成膜した場合、中間層のTiO薄層が形成されていない表面部分(即ち、TiO薄層によって覆われていないZr含有κ型Al層(下部中間層)が露出する粒内部分)からは、κ型Al相が成長し、一方、中間層のTiO薄層が形成されている上部中間層(即ち、TiO薄層によって覆われているZr含有κ型Al層(下部中間層)の粒界部分)からは、α型Al相が成長するため、上部層組織の垂直断面を観察した場合、図1(a)に示されるようなα−κ混合組織が観察される。
さらに、上部層の最表面を観察すると、図1(b)に示されるように、κ型Al相の周囲をα型Al相が恰も囲繞しているかのようなα−κ網目状混合組織が観察される。
Upper layer:
The upper layer formed of the Al 2 O 3 layer is formed on the surface of the intermediate layer formed of the lower intermediate layer and the upper intermediate layer, for example, using a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 960 to 1000 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
It can be formed by vapor deposition under the following conditions.
When the Al 2 O 3 layer is formed under these conditions, the surface portion where the TiO X thin layer of the intermediate layer is not formed (that is, the Zr-containing κ-type Al 2 O 3 not covered by the TiO X thin layer). From the intragranular portion where the layer (lower intermediate layer) is exposed, the κ-type Al 2 O 3 phase grows, while the upper intermediate layer (that is, the TiO X thin film) on which the TiO X thin layer of the intermediate layer is formed. When the α-type Al 2 O 3 phase grows from the Zr-containing κ-type Al 2 O 3 layer (lower intermediate layer) covered with the layer (when the vertical cross section of the upper layer structure is observed) An α-κ mixed tissue as shown in FIG. 1 (a) is observed.
Furthermore, when the outermost surface of the upper layer is observed, as shown in FIG. 1 (b), the α-type Al 2 O 3 phase appears to surround the κ-type Al 2 O 3 phase, as shown in FIG. A kappa network mixed structure is observed.

上部層組織におけるα型Al相とκ型Al相の生成割合は、TiO薄層(上部中間層)の生成割合(線分割合)、上部層の層厚によって影響を受け、TiO薄層(上部中間層)の生成割合(線分割合)が相対的に大きいと、α型Al相の初期生成割合が大となり、上部層の層厚の増加につれて、上部層に占めるα型Al相の占有割合が増加していく。
一方、TiO薄層(上部中間層)の生成割合(線分割合)が相対的に小さいと、κ型Al相の初期生成割合が支配的となるが、上部層の層厚の増加につれて、α型Al相の占有割合が増加していくため、結果として、上部層中のκ型Al相の占有割合は減少していく。
上部層において、κ型Al相との合量に占めるα型Al相の占有割合は、上部層の垂直断面において、20〜60面積%、また、上部層の表面研磨面において、25〜65面積%であることが望ましい。これは、α型Al相の占有割合が、上部層の垂直断面において、20面積%未満、または、上部層の表面研磨面において、25面積%未満であると、α型Al相の占有割合が少なくなり上部層の硬さが減少し、耐摩耗性が低下するためであり、一方、α型Al相の占有割合が、上部層の垂直断面において、60面積%を超える場合、または、上部層の表面研磨面において、65面積%を超える場合には、上部層のα型Al相との合量に占めるκ型Al相の占有割合が少なくなり、上部層の靭性、耐衝撃性、耐チッピング性が低下するという理由による。
The generation ratio of α-type Al 2 O 3 phase and κ-type Al 2 O 3 phase in the upper layer structure is influenced by the generation ratio (line segment ratio) of the TiO X thin layer (upper intermediate layer) and the layer thickness of the upper layer. In response, when the generation ratio (line segment ratio) of the TiO X thin layer (upper intermediate layer) is relatively large, the initial generation ratio of the α-type Al 2 O 3 phase increases, and as the layer thickness of the upper layer increases, The occupation ratio of the α-type Al 2 O 3 phase in the upper layer increases.
On the other hand, when the generation ratio (line segment ratio) of the TiO X thin layer (upper intermediate layer) is relatively small, the initial generation ratio of the κ-type Al 2 O 3 phase becomes dominant. As the increase, the occupation ratio of the α-type Al 2 O 3 phase increases, and as a result, the occupation ratio of the κ-type Al 2 O 3 phase in the upper layer decreases.
In the upper layer, the occupation ratio of the α-type Al 2 O 3 phase in the total amount with the κ-type Al 2 O 3 phase is 20 to 60 area% in the vertical cross section of the upper layer, and the surface polishing surface of the upper layer It is desirable that it is 25-65 area%. This occupation ratio of alpha-type Al 2 O 3 phase, in the vertical cross section of the upper layer, less than 20 area%, or, in the surface polishing surface of the upper layer is less than 25 area%, alpha-type Al 2 O This is because the occupation ratio of the three phases is reduced, the hardness of the upper layer is reduced, and the wear resistance is lowered. On the other hand, the occupation ratio of the α-type Al 2 O 3 phase is 60 areas in the vertical section of the upper layer. % Or when the surface polished surface of the upper layer exceeds 65 area%, the occupancy ratio of the κ-type Al 2 O 3 phase in the total amount with the α-type Al 2 O 3 phase of the upper layer This is because the toughness, impact resistance and chipping resistance of the upper layer are reduced.

上記κ型Al相とα型Al相の混合組織(垂直断面)、網目状混合組織(上部層の表面)からなる上部層は、α型Al相の備える耐熱性、硬さを損なうことなく、κ型Al相が高強度、高靭性、耐衝撃性を有することから、高熱発生を伴い、しかも、断続的・衝撃的高負荷が作用する高速断続切削加工において、長期の使用にわたってすぐれた耐チッピング性を発揮する。
ただ、上部層の平均層厚が1μm未満では、所望のすぐれた耐摩耗性を長期の使用にわたって十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚は1〜15μmと定めた。
The upper layer composed of the mixed structure (vertical cross section) of the κ-type Al 2 O 3 phase and the α-type Al 2 O 3 phase and the network-like mixed structure (the surface of the upper layer) has a heat resistance that the α-type Al 2 O 3 phase has. Κ-type Al 2 O 3 phase has high strength, high toughness, and impact resistance without sacrificing properties and hardness, and is accompanied by high heat generation and high-speed intermittent operation with intermittent and high impact loads. Exhibits excellent chipping resistance over long-term use in cutting.
However, if the average layer thickness of the upper layer is less than 1 μm, the desired excellent wear resistance cannot be sufficiently exerted over a long period of use, while if the average layer thickness exceeds 15 μm, the chipping will occur. Therefore, the average layer thickness is determined to be 1 to 15 μm.

本発明の被覆工具は、各種の鋼や鋳鉄などの切削を、高熱発生を伴い、しかも、切れ刃に対して断続的・衝撃的高負荷が作用する高速断続切削加工条件で行った場合でも、硬質被覆層、特に上部層が、高硬度と耐熱性に加え、すぐれた靭性、耐衝撃性を有することから、長期の使用にわたってすぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。   Even when the coated tool of the present invention performs cutting of various steels, cast irons, etc., with high heat generation, and even when performed under high-speed intermittent cutting conditions where intermittent and impact high loads act on the cutting edge, In addition to high hardness and heat resistance, the hard coating layer, especially the upper layer, has excellent toughness and impact resistance, so it exhibits excellent chipping resistance over a long period of use, further extending the service life. It is possible.

本発明被覆工具の硬質被覆層の模式図であり、(a)は、上部層の垂直断面におけるα−κ混合組織を示し、(b)は、上部層の表面研磨面におけるα−κ網目状混合組織を示す。It is a schematic diagram of the hard coating layer of this invention coated tool, (a) shows (alpha) -kappa mixed structure in the vertical cross section of an upper layer, (b) is (alpha) -kappa network shape in the surface polishing surface of an upper layer. A mixed tissue is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有する表1に示される粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Dをそれぞれ作製した。   As raw material powders, the powders shown in Table 1 each having an average particle diameter of 1 to 3 μm were prepared. These raw material powders were blended into the blending composition shown in Table 1, and further wax was added in acetone. After ball mill mixing for a period of time and drying under reduced pressure, the green compact was press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was held at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa WC-based cemented carbide tool base having a throwaway tip shape defined in ISO / CNMG120408 by performing vacuum sintering under the conditions of the above, and performing a honing process of R: 0.07 mm on the cutting edge after sintering A to D were prepared.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有する表2に示される粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体a〜dを作製した。   Also, as the raw material powder, the powders shown in Table 2 each having an average particle diameter of 0.5 to 2 μm are prepared, and these raw material powders are blended in the blending composition shown in Table 2 and wetted by a ball mill for 24 hours. After mixing and drying, the green compact was press-molded into a green compact at a pressure of 98 MPa, and the green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour and after sintering. Then, the tool base a to d made of TiCN base cermet having a chip shape of ISO standard / CNMG120408 was manufactured by performing a honing process of R: 0.07 mm on the cutting edge portion.

ついで、これらの工具基体A〜Dおよび工具基体a〜dのそれぞれを、通常の化学蒸着装置に装入し、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
ついで、表4に示される蒸着条件にて、表7に示される層厚、Zr含有割合のZr含有κ型Al層を下部中間層として蒸着形成し、
ついで、表5に示される条件で、Zr含有κ型Al層にTiOの核成長処理を施して、表7に示される層厚、生成割合(線分割合)のTiO薄層(上部中間層)を形成し、
ついで、表3に示される条件で、上部層としての所定層厚のAl層を形成することにより、表7に示される本発明被覆工具1〜12それぞれ製造した。
Next, each of the tool bases A to D and the tool bases a to d was charged into a normal chemical vapor deposition apparatus, and Table 3 (l-TiCN in Table 3 is described in JP-A-6-8010). The conditions for forming a TiCN layer having a vertically elongated crystal structure are shown, and the other conditions are the conditions for forming a normal granular crystal structure). The Ti compound layer is deposited as a lower layer of the hard coating layer,
Then, under the vapor deposition conditions shown in Table 4, the layer thickness shown in Table 7 and the Zr-containing κ-type Al 2 O 3 layer having a Zr content ratio are vapor-deposited as a lower intermediate layer,
Next, the Zr-containing κ-type Al 2 O 3 layer was subjected to TiO X nucleus growth treatment under the conditions shown in Table 5, and the TiO X thin layer having the layer thickness and generation ratio (line segment ratio) shown in Table 7 was obtained. (Upper middle layer)
Subsequently, the coated tools 1 to 12 of the present invention shown in Table 7 were produced by forming an Al 2 O 3 layer having a predetermined layer thickness as an upper layer under the conditions shown in Table 3.

Figure 2013006255
Figure 2013006255

Figure 2013006255
Figure 2013006255

Figure 2013006255
Figure 2013006255

Figure 2013006255
Figure 2013006255

Figure 2013006255
Figure 2013006255

Figure 2013006255
Figure 2013006255

Figure 2013006255
Figure 2013006255

上記本発明被覆工具1〜12下部中間層(Zr含有κ型Al層)、上部中間層(TiO薄層)および上部層(Al層)について、各種の測定を行った。即ち、
下部中間層:層中のZr含有割合については、二次イオン質量分析装置を用いて、鏡面研磨加工した断面を測定し、観察倍率10,000倍での異なる視野5点の平均値を実測値とした。
上部中間層:鏡面研磨加工した垂直断面を、オージェ電子分光装置を用いて、観察倍率20,000倍で元素マッピングをとり、1μmの線分の中に占めるTiO薄層の長さを測定し、5本の線分での平均値をTiO薄層の線分割合として算定した。
上部層:上部層の垂直断面におけるκ型Al相との合量に占めるα型Al相の占有割合は、鏡面研磨加工した断面を、電子線後方散乱回折装置を用いて観察倍率2,000倍で横方向:20μm×縦方向:上部層の膜厚相当の領域を測定し、α型Al相とκ型Al相の領域をそれぞれ規定し、それぞれの面積を算出した。
上部層の表面研磨面におけるα−κ網目状混合組織は、表面を鏡面研磨し、電子線後方散乱回折装置を用いて観察倍率5,000倍で測定し、その菊池線回折図形から、α型Al相とκ型Al相の領域をそれぞれ規定し、α−κ網目状混合組織を確認した。κ型Al相との合量に占めるα型Al相の占有割合は、上記網目状混合組織の測定と同様に行い、測定範囲は縦横10μm四方の範囲とし、5箇所の平均値を実測値とした。
なお、上記の各層の層厚については、走査型電子顕微鏡を用いた縦断面測定により測定した。上部中間層(TiO薄層)については観察倍率20,000倍、その他の層については観察倍率2,000倍にて観察を行い、それらの5点の平均値を層厚とした。
表7に、これらの値をまとめて示した。
Various measurements were performed on the lower intermediate layer (Zr-containing κ-type Al 2 O 3 layer), the upper intermediate layer (TiO X thin layer), and the upper layer (Al 2 O 3 layer) of the inventive coated tool 1-12. . That is,
Lower intermediate layer: For the Zr content ratio in the layer, a secondary ion mass spectrometer is used to measure a mirror-polished cross section, and an average value of five different fields of view at an observation magnification of 10,000 times is actually measured. It was.
Upper intermediate layer: Mirror-polished vertical section was subjected to element mapping at an observation magnification of 20,000 using an Auger electron spectrometer, and the length of the TiO X thin layer occupying in a 1 μm line segment was measured. The average value of the five line segments was calculated as the line segment ratio of the TiO X thin layer.
Upper layer: The occupancy ratio of the α-type Al 2 O 3 phase in the total amount of the κ-type Al 2 O 3 phase in the vertical section of the upper layer is determined by using an electron beam backscattering diffractometer on the mirror-polished cross section. At an observation magnification of 2,000, horizontal direction: 20 μm × longitudinal direction: a region corresponding to the film thickness of the upper layer was measured, and regions of α-type Al 2 O 3 phase and κ-type Al 2 O 3 phase were defined respectively. The area of was calculated.
The α-κ network mixed structure on the surface polished surface of the upper layer is mirror-polished on the surface and measured with an electron beam backscatter diffractometer at an observation magnification of 5,000 times. The regions of the Al 2 O 3 phase and the κ-type Al 2 O 3 phase were defined, and an α-κ network mixed structure was confirmed. The occupancy ratio of the α-type Al 2 O 3 phase in the total amount with the κ-type Al 2 O 3 phase is the same as the measurement of the network-like mixed structure, and the measurement range is 10 μm square in all directions. The average value was taken as the actual measurement value.
In addition, about the layer thickness of said each layer, it measured by the longitudinal cross-section measurement using the scanning electron microscope. The upper intermediate layer (TiO X thin layer) was observed at an observation magnification of 20,000 times, and the other layers were observed at an observation magnification of 2,000 times, and the average value of these five points was taken as the layer thickness.
Table 7 summarizes these values.

比較の目的で、上記工具基体A〜D,a〜dに対して、表3に示される条件にて、表6に示される層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
ついで、表8に示される蒸着条件にて、表10に示される層厚、Zr含有割合のZr含有κ型Al層を下部中間層として蒸着形成し(一部については、Zr非含有のκ型Al層を成膜した)、
ついで、表9に示される条件で、Zr含有κ型Al層にTiOの核成長処理を施して(一部については、核成長処理を行わず)、表10に示される層厚、面積割合のTiO薄層(上部中間層)を形成し(一部については、TiO薄層を形成しない)、
ついで、表3に示される条件で、上部層としての所定層厚のAl層を形成することにより、表10に示される比較被覆工具1〜12それぞれ製造した。
For the purpose of comparison, a Ti compound layer having a layer thickness shown in Table 6 was deposited on the tool bases A to D and a to d as a lower layer of the hard coating layer under the conditions shown in Table 3. ,
Next, under the vapor deposition conditions shown in Table 8, a Zr-containing κ-type Al 2 O 3 layer having a layer thickness and a Zr-containing ratio shown in Table 10 was formed as a lower intermediate layer (for some, Zr-free) Κ-type Al 2 O 3 layer)
Next, under the conditions shown in Table 9, the Zr-containing κ-type Al 2 O 3 layer was subjected to TiO X nuclear growth treatment (some of which were not subjected to nuclear growth treatment), and the layer thicknesses shown in Table 10 were obtained. , Forming a TiO X thin layer (upper intermediate layer) with an area ratio (for some, the TiO X thin layer is not formed)
Subsequently, comparative coated tools 1 to 12 shown in Table 10 were produced by forming an Al 2 O 3 layer having a predetermined thickness as an upper layer under the conditions shown in Table 3.

ついで、上記の比較被覆工具1〜12について、本発明被覆工具1〜12場合と同様にして、下部中間層のZr含有割合、TiO薄層(上部中間層)の線分割合、上部層の垂直断面および上部層の表面研磨面において測定した。
なお、上記の各層の層厚については、走査型電子顕微鏡を用いた縦断面測定により測定し、それらの5点を用いて測定し、それらの平均値を層厚とした。
表10に、これらの値をまとめて示した。
Next, for the above-mentioned comparative coated tools 1-12, as in the case of the present coated tools 1-12, the Zr content ratio of the lower intermediate layer, the line segment ratio of the TiO X thin layer (upper intermediate layer), the upper layer The measurement was performed on the vertical cross section and the surface polished surface of the upper layer.
In addition, about the layer thickness of said each layer, it measured by the longitudinal cross-section measurement using a scanning electron microscope, measured using those 5 points | pieces, and made those average values the layer thickness.
Table 10 summarizes these values.

Figure 2013006255
Figure 2013006255

Figure 2013006255
Figure 2013006255

Figure 2013006255
Figure 2013006255

つぎに、上記の本発明被覆工具1〜12、較被覆工具1〜12ついて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S30Cの長さ方向等間隔8本縦溝入り丸棒、
切削速度:370m/min、
切り込み:1.6mm、
送り:0.27mm/rev、
切削時間:5分、
の条件(切削条件Aという)での炭素鋼の乾式湿式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・SCM415の長さ方向等間隔8本縦溝入り丸棒、
切削速度:350m/min、
切り込み:2.5mm、
送り:0.23mm/rev、
切削時間:5分、
の条件(切削条件Bという)での合金鋼の湿式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・FCD450の長さ方向等間隔8本縦溝入り丸棒、
切削速度:350m/min、
切り込み:2.7mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件Cという)でのダクタイル鋳鉄の湿式高速断続切削試験(通常の切削速度は180m/min)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表11に示した。
Next, for the above-described inventive coated tools 1-12 and comparative coated tools 1-12, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S30C lengthwise equal 8 round grooves
Cutting speed: 370 m / min,
Cutting depth: 1.6mm,
Feed: 0.27mm / rev,
Cutting time: 5 minutes
A dry wet high speed intermittent cutting test of carbon steel under the above conditions (referred to as cutting condition A) (normal cutting speed is 250 m / min),
Work material: JIS / SCM415 lengthwise equal 8 round grooved round bars,
Cutting speed: 350 m / min,
Incision: 2.5mm,
Feed: 0.23mm / rev,
Cutting time: 5 minutes
Wet high-speed intermittent cutting test (normal cutting speed is 200 m / min) of alloy steel under the above conditions (referred to as cutting condition B),
Work material: JIS / FCD450 lengthwise equidistant round bars with 8 vertical grooves,
Cutting speed: 350 m / min,
Incision: 2.7 mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Wet high-speed intermittent cutting test (normal cutting speed is 180 m / min) of ductile cast iron under the above conditions (referred to as cutting condition C),
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 11.

Figure 2013006255
Figure 2013006255

表7、表10、表11から、本発明被覆工具1〜12は、κ型Al相とα型Al相の混合組織(垂直断面)、網目状混合組織(上部層の表面)からなる上部層を備え、κ型Al相がすぐれた高強度、高靭性、耐衝撃性を有し、また、α型Al相がすぐれた耐熱性、硬さを有することから、高熱発生を伴い、しかも、断続的・衝撃的高負荷が作用する高速断続切削加工において、長期の使用にわたってすぐれた耐チッピング性を発揮する。
これに対して、比較被覆工具1〜12は、高熱発生下での、断続的・衝撃的高負荷により、チッピングを発生し、あるいは、耐摩耗性が不足し、短時間で寿命に至ることが明らかである。
From Table 7, Table 10, and Table 11, this invention coated tools 1-12 are the mixed structure (vertical cross section) of κ-type Al 2 O 3 phase and α-type Al 2 O 3 phase, and the reticulated mixed structure (upper layer Top surface), κ-type Al 2 O 3 phase has excellent strength, toughness, and impact resistance, and α-type Al 2 O 3 phase has excellent heat resistance and hardness. Therefore, it exhibits excellent chipping resistance over a long period of use in high-speed intermittent cutting with high heat generation and intermittent / impact high loads.
On the other hand, the comparative coated tools 1 to 12 may cause chipping due to intermittent / impact high loads under high heat generation, or lack of wear resistance, resulting in a short life. it is obvious.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に、高熱発生を伴い、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only for continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, but particularly with high heat generation, the cutting blade is intermittently / impactly loaded. Even in high-speed interrupted cutting with high resistance, it exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time. It can cope with cost reduction sufficiently satisfactorily.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と中間層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計層厚を有するTi化合物層からなり、
(b)中間層は、下部中間層と上部中間層からなり、
下部中間層は、0.5〜3μmの層厚を有し、κ型結晶構造のAl層にZrを0.004〜0.12%(ただし、全体組成に対するZrの割合を原子%で示す)含むZr含有κ型Al層であり、
上部中間層は、0.02〜0.5μmの層厚を有し、下部中間層の粒界に部分的に形成された酸化チタン薄層であり、
(c)上部層は、1〜15μmの層厚を有するAl層からなり、該Al層は、上部層の垂直断面を観察した場合、κ型Al相と上記酸化チタン薄層上に形成されたα型Al相のα−κ混合組織を有し、さらに、上部層の表面研磨面を観察した場合、κ型Al相の周囲をα型Al相が囲繞するα−κ網目状混合組織を有する、
ことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and a total layer of 3 to 20 μm A Ti compound layer having a thickness;
(B) The intermediate layer consists of a lower intermediate layer and an upper intermediate layer,
The lower intermediate layer has a layer thickness of 0.5 to 3 μm, and Zr is 0.004 to 0.12% in the Al 2 O 3 layer having a κ-type crystal structure (however, the ratio of Zr to the whole composition is atomic%) Zr-containing κ-type Al 2 O 3 layer
The upper intermediate layer is a thin titanium oxide layer having a layer thickness of 0.02 to 0.5 μm and partially formed at the grain boundary of the lower intermediate layer,
(C) The upper layer is composed of an Al 2 O 3 layer having a layer thickness of 1 to 15 μm, and the Al 2 O 3 layer has a κ-type Al 2 O 3 phase and the above when the vertical cross section of the upper layer is observed. When the α-κ mixed structure of α-type Al 2 O 3 phase formed on the titanium oxide thin layer is present and the surface polished surface of the upper layer is observed, the periphery of the κ-type Al 2 O 3 phase is α An α-κ network mixed structure surrounded by a type Al 2 O 3 phase,
A surface-coated cutting tool characterized by that.
Zr含有κ型Al層からなる下部中間層の粒界に部分的に形成された酸化チタン薄層は、下部中間層と上部中間層の界面の垂直断面において、20〜60%の線分割合で形成されていることを特徴とする請求項1に記載の表面被覆切削工具。 The titanium oxide thin layer partially formed at the grain boundary of the lower intermediate layer composed of the Zr-containing κ-type Al 2 O 3 layer has a line of 20 to 60% in the vertical cross section at the interface between the lower intermediate layer and the upper intermediate layer. The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool is formed in a fraction. 上部層において、κ型Al相との合量に占めるα型Al相の占有割合は、上部層の垂直断面において、20〜60面積%、また、上部層の表面研磨面において、25〜65面積%であることを特徴とする請求項1または2に記載の表面被覆切削工具。 In the upper layer, the occupation ratio of the α-type Al 2 O 3 phase in the total amount with the κ-type Al 2 O 3 phase is 20 to 60 area% in the vertical cross section of the upper layer, and the surface polishing surface of the upper layer The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool is 25 to 65 area%.
JP2011142017A 2011-06-27 2011-06-27 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance Withdrawn JP2013006255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142017A JP2013006255A (en) 2011-06-27 2011-06-27 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142017A JP2013006255A (en) 2011-06-27 2011-06-27 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Publications (1)

Publication Number Publication Date
JP2013006255A true JP2013006255A (en) 2013-01-10

Family

ID=47674071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142017A Withdrawn JP2013006255A (en) 2011-06-27 2011-06-27 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP2013006255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188980A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance and wear resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188980A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance and wear resistance

Similar Documents

Publication Publication Date Title
JP5831707B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5582409B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2006289557A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP5321094B2 (en) Surface coated cutting tool
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP5023896B2 (en) Surface coated cutting tool
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP2009006427A (en) Surface coated cutting tool
JP5023895B2 (en) Surface coated cutting tool
JP5686294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2017144548A (en) Surface-coated cutting tool
JP2013006255A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP4569862B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2005279917A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007296624A (en) Surface coated cutting tool having hard coating layer for exhibiting excellent abrasion resistance in high speed cutting
JP2015182155A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in intermittent cutting
JP6288606B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance with hard coating layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902