JP4466106B2 - Screening method for multilayer ceramic capacitors - Google Patents

Screening method for multilayer ceramic capacitors Download PDF

Info

Publication number
JP4466106B2
JP4466106B2 JP2004031997A JP2004031997A JP4466106B2 JP 4466106 B2 JP4466106 B2 JP 4466106B2 JP 2004031997 A JP2004031997 A JP 2004031997A JP 2004031997 A JP2004031997 A JP 2004031997A JP 4466106 B2 JP4466106 B2 JP 4466106B2
Authority
JP
Japan
Prior art keywords
multilayer ceramic
ceramic capacitor
temperature rise
electrode
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004031997A
Other languages
Japanese (ja)
Other versions
JP2005223253A (en
Inventor
昭宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004031997A priority Critical patent/JP4466106B2/en
Publication of JP2005223253A publication Critical patent/JP2005223253A/en
Application granted granted Critical
Publication of JP4466106B2 publication Critical patent/JP4466106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

この発明は、積層セラミックコンデンサのスクリーニング方法に関し、特にたとえば、積層セラミックコンデンサの良否を判定するための積層セラミックコンデンサのスクリーニング方法に関する。   The present invention relates to a method for screening a multilayer ceramic capacitor, and more particularly to a method for screening a multilayer ceramic capacitor for determining the quality of a multilayer ceramic capacitor, for example.

積層セラミックコンデンサの良否を判定する方法として、たとえば積層セラミックコンデンサに直流電圧を印加し、次いで直流電圧に重複して交流電圧を印加することにより、積層セラミックコンデンサにリップル電流を流す方法がある。この方法では、積層セラミックコンデンサの絶縁抵抗、静電容量、誘電損失などの電気的特性を測定することにより、積層セラミックコンデンサの良否が判定されている。また、熱電対などのセンサを用いて積層セラミックコンデンサの表面温度を測定し、正常な積層セラミックコンデンサの表面温度に比べて、異常に高い温度が検出されたときに、積層セラミックコンデンサが不良であると判定されている(例えば、特許文献1参照)。   As a method for determining the quality of a multilayer ceramic capacitor, for example, there is a method in which a direct current voltage is applied to the multilayer ceramic capacitor, and then an alternating current voltage is applied to the multilayer ceramic capacitor to cause a ripple current to flow through the multilayer ceramic capacitor. In this method, the quality of a multilayer ceramic capacitor is determined by measuring electrical characteristics such as insulation resistance, capacitance, and dielectric loss of the multilayer ceramic capacitor. Also, the surface temperature of the multilayer ceramic capacitor is measured using a sensor such as a thermocouple, and the multilayer ceramic capacitor is defective when an abnormally high temperature is detected compared to the surface temperature of a normal multilayer ceramic capacitor. (For example, refer to Patent Document 1).

特開2003−130902JP 2003-130902 A

しかしながら、積層セラミックコンデンサの高容量化にともなって、内部電極の積層数が増加し、たとえば100層以上に積層される場合がある。このように、積層セラミックコンデンサの多層化が進むと、たとえば、100層中の数層が外部電極との間で接続不良になっている場合、良品との静電容量の差が小さいため、従来の電気的特性の測定によるスクリーニングでは良品と判定される可能性がある。   However, as the capacity of the multilayer ceramic capacitor is increased, the number of stacked internal electrodes is increased. In this way, when the multilayer ceramic capacitor is multilayered, for example, when several of the 100 layers are poorly connected to the external electrodes, the difference in capacitance from non-defective products is small. There is a possibility that the product is judged as non-defective in screening by measuring the electrical characteristics of the product.

さらに、積層セラミックコンデンサの表面温度を測定する方法では、100層の内部電極のうちの数層の接続不良部分で発熱するため、コンデンサ全体が異常発熱するまでには至らない場合が多い。また、温度上昇が積層セラミックコンデンサの全体に至る場合であっても、コンデンサの表面温度から接続不良を検出できるまで電圧を印加しつづける必要があり、非常に時間がかかるという問題がある。   Further, in the method of measuring the surface temperature of the multilayer ceramic capacitor, heat is generated in several poorly connected portions of the 100 layers of internal electrodes, and thus the entire capacitor often does not generate abnormal heat. Even when the temperature rises to the entire multilayer ceramic capacitor, it is necessary to continue to apply a voltage from the surface temperature of the capacitor until a connection failure can be detected, which is very time consuming.

それゆえに、この発明の主たる目的は、比較的短時間で、内部電極と外部電極との間に接続不良のある積層セラミックコンデンサを判定することができる、積層セラミックコンデンサのスクリーニング方法を提供することである。   Therefore, a main object of the present invention is to provide a multilayer ceramic capacitor screening method capable of determining a multilayer ceramic capacitor having a poor connection between an internal electrode and an external electrode in a relatively short time. is there.

この発明は、セラミック素体と、セラミック素体内において誘電体セラミック層を介して対向するように形成され、セラミック素体の端面に交互に引き出された複数の内部電極と、セラミック素体の端面に形成されて内部電極に接続された2つの外部電極とを含み、内部電極が2つの外部電極のうち一方にしか接続されない、積層セラミックコンデンサのスクリーニング方法であって、積層セラミックコンデンサの2つの外部電極間に10kHz以上の周波数を有する正弦波電圧を印加する工程と、サーモグラフィを用いて内部電極と外部電極との接続部に対応する位置における積層セラミックコンデンサ表面の温度を局所的に測定する工程とを含み、接続部に対応する位置における積層セラミックコンデンサ表面の温度上昇により積層セラミックコンデンサの良否を判定する、積層セラミックコンデンサのスクリーニング方法である。
このような積層セラミックコンデンサのスクリーニング方法において、サーモグラフィを用いて内部電極と外部電極との接続部に対応する位置における温度上昇を測定し、この温度上昇が所定の値より大きいときに積層セラミックコンデンサが不良であると判定することができる。
This invention includes a ceramic body, is formed so as to face each other with a Oite dielectric ceramic layers in the ceramic element assembly, and a plurality of internal electrodes drawn alternately to end surfaces of the ceramic body, the ceramic body look including the two external electrodes connected to internal electrodes are formed on the end face, it is not only connected to one of the internal electrodes two external electrodes, a screening method of a multilayer ceramic capacitor, a multilayer ceramic capacitor 2 A step of applying a sine wave voltage having a frequency of 10 kHz or more between the two external electrodes, and the temperature of the surface of the multilayer ceramic capacitor at a position corresponding to the connection portion between the internal electrode and the external electrode is locally measured using thermography. A multilayer ceramic capacitor due to a temperature rise on the surface of the multilayer ceramic capacitor at a position corresponding to the connecting portion. Tsu determines the quality of the click capacitor, a screening method of a multilayer ceramic capacitor.
In such a multilayer ceramic capacitor screening method, the temperature rise at a position corresponding to the connection portion between the internal electrode and the external electrode is measured using thermography, and when this temperature rise is larger than a predetermined value, the multilayer ceramic capacitor It can be determined that it is defective.

10kHz以上の周波数を有する正弦波電圧を印加することにより、積層セラミックコンデンサのインピーダンスが小さくなって電流が流れ、抵抗値の高い部分、つまり内部電極と外部電極との間で接続不良がある部分において発熱する。サーモグラフィで積層セラミックコンデンサの表面温度を測定することにより、積層セラミックコンデンサの局部的な温度上昇を測定することができる。したがって、内部電極と外部電極との間に接続不良がある積層セラミックコンデンサの場合、接続不良のある部分に対応した位置において、コンデンサ表面の温度上昇を測定することができる。このような積層セラミックコンデンサの表面における局部的な温度上昇を測定することにより、積層セラミックコンデンサの良否を判定することができる。
積層セラミックコンデンサの表面における局部的な温度上昇を測定し、その温度上昇が所定の値以上になったとき、不良品であると判定することができる。
By applying a sinusoidal voltage having a frequency of 10 kHz or more, the impedance of the multilayer ceramic capacitor is reduced, current flows, and the resistance value is high, that is, there is a connection failure between the internal electrode and the external electrode. Fever. By measuring the surface temperature of the multilayer ceramic capacitor by thermography, the local temperature rise of the multilayer ceramic capacitor can be measured. Therefore, in the case of a multilayer ceramic capacitor having a poor connection between the internal electrode and the external electrode, the temperature rise on the capacitor surface can be measured at a position corresponding to the portion with the poor connection. The quality of the multilayer ceramic capacitor can be determined by measuring the local temperature rise on the surface of the multilayer ceramic capacitor.
A local temperature rise on the surface of the multilayer ceramic capacitor is measured, and when the temperature rise exceeds a predetermined value, it can be determined that the product is defective.

この発明によれば、短時間で、内部電極のうちの数層と外部電極との間に接続不良がある積層セラミックコンデンサを見つけることができる。したがって、特に高電圧用の積層セラミックコンデンサにおいて、発熱異常が発生する可能性があるものを除去することができる。   According to the present invention, it is possible to find a multilayer ceramic capacitor having a connection failure between several layers of the internal electrodes and the external electrode in a short time. Accordingly, it is possible to remove a high-voltage monolithic ceramic capacitor that may cause a heat generation abnormality.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明を実施するための最良の形態の説明から一層明らかとなろう。   The above object, other objects, features, and advantages of the present invention will become more apparent from the following description of the best mode for carrying out the invention with reference to the drawings.

図1は、この発明のスクリーニング方法で良否が判定される積層セラミックコンデンサを示す斜視図である。積層セラミックコンデンサ10は、セラミック素体12を含む。セラミック素体12は、図2に示すように、複数の誘電体セラミック層14と内部電極16とが、交互に積層された構成を有する。そして、隣接する内部電極16が、交互にセラミック素体12の対向端面に引き出される。   FIG. 1 is a perspective view showing a multilayer ceramic capacitor whose quality is judged by the screening method of the present invention. The multilayer ceramic capacitor 10 includes a ceramic body 12. As shown in FIG. 2, the ceramic body 12 has a configuration in which a plurality of dielectric ceramic layers 14 and internal electrodes 16 are alternately stacked. Adjacent internal electrodes 16 are alternately drawn out to the opposed end surfaces of the ceramic body 12.

内部電極16が引き出されたセラミック素体12の端面には、外部電極18が形成される。外部電極18は、セラミック素体12の端面に露出した内部電極16に接続されるように、導電性ペーストを焼き付けることによって形成される。さらに、必要に応じて、焼付け電極の上に、Ni、Sn、Sn/Pbなどのめっき被膜を形成することができる。このように、セラミック素体12の対向端面に形成された外部電極18に、複数の内部電極16が接続されることにより、2つの外部電極18間に静電容量が形成される。   An external electrode 18 is formed on the end face of the ceramic body 12 from which the internal electrode 16 is drawn. The external electrode 18 is formed by baking a conductive paste so as to be connected to the internal electrode 16 exposed on the end face of the ceramic body 12. Furthermore, if necessary, a plating film such as Ni, Sn, Sn / Pb can be formed on the baking electrode. As described above, the plurality of internal electrodes 16 are connected to the external electrode 18 formed on the opposing end surface of the ceramic body 12, whereby a capacitance is formed between the two external electrodes 18.

このような積層セラミックコンデンサ10では、内部電極16と外部電極18との接続部分が酸化した場合などにおいて、図3に示すように、内部電極16と外部電極18との間に接続不良が発生することがある。しかしながら、内部電極16と外部電極18との間における接続不良部分が少ない場合、電気的特性の測定だけでは良品であると判定される場合がある。   In such a multilayer ceramic capacitor 10, when the connection portion between the internal electrode 16 and the external electrode 18 is oxidized, a connection failure occurs between the internal electrode 16 and the external electrode 18 as shown in FIG. 3. Sometimes. However, when there are few poor connection portions between the internal electrode 16 and the external electrode 18, it may be determined that the product is non-defective only by measuring the electrical characteristics.

そこで、内部電極16と外部電極18との間に接続不良がある積層セラミックコンデンサ10を見つけるために、2つの外部電極18間に10kHz以上の周波数を有する正弦波電圧が印加される。このような正弦波電圧を印加することにより、積層セラミックコンデンサ10のインピーダンスが小さくなって電流が流れるが、内部電極16と外部電極18とが接続不良となっている部分の抵抗値が大きいため、この部分に電流が流れることにより発熱する。   Therefore, in order to find the multilayer ceramic capacitor 10 having a connection failure between the internal electrode 16 and the external electrode 18, a sine wave voltage having a frequency of 10 kHz or more is applied between the two external electrodes 18. By applying such a sine wave voltage, the impedance of the multilayer ceramic capacitor 10 is reduced and current flows, but the resistance value of the portion where the internal electrode 16 and the external electrode 18 are poorly connected is large. Heat is generated when current flows through this portion.

内部電極16と外部電極18との間の接続不良部分における発熱を検出するために、サーモグラフィによって積層セラミックコンデンサ10の表面温度が測定される。サーモグラフィを用いれば、図4に示すように、積層セラミックコンデンサ10の表面の局部的な温度上昇を測定することができる。このような局部的な温度上昇を検出することにより、内部電極16と外部電極18との接続不良を発見することができる。そして、積層セラミックコンデンサ10の表面の温度上昇が所定の値以上になったときに、内部電極16と外部電極18との接続不良があると判定される。   In order to detect heat generation in a poorly connected portion between the internal electrode 16 and the external electrode 18, the surface temperature of the multilayer ceramic capacitor 10 is measured by thermography. If thermography is used, as shown in FIG. 4, the local temperature rise on the surface of the multilayer ceramic capacitor 10 can be measured. By detecting such a local temperature rise, a connection failure between the internal electrode 16 and the external electrode 18 can be found. When the temperature rise on the surface of the multilayer ceramic capacitor 10 becomes a predetermined value or more, it is determined that there is a connection failure between the internal electrode 16 and the external electrode 18.

このように、この発明のスクリーニング方法によれば、内部電極16と外部電極18との接続不良を見つけることができ、従来の方法では発見できなかった内部欠陥を有する積層セラミックコンデンサ10を除去することができる。しかも、積層セラミックコンデンサ10の部分的な温度上昇を測定すればよく、全体の温度上昇を測定する場合のように、長時間電圧を印加する必要がないため、比較的短時間で判定を行うことができる。   As described above, according to the screening method of the present invention, the connection failure between the internal electrode 16 and the external electrode 18 can be found, and the multilayer ceramic capacitor 10 having the internal defect that cannot be found by the conventional method is removed. Can do. In addition, it is only necessary to measure a partial temperature rise of the multilayer ceramic capacitor 10, and it is not necessary to apply a voltage for a long time as in the case of measuring the whole temperature rise, so that the determination is made in a relatively short time. Can do.

まず、CaZrO3 を主成分とする誘電率30の材料を用いて、厚さ20μmのセラミックグリーンシートを作製した。このセラミックグリーンシート上に、Niを主成分とする内部電極ペーストを用いて、所定の形状に内部電極用パターンを印刷し乾燥した。そして、内部電極用パターンを形成したセラミックグリーンシートを数枚積み重ね、その両側に内部電極用パターンのないセラミックグリーンシートを積み重ねて圧着した。 First, a ceramic green sheet having a thickness of 20 μm was produced using a material having a dielectric constant of 30 mainly composed of CaZrO 3 . On this ceramic green sheet, an internal electrode pattern was printed in a predetermined shape using an internal electrode paste containing Ni as a main component and dried. And several ceramic green sheets in which the pattern for internal electrodes was formed were stacked, and the ceramic green sheets without the pattern for internal electrodes were stacked on both sides and pressed.

セラミックグリーンシートを圧着して得られた積層体を270℃で脱脂したのち、1250〜1350℃で焼成して、内部電極を有するセラミック素体を得た。このセラミック素体の端面にCuペーストを塗布し、焼き付けを行って外部電極を形成した。さらに、焼付け電極上に、Niめっき被膜を形成し、その上にSnめっき被膜を形成した。   The laminate obtained by pressure bonding the ceramic green sheet was degreased at 270 ° C. and then fired at 1250 to 1350 ° C. to obtain a ceramic body having internal electrodes. Cu paste was applied to the end face of the ceramic body and baked to form external electrodes. Furthermore, a Ni plating film was formed on the baking electrode, and a Sn plating film was formed thereon.

このようにして得られた積層セラミックコンデンサに、実効値が100V、300V、1000Vの正弦波電圧を印加し、サーモグラフィで積層セラミックコンデンサの温度上昇を測定した。なお、それぞれの印加電圧において、周波数を1kHz、10kHz、100kHz、300kHzに変えて、それぞれ5秒間印加した時点での積層セラミックコンデンサの温度上昇を測定した。
このとき、測定用の積層セラミックコンデンサとして、還元雰囲気中で外部電極を焼き付けた良品と、酸化雰囲気中で外部電極を焼き付けて内部電極と外部電極との接続不良を有する2種類の不良品を用意した。2種類の不良品は、外部電極焼き付け時の酸素分圧を変えて接続不良の度合いを異ならせ、静電容量としては良品の±10%の範囲の良品レベルにあるものと、静電容量の低い明らかな不良品の2種類である。
また、本発明との比較のために、従来のように熱電対で積層セラミックコンデンサ表面(外部電極間中央部)を測定した。
以上の結果を、表1に示す。なお、表1の括弧内の数値は、熱電対による測定結果である。
Sine wave voltages having effective values of 100 V, 300 V, and 1000 V were applied to the multilayer ceramic capacitor thus obtained, and the temperature rise of the multilayer ceramic capacitor was measured by thermography. Note that, at each applied voltage, the frequency was changed to 1 kHz, 10 kHz, 100 kHz, and 300 kHz, and the temperature rise of the multilayer ceramic capacitor was measured when applied for 5 seconds.
At this time, as a multilayer ceramic capacitor for measurement, a non-defective product in which an external electrode is baked in a reducing atmosphere and two types of defective products having a connection failure between the internal electrode and the external electrode by baking an external electrode in an oxidizing atmosphere are prepared. did. The two types of defective products vary the degree of connection failure by changing the oxygen partial pressure during external electrode baking, and the capacitance is within the range of ± 10% of non-defective products, There are two types of low obvious defective products.
Further, for comparison with the present invention, the surface of the multilayer ceramic capacitor (the center between the external electrodes) was measured with a thermocouple as in the past.
The results are shown in Table 1. In addition, the numerical value in the bracket | parenthesis of Table 1 is a measurement result by a thermocouple.

Figure 0004466106
Figure 0004466106

表1からわかるように、1000Vの電圧を印加した場合、許容電圧を超えているため、全ての積層セラミックコンデンサにおいて電圧破壊が発生した。還元雰囲気中で外部電極を焼き付けた積層セラミックコンデンサでは、100Vおよび300Vの電圧を印加したとき、全ての周波数において、温度上昇が少なかった。
また、表1からわかるように、従来のように熱電対で積層セラミックコンデンサ表面を測定した場合、不良レベルであれば、接続不良部分が多いことにより5秒間の印加でもすぐに積層セラミックコンデンサ表面が温度上昇するため、不良品を検出することができるが、静電容量が良品レベルにあるものは温度上昇が少なく良品とほとんど変わらない。したがって、従来のように熱電対で積層セラミックコンデンサ表面の温度上昇を測定した場合、数秒間の電圧印加、例えば5秒間という短時間では、静電容量として良品レベルにあるものの接続不良をわずかに有する不良品は選別することができない。すなわち、熱電対では接触した部分の温度でしか判断できないが、サーモグラフィを用いた場合、部分的に温度上昇が生じている部分が明確であり、不良品の検出が容易である。
As can be seen from Table 1, when a voltage of 1000 V was applied, the voltage exceeded the allowable voltage, and voltage breakdown occurred in all the multilayer ceramic capacitors. In the multilayer ceramic capacitor in which the external electrode was baked in a reducing atmosphere, the temperature rise was small at all frequencies when voltages of 100 V and 300 V were applied.
As can be seen from Table 1, when the surface of the multilayer ceramic capacitor is measured with a thermocouple as in the prior art, the surface of the multilayer ceramic capacitor can be immediately applied even after 5 seconds of application because there are many poorly connected portions if the level is defective. Defective products can be detected because the temperature rises, but those with a capacitance at a non-defective level have little temperature rise and are almost the same as good products. Therefore, when the temperature rise on the surface of the multilayer ceramic capacitor is measured with a thermocouple as in the prior art, a voltage of several seconds, for example, a short time of 5 seconds, for example, has a slight connection failure although it is at a non-defective level as a capacitance. Defective products cannot be sorted out. In other words, the thermocouple can only determine the temperature of the contacted part, but when using the thermography, the part where the temperature rises partially is clear and the defective product can be easily detected.

また、酸化雰囲気中で外部電極を焼き付けた積層セラミックコンデンサの中で、静電容量が良品レベルにあるものでは、周波数1kHzの電圧を印加したときの温度上昇は還元雰囲気中で外部電極を焼き付けた積層セラミックコンデンサとほとんど変わらなかった。しかしながら、周波数10kHz以上の電圧を印加したとき、内部電極と外部電極との接続部付近で温度上昇が確認され、還元雰囲気中で外部電極を焼き付けた積層セラミックコンデンサに比べて、温度上昇が大きかった。このような温度上昇は、印加電圧の周波数が高くなるほど大きく、また印加電圧が高圧となるほど大きくなった。   Further, among the multilayer ceramic capacitors in which the external electrode is baked in an oxidizing atmosphere, the temperature rise when a voltage of 1 kHz is applied is baked in the reducing atmosphere when the capacitance is at a non-defective level. Almost the same as multilayer ceramic capacitors. However, when a voltage with a frequency of 10 kHz or higher was applied, a temperature increase was confirmed near the connection between the internal electrode and the external electrode, and the temperature increase was larger than that of the multilayer ceramic capacitor in which the external electrode was baked in a reducing atmosphere. . Such a temperature increase was increased as the frequency of the applied voltage was increased, and was increased as the applied voltage was increased.

さらに、酸化雰囲気中で外部電極を焼き付けた積層セラミックコンデンサの中で、静電容量が不良レベルにあるものでは、周波数1kHzの電圧を印加したとき、還元雰囲気中で外部電極を焼き付けた積層セラミックコンデンサより温度上昇が大きかったものの、数値的には小さいものであった。また、周波数10kHz以上の電圧を印加したとき、還元雰囲気中で外部電極を焼き付けた積層セラミックコンデンサや、酸化雰囲気中で外部電極を焼き付けた積層セラミックコンデンサのうちで静電容量が良品レベルにあるものに比べて、温度上昇が大きかった。このような温度上昇は、印加電圧の周波数が高くなるほど大きく、また印加電圧が高圧となるほど大きくなった。   Furthermore, among the multilayer ceramic capacitors in which the external electrodes are baked in an oxidizing atmosphere, the multilayer ceramic capacitors in which the external electrodes are baked in a reducing atmosphere when a voltage having a frequency of 1 kHz is applied. Although the temperature rise was larger, it was numerically small. In addition, when a voltage of 10 kHz or higher is applied, a multilayer ceramic capacitor in which external electrodes are baked in a reducing atmosphere or a multilayer ceramic capacitor in which external electrodes are baked in an oxidizing atmosphere has a capacitance at a non-defective level. The temperature rise was larger than Such a temperature increase was increased as the frequency of the applied voltage was increased, and was increased as the applied voltage was increased.

周波数1kHzの電圧を印加した場合、積層セラミックコンデンサのインピーダンスが高いために電流が流れにくく、全ての積層セラミックコンデンサにおいて温度上昇の差が小さいものと考えられる。それに対して、周波数10kHz以上の電圧を印加した場合、積層セラミックコンデンサのインピーダンスが低くなり、ある程度の電流が流れて、内部電極と外部電極との接続不良部分で発熱し、接続不良箇所の多少によって発熱の差が生じたものであると考えられる。   When a voltage having a frequency of 1 kHz is applied, it is considered that current does not easily flow because the impedance of the multilayer ceramic capacitor is high, and the difference in temperature rise is small in all the multilayer ceramic capacitors. On the other hand, when a voltage of 10 kHz or higher is applied, the impedance of the multilayer ceramic capacitor is lowered, a certain amount of current flows, heat is generated at the poorly connected portion between the internal electrode and the external electrode, and depending on the number of poorly connected portions. It is considered that a difference in heat generation occurred.

この実施例から、積層セラミックコンデンサの内部電極と外部電極との間の接続不良は、積層セラミックコンデンサ表面の部分的な温度上昇を測定することにより発見できることがわかる。このとき、周波数10kHz以上の正弦波電圧を印加することにより、積層セラミックコンデンサの良否を明確に判定することができる。なお、この発明のスクリーニング方法は、BaTiO3、TiO2、SrTiO3 などの他の誘電体セラミック材料を用いた積層セラミックコンデンサにも適用することができる。また、この発明のスクリーニング方法は、Cu、Ag、Pdなどの他の内部電極材料を用いた積層セラミックコンデンサにも適用することができる。 From this example, it can be seen that a connection failure between the internal electrode and the external electrode of the multilayer ceramic capacitor can be found by measuring a partial temperature rise on the surface of the multilayer ceramic capacitor. At this time, the quality of the multilayer ceramic capacitor can be clearly determined by applying a sine wave voltage having a frequency of 10 kHz or more. The screening method of the present invention can also be applied to multilayer ceramic capacitors using other dielectric ceramic materials such as BaTiO 3 , TiO 2 , and SrTiO 3 . The screening method of the present invention can also be applied to a multilayer ceramic capacitor using other internal electrode materials such as Cu, Ag, and Pd.

この発明のスクリーニング方法が適用される積層セラミックコンデンサの一例を示す斜視図である。It is a perspective view which shows an example of the multilayer ceramic capacitor to which the screening method of this invention is applied. 図1に示す積層セラミックコンデンサの内部構造を示す図解図である。FIG. 2 is an illustrative view showing an internal structure of the multilayer ceramic capacitor shown in FIG. 1. 内部電極と外部電極との間に接続不良がある積層セラミックコンデンサを示す図解図である。It is an illustration figure which shows the multilayer ceramic capacitor with a connection defect between an internal electrode and an external electrode. この発明のスクリーニング方法を適用した場合の積層セラミックコンデンサの温度上昇を示す図解図である。It is an illustration figure which shows the temperature rise of the multilayer ceramic capacitor at the time of applying the screening method of this invention.

符号の説明Explanation of symbols

10 積層セラミックコンデンサ
12 セラミック素体
14 誘電体セラミック層
16 内部電極
18 外部電極
DESCRIPTION OF SYMBOLS 10 Multilayer ceramic capacitor 12 Ceramic body 14 Dielectric ceramic layer 16 Internal electrode 18 External electrode

Claims (2)

セラミック素体と、前記セラミック素体内において誘電体セラミック層を介して対向するように形成され、前記セラミック素体の端面に交互に引き出された複数の内部電極と、前記セラミック素体の端面に形成されて前記内部電極に接続された2つの外部電極とを含み、前記内部電極が2つの前記外部電極のうち一方にしか接続されない、積層セラミックコンデンサのスクリーニング方法であって、
前記積層セラミックコンデンサの前記2つの外部電極間に10kHz以上の周波数を有する正弦波電圧を印加する工程、
サーモグラフィを用いて前記内部電極と前記外部電極との接続部に対応する位置における前記積層セラミックコンデンサ表面の温度を局所的に測定する工程を含み、
前記接続部に対応する位置における前記積層セラミックコンデンサ表面の温度上昇により前記積層セラミックコンデンサの良否を判定する、積層セラミックコンデンサのスクリーニング方法。
And the ceramic body, wherein are formed so as to face each other with a Oite dielectric ceramic layers in the ceramic element assembly, and a plurality of internal electrodes drawn alternately to end surfaces of said ceramic body, an end surface of the ceramic body are formed saw including a two external electrodes connected to the internal electrode, the internal electrode is not connected to only one of the two said external electrodes, a screening method of a multilayer ceramic capacitor,
Applying a sine wave voltage having a frequency of 10 kHz or more between the two external electrodes of the multilayer ceramic capacitor;
Including the step of locally measuring the temperature of the surface of the multilayer ceramic capacitor at a position corresponding to a connection portion between the internal electrode and the external electrode using thermography,
A screening method for a multilayer ceramic capacitor, wherein the quality of the multilayer ceramic capacitor is determined based on a temperature rise on the surface of the multilayer ceramic capacitor at a position corresponding to the connection portion.
サーモグラフィを用いて前記内部電極と前記外部電極との接続部に対応する位置における温度上昇を測定し、この温度上昇が所定の値より大きいときに積層セラミックコンデンサが不良であると判定する、請求項1に記載の積層セラミックコンデンサのスクリーニング方法。   The temperature rise at a position corresponding to a connection portion between the internal electrode and the external electrode is measured using thermography, and it is determined that the multilayer ceramic capacitor is defective when the temperature rise is larger than a predetermined value. 2. The method for screening a multilayer ceramic capacitor according to 1.
JP2004031997A 2004-02-09 2004-02-09 Screening method for multilayer ceramic capacitors Expired - Lifetime JP4466106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031997A JP4466106B2 (en) 2004-02-09 2004-02-09 Screening method for multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004031997A JP4466106B2 (en) 2004-02-09 2004-02-09 Screening method for multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JP2005223253A JP2005223253A (en) 2005-08-18
JP4466106B2 true JP4466106B2 (en) 2010-05-26

Family

ID=34998624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031997A Expired - Lifetime JP4466106B2 (en) 2004-02-09 2004-02-09 Screening method for multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP4466106B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110902B2 (en) * 2018-10-17 2022-08-02 株式会社村田製作所 Multilayer Ceramic Capacitor Inspection Method and Multilayer Ceramic Capacitor Manufacturing Method
CN117454821B (en) * 2023-11-15 2024-04-02 广东工业大学 Power utilization frequency calculation method and system based on ceramic capacitor temperature rise

Also Published As

Publication number Publication date
JP2005223253A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP5567647B2 (en) Ceramic electronic components
JP6024483B2 (en) Multilayer ceramic electronic components
JP4466106B2 (en) Screening method for multilayer ceramic capacitors
JPH07135124A (en) Multilayered ceramic capacitor
JPH0534094Y2 (en)
JPH09180956A (en) Multilayer ceramic capacitor
JPH10312933A (en) Laminated ceramic electronic parts
JPH11354374A (en) Laminated ceramic electronic parts, manufacture thereof, and conductive paste for forming internal electrodes
JP7352209B2 (en) Mechanism to detect abnormal current
JP5251589B2 (en) Manufacturing method of ceramic capacitor
JP7127369B2 (en) Determination method for quality of multilayer ceramic capacitors
JP2000077260A (en) Laminated ceramic electronic component and its manufacture
JP2017040563A (en) Particulate matter detection sensor and method for manufacturing particulate matter detection sensor
US6509741B2 (en) Method for screening multi-layer ceramic electronic component
JPH11150037A (en) Laminated ceramic capacitor
JP4757695B2 (en) Chip-type electronic component for inspection and mounting state inspection method
JP5464282B2 (en) Capacitor array selection method
JP2002168897A (en) Screening method for ceramic electronic part
JPH0684688A (en) Multilayer ceramic electronic component
JPH1131633A (en) Laminated ceramic electronic component
JP2005064245A (en) Laminated ceramic capacitor and short-circuiting detection method thereof
JP2003249424A (en) Selecting method of laminated capacitor
JP2003059784A (en) Method for sorting multilayer ceramic capacitor
JP2005150127A (en) Method of manufacturing laminated ceramic electronic component
JP2002100544A (en) Screening method of lamination electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4466106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

EXPY Cancellation because of completion of term