JP5251589B2 - Manufacturing method of ceramic capacitor - Google Patents

Manufacturing method of ceramic capacitor Download PDF

Info

Publication number
JP5251589B2
JP5251589B2 JP2009040124A JP2009040124A JP5251589B2 JP 5251589 B2 JP5251589 B2 JP 5251589B2 JP 2009040124 A JP2009040124 A JP 2009040124A JP 2009040124 A JP2009040124 A JP 2009040124A JP 5251589 B2 JP5251589 B2 JP 5251589B2
Authority
JP
Japan
Prior art keywords
ceramic
external electrode
external
electrode
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009040124A
Other languages
Japanese (ja)
Other versions
JP2010199168A (en
Inventor
昭宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009040124A priority Critical patent/JP5251589B2/en
Publication of JP2010199168A publication Critical patent/JP2010199168A/en
Application granted granted Critical
Publication of JP5251589B2 publication Critical patent/JP5251589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

この発明はセラミックコンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a ceramic capacitor.

積層セラミックコンデンサには、Niなどの卑金属からなる内部電極を有し、かつ、Cuなどの卑金属からなる外部電極を有するものがある。そして、積層セラミックコンデンサのセラミック素体を構成するセラミック材料はBaTiO3などの酸化物であり、中性雰囲気または還元雰囲気で焼成されると、還元されて特性が劣化するおそれがあるため、酸化雰囲気で焼成されることが望まれる。 Some multilayer ceramic capacitors have an internal electrode made of a base metal such as Ni and an external electrode made of a base metal such as Cu. The ceramic material constituting the ceramic body of the multilayer ceramic capacitor is an oxide such as BaTiO 3 , and when fired in a neutral atmosphere or a reducing atmosphere, the ceramic material may be reduced to deteriorate the characteristics. It is desirable to be baked with.

また、卑金属からなる外部電極を還元雰囲気で焼き付けると、外部電極ペーストに含まれるバインダなどの樹脂成分の燃焼が不十分となり、結果として外部電極中にポアが形成され、積層セラミックコンデンサの信頼性が低下する。一方、外部電極を酸化雰囲気で焼き付けると、バインダ(樹脂分)の燃焼効率が上がり、外部電極の焼結が進み易くなる。この結果、外部電極は緻密となり、耐水性能や耐めっき液性能が向上する。しかし、外部電極を酸化雰囲気で焼き付けると、内部電極と外部電極との接合部に酸化膜が生じ易いため、内部電極と外部電極との間の電気的接合状態が悪化し、静電容量低下や等価直列抵抗(ESR)増加を招くという問題がある。等価直列抵抗が大きいコンデンサを高周波用途で使用した場合、内部電極と外部電極との接合部での発熱異常が起きる。このように、外部電極の焼き付けに際しても、焼き付け条件を考慮する必要がある。そこで、例えば特許文献1には、酸化雰囲気と還元雰囲気とを切り替えながら外部電極を焼き付ける方法が記載されている。   In addition, when an external electrode made of a base metal is baked in a reducing atmosphere, the resin component such as a binder contained in the external electrode paste is not sufficiently burned, resulting in the formation of pores in the external electrode, and the reliability of the multilayer ceramic capacitor descend. On the other hand, when the external electrode is baked in an oxidizing atmosphere, the combustion efficiency of the binder (resin component) is increased, and the external electrode is easily sintered. As a result, the external electrode becomes dense, and the water resistance performance and plating solution performance are improved. However, when the external electrode is baked in an oxidizing atmosphere, an oxide film is likely to be formed at the joint between the internal electrode and the external electrode. There is a problem that the equivalent series resistance (ESR) is increased. When a capacitor with a large equivalent series resistance is used for high frequency applications, heat generation abnormalities occur at the junction between the internal electrode and the external electrode. Thus, it is necessary to consider the baking conditions when baking the external electrodes. Thus, for example, Patent Document 1 describes a method of baking external electrodes while switching between an oxidizing atmosphere and a reducing atmosphere.

特開2003−234257号公報JP 2003-234257 A

しかしながら、特許文献1のように、酸化雰囲気と還元雰囲気とを切り替えながら外部電極を焼き付ける方法は、焼き付け条件の管理が複雑かつ煩雑であり、雰囲気のばらつきによるセラミックコンデンサの電気特性のばらつきが生じ易いという不具合があった。   However, as in Patent Document 1, the method of baking the external electrode while switching between the oxidizing atmosphere and the reducing atmosphere is complicated and cumbersome to manage the baking conditions, and variation in the electrical characteristics of the ceramic capacitor due to variation in atmosphere tends to occur. There was a problem that.

それゆえに、この発明の主たる目的は、耐水性能を確保しつつ、静電容量や誘電損失などの電気特性が良好なセラミックコンデンサを得ることができる製造方法を提供することである。   Therefore, a main object of the present invention is to provide a manufacturing method capable of obtaining a ceramic capacitor having good electrical characteristics such as capacitance and dielectric loss while ensuring water resistance.

この発明は、セラミック素体と、セラミック素体の外表面上に設けられた第1外部電極および第2外部電極と、セラミック素体の内部に設けられ、第1外部電極と接合している第1内部電極および第2外部電極と接合している第2内部電極と、を有するセラミックコンデンサの製造方法であって、第1外部電極と第2外部電極との間に交流電流を流して、第1外部電極と第1内部電極との接合部および第2外部電極と第2内部電極との接合部にそれぞれ生じた酸化膜を除去する工程を備えたこと、を特徴とする、セラミックコンデンサの製造方法である。   The present invention provides a ceramic body, a first external electrode and a second external electrode provided on the outer surface of the ceramic body, and a first external electrode provided inside the ceramic body and joined to the first external electrode. A ceramic capacitor having a first internal electrode and a second internal electrode joined to the second external electrode, wherein an alternating current is passed between the first external electrode and the second external electrode, A process for removing an oxide film formed at a junction between one external electrode and a first internal electrode and a junction between a second external electrode and a second internal electrode, respectively. Is the method.

この発明では、一対の外部電極間に交流電流を流すことによって、外部電極と内部電極との接合部に交流電流が流れ、外部電極と内部電極との接合部に生じた酸化膜が破壊され、外部電極と内部電極との間の導通が確保される。   In this invention, by passing an alternating current between a pair of external electrodes, an alternating current flows through the joint between the external electrode and the internal electrode, and the oxide film generated at the joint between the external electrode and the internal electrode is destroyed, Electrical connection between the external electrode and the internal electrode is ensured.

また、この発明は、交流電流が0.1mA以上の高周波電流であることを特徴とする。これにより、外部電極と内部電極との接合部に交流電流が十分に流れ、外部電極と内部電極との接合部に生じた酸化膜が確実に破壊される。   Further, the present invention is characterized in that the alternating current is a high frequency current of 0.1 mA or more. Thereby, an alternating current sufficiently flows through the junction between the external electrode and the internal electrode, and the oxide film generated at the junction between the external electrode and the internal electrode is reliably destroyed.

また、この発明は、第1外部電極および第2外部電極が酸化雰囲気で焼き付けられていることを特徴とする。これにより、外部電極を緻密に形成することができると共に、酸化雰囲気と還元雰囲気とを切り替えながら外部電極を焼き付ける必要がなくなり、焼き付け条件の管理が簡素かつ容易になり、雰囲気のばらつきによるセラミックコンデンサの電気特性のばらつきが生じにくくなる。   In addition, the present invention is characterized in that the first external electrode and the second external electrode are baked in an oxidizing atmosphere. As a result, the external electrodes can be densely formed, and there is no need to burn the external electrodes while switching between the oxidizing atmosphere and the reducing atmosphere, and the management of the baking conditions becomes simple and easy. Variations in electrical characteristics are less likely to occur.

さらに、この発明は、第1外部電極および第2外部電極が卑金属からなることを特徴とする。これにより、酸化雰囲気で焼き付けすると酸化し易い卑金属からなる外部電極を有するセラミックコンデンサであっても、優れた電気特性が得られる。   Furthermore, the present invention is characterized in that the first external electrode and the second external electrode are made of a base metal. Thereby, even if it is a ceramic capacitor which has the external electrode which consists of a base metal which is easy to oxidize when baking in an oxidizing atmosphere, the outstanding electrical characteristic is acquired.

この発明によれば、一対の外部電極間に交流電流を流すことによって、外部電極と内部電極との接合部に交流電流が流れ、外部電極と内部電極との接合部に生じた酸化膜を破壊することができ、外部電極と内部電極との間の導通を確保することができる。この結果、静電容量や誘電損失などの電気特性が良好なセラミックコンデンサを得ることができる。   According to the present invention, an alternating current flows between the pair of external electrodes and an alternating current flows through the joint between the external electrode and the internal electrode, thereby destroying the oxide film generated at the joint between the external electrode and the internal electrode. It is possible to ensure electrical continuity between the external electrode and the internal electrode. As a result, a ceramic capacitor having good electrical characteristics such as capacitance and dielectric loss can be obtained.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。   The above-mentioned object, other objects, features and advantages of the present invention will become more apparent from the following description of embodiments for carrying out the invention with reference to the drawings.

本発明に係るセラミックコンデンサの製造方法の一実施形態を説明するための外観斜視図である。It is an external appearance perspective view for demonstrating one Embodiment of the manufacturing method of the ceramic capacitor which concerns on this invention. 図1に示したセラミックコンデンサの断面図である。It is sectional drawing of the ceramic capacitor shown in FIG. セラミック素体の分解斜視図である。It is a disassembled perspective view of a ceramic body.

本発明に係るセラミックコンデンサの製造方法の一実施形態について説明する。なお、以下はセラミックコンデンサを個産した場合を例にして説明するが、量産する場合には、複数のセラミックコンデンサを含むマザー積層体として製造される。図1は積層セラミックコンデンサ10の外観斜視図であり、図2はその断面図であり、図3はセラミック素体2の分解斜視図である。セラミックコンデンサ10は、セラミック素体2と、セラミック素体2の両端部の外表面上に形成された一対の外部電極3,4とを有している。   An embodiment of a method for producing a ceramic capacitor according to the present invention will be described. In the following, a case where ceramic capacitors are produced individually will be described as an example. However, in the case of mass production, a mother laminated body including a plurality of ceramic capacitors is manufactured. 1 is an external perspective view of the multilayer ceramic capacitor 10, FIG. 2 is a sectional view thereof, and FIG. 3 is an exploded perspective view of the ceramic body 2. As shown in FIG. The ceramic capacitor 10 includes a ceramic body 2 and a pair of external electrodes 3 and 4 formed on the outer surfaces of both ends of the ceramic body 2.

セラミック素体2は、図3に示すように、内部電極パターン22,23を表面に形成したセラミックグリーンシート20c〜20hと、電極パターンが形成されていない外層用セラミックグリーンシート20a,20b,20i,20jとを積み重ねて構成した積層体である。セラミックグリーンシート20a〜20jの材料としては、BaTiO3、CaTiO3、SrTiO3、CaZrO3などの主成分からなる誘電体セラミックに、周知の有機バインダや有機溶剤が添加されているものが用いられる。また、これらの主成分にMn化合物、Fe化合物、Cr化合物、Co化合物、Ni化合物などの副成分を添加したものを用いてもよい。特に、本実施形態では、セラミックコンデンサ10に高周波が印加されるため、高周波印加による発熱が少ない温度補償系のセラミック材料を用いることが好ましく、具体的には、CaTiO3、CaZrO3などのεが小さいセラミックを用いることが好ましい。セラミックグリーンシート20c〜20hの厚みは、焼成後の内部電極パターン22,23間のセラミック層の厚みが0.5〜10μmになるように設定することが好ましい。 As shown in FIG. 3, the ceramic body 2 includes ceramic green sheets 20c to 20h having internal electrode patterns 22 and 23 formed on the surface, and ceramic green sheets 20a, 20b, 20i for outer layers on which no electrode pattern is formed. 20j is a laminated body configured by stacking. As a material of the ceramic green sheets 20a to 20j, a material in which a known organic binder or an organic solvent is added to a dielectric ceramic composed of main components such as BaTiO 3 , CaTiO 3 , SrTiO 3 , and CaZrO 3 is used. Moreover, you may use what added subcomponents, such as a Mn compound, Fe compound, Cr compound, Co compound, Ni compound, to these main components. In particular, in the present embodiment, since a high frequency is applied to the ceramic capacitor 10, it is preferable to use a temperature-compensated ceramic material that generates little heat due to the application of the high frequency. Specifically, ε such as CaTiO 3 and CaZrO 3 is used. It is preferable to use a small ceramic. The thickness of the ceramic green sheets 20c to 20h is preferably set so that the thickness of the ceramic layer between the internal electrode patterns 22 and 23 after firing is 0.5 to 10 μm.

内部電極パターン22,23は、セラミックグリーンシート20c〜20h上に、例えばスクリーン印刷などにより導電性ペーストを塗布して形成される。内部電極パターン22はセラミックグリーンシート20c,20e,20gの左辺に露出している。内部電極パターン23はセラミックグリーンシート20d,20f,20hの右辺に露出している。そして、内部電極パターン22,23は、積層された状態ではセラミックグリーンシート20c〜20gを間にして対向するように配置されている。この対向部分により所定の電気特性が得られる。内部電極パターン22,23の材料としては、例えばNi,Cu,Ag,Pd,Ag−Pd合金,Au、もしくは、これらのいずれか一つを主成分とする合金が用いられる。内部電極パターン22,23の厚みは、焼成後に0.3〜2.0μmになるように設定することが好ましい。   The internal electrode patterns 22 and 23 are formed by applying a conductive paste on the ceramic green sheets 20c to 20h by, for example, screen printing. The internal electrode pattern 22 is exposed on the left side of the ceramic green sheets 20c, 20e, and 20g. The internal electrode pattern 23 is exposed on the right side of the ceramic green sheets 20d, 20f, and 20h. The internal electrode patterns 22 and 23 are arranged so as to face each other with the ceramic green sheets 20c to 20g interposed therebetween in the stacked state. Predetermined electrical characteristics can be obtained by this facing portion. As a material of the internal electrode patterns 22 and 23, for example, Ni, Cu, Ag, Pd, an Ag—Pd alloy, Au, or an alloy mainly containing any one of them is used. The thicknesses of the internal electrode patterns 22 and 23 are preferably set to be 0.3 to 2.0 μm after firing.

以上のセラミックグリーンシート20a〜20jは、図3に示すように積層されてセラミック積層体とされる。このとき、必要に応じてセラミック積層体を静水圧プレスなどにより積層方向にプレスしてもよい。次に、セラミック積層体を所定のサイズにカットした後、バレル研磨してセラミック積層体のコーナー部および稜部に丸みを形成する。次に、セラミック積層体を焼成する。焼成温度はセラミックグリーンシート20a〜20jや内部電極パターン22,23の材料にもよるが、900〜1300℃であることが好ましい。こうして、セラミック素体2が形成される。   The above ceramic green sheets 20a to 20j are laminated to form a ceramic laminate as shown in FIG. At this time, if necessary, the ceramic laminate may be pressed in the stacking direction by an isostatic press or the like. Next, after cutting the ceramic laminate into a predetermined size, barrel polishing is performed to form roundness at the corners and ridges of the ceramic laminate. Next, the ceramic laminate is fired. The firing temperature depends on the materials of the ceramic green sheets 20a to 20j and the internal electrode patterns 22 and 23, but is preferably 900 to 1300 ° C. Thus, the ceramic body 2 is formed.

次に、印刷法などにより、セラミック素体2の両端部にそれぞれ、外部電極用導電性ペーストを塗布し、700〜900℃の温度で焼き付けて外部電極3,4を形成する。外部電極3は内部電極パターン22の一端部に接合し,外部電極4は内部電極パターン23の一端部に接合している。外部電極3,4の材料としては、例えばNi,Cuもしくは、これらのいずれか一つを主成分とする合金が用いられる。このとき、焼き付け雰囲気を酸化雰囲気とし、外部電極用導電性ペースト中のバインダ(樹脂分)の燃焼効率を上げ、外部電極3,4の焼結を進めて外部電極3,4を緻密化する。外部電極3,4の厚み(最も厚い部分)は、10〜50μmになるように設定することが好ましい。なお、セラミック積層体を焼成する前に、外部電極用導電性ペーストをセラミック積層体に塗布し、セラミック積層体の焼成と同時に外部電極3,4を焼き付ける方法であってもよい。   Next, a conductive paste for external electrodes is applied to both ends of the ceramic body 2 by a printing method or the like, and baked at a temperature of 700 to 900 ° C. to form the external electrodes 3 and 4. The external electrode 3 is bonded to one end of the internal electrode pattern 22, and the external electrode 4 is bonded to one end of the internal electrode pattern 23. As a material of the external electrodes 3 and 4, for example, Ni, Cu, or an alloy mainly containing any one of them is used. At this time, the baking atmosphere is an oxidizing atmosphere, the combustion efficiency of the binder (resin component) in the conductive paste for external electrodes is increased, the sintering of the external electrodes 3 and 4 is advanced, and the external electrodes 3 and 4 are densified. The thickness (thickest part) of the external electrodes 3 and 4 is preferably set to be 10 to 50 μm. In addition, before baking a ceramic laminated body, the method of apply | coating the electrically conductive paste for external electrodes to a ceramic laminated body, and baking the external electrodes 3 and 4 simultaneously with baking of a ceramic laminated body may be sufficient.

次に、セラミック素体2の外部電極3,4間に交流電流を流して、外部電極3,4の焼き付けの際に内部電極パターン22,23と外部電極3,4とのとの接合部にそれぞれ生じた酸化膜を除去する。このとき、交流電流は0.1mA以上の高周波電流であることが好ましい。これにより、外部電極3,4と内部電極パターン22,23との接合部に交流電流が十分に流れ、外部電極3,4と内部電極パターン22,23との接合部に生じた酸化膜が確実に破壊される。また、交流電流の上限は10mAとすることが好ましい。交流電流が10mAを超えると、コンデンサ10が異常発熱を起こしてショート不良になるからである。   Next, an alternating current is passed between the external electrodes 3 and 4 of the ceramic body 2, and the external electrodes 3 and 4 are burned on the joints between the internal electrode patterns 22 and 23 and the external electrodes 3 and 4. The resulting oxide film is removed. At this time, the alternating current is preferably a high-frequency current of 0.1 mA or more. Thereby, an alternating current sufficiently flows through the junction between the external electrodes 3 and 4 and the internal electrode patterns 22 and 23, and the oxide film generated at the junction between the external electrodes 3 and 4 and the internal electrode patterns 22 and 23 is surely obtained. Destroyed. The upper limit of the alternating current is preferably 10 mA. This is because when the alternating current exceeds 10 mA, the capacitor 10 generates abnormal heat, resulting in a short circuit failure.

次に、外部電極3,4が形成されたセラミック素体2を、バレル研磨などの物理的表面処理を行ったり、エッチングなどの化学的表面処理を行ったりして、外部電極3,4の焼き付けの際に生じた外部電極3,4表面の酸化膜を除去する。この後、外部電極3,4の表面にめっき層を形成する。めっき層の材料としては、例えばNi,Cu,Ag,Pd,Ag−Pd,Au,もしくは、これらのいずれか一つを主成分とする合金が用いられる。めっき層一層当たりの厚みは、1〜10μmになるように設定することが好ましい。さらに、外部電極3,4とめっき層との間に、応力緩和用の導電性樹脂層を形成してもよい。   Next, the ceramic body 2 on which the external electrodes 3 and 4 are formed is subjected to physical surface treatment such as barrel polishing or chemical surface treatment such as etching, so that the external electrodes 3 and 4 are baked. The oxide film formed on the surface of the external electrodes 3 and 4 is removed. Thereafter, a plating layer is formed on the surfaces of the external electrodes 3 and 4. As a material for the plating layer, for example, Ni, Cu, Ag, Pd, Ag-Pd, Au, or an alloy containing any one of them as a main component is used. The thickness per one plating layer is preferably set to be 1 to 10 μm. Furthermore, a conductive resin layer for stress relaxation may be formed between the external electrodes 3 and 4 and the plating layer.

以上のセラミックコンデンサ10の製造方法によれば、外部電極3,4間に交流電流を流すことによって、外部電極3,4と内部電極パターン22,23との接合部に交流電流が流れ、外部電極3,4の焼き付けの際に外部電極3,4と内部電極パターン22,23との接合部に生じた酸化膜を破壊することができ、外部電極3,4と内部電極パターン22,23との間の導通を確保することができる。この結果、酸化雰囲気で焼き付けすると酸化し易い卑金属からなる外部電極3,4を有するセラミックコンデンサ10であっても、優れた電気特性(静電容量や誘電損失など)を得ることができる。   According to the manufacturing method of the ceramic capacitor 10 described above, an alternating current flows between the external electrodes 3 and 4 and the internal electrode patterns 22 and 23 by flowing an alternating current between the external electrodes 3 and 4. The oxide film formed at the joint between the external electrodes 3 and 4 and the internal electrode patterns 22 and 23 during the baking of 3 and 4 can be destroyed. Conduction between them can be ensured. As a result, excellent electrical characteristics (capacitance, dielectric loss, etc.) can be obtained even with the ceramic capacitor 10 having the external electrodes 3 and 4 made of base metals that are easily oxidized when baked in an oxidizing atmosphere.

また、外部電極3,4が酸化雰囲気で焼き付けられて形成されているので、外部電極3,4を緻密に形成することができ、耐水性能や耐めっき液性能を向上させることができる。さらに、酸化雰囲気と還元雰囲気とを切り替えながら外部電極3,4を焼き付ける必要がなくなり、焼き付け条件の管理が簡素かつ容易になり、雰囲気のばらつきによるセラミックコンデンサ10の電気特性のばらつきが生じにくくなる。   Moreover, since the external electrodes 3 and 4 are formed by baking in an oxidizing atmosphere, the external electrodes 3 and 4 can be formed densely, and the water resistance performance and the plating solution performance can be improved. Furthermore, it is not necessary to bake the external electrodes 3 and 4 while switching between the oxidizing atmosphere and the reducing atmosphere, management of the baking conditions becomes simple and easy, and variations in the electrical characteristics of the ceramic capacitor 10 due to variations in atmosphere are less likely to occur.

なお、この発明は、前記実施形態に限定されるものではなく、その要旨の範囲内で種々に変形される。セラミック素体は、必ずしも複数のセラミックシートからなる積層体である必要はなく、一体型のバルクであってもよい。   In addition, this invention is not limited to the said embodiment, In the range of the summary, it changes variously. The ceramic body does not necessarily need to be a laminated body composed of a plurality of ceramic sheets, and may be an integral bulk.

以下の製造方法によってセラミックコンデンサの試料を作成し、電気的特性などを評価した。すなわち、CaZrO3を主体とする比誘電率(εr)が30で、厚さ20μmのセラミックグリーンシートに、Niを主体とした内部電極パターンを印刷法で形成した。その後、このセラミックグリーンシートを数枚積み重ね、さらに外層用セラミックグリーンシートを積み重ね圧着してセラミック積層体とした。そして、このセラミック積層体を270℃で脱脂した後、1250〜1350℃にて焼成してセラミック素体とした。 A ceramic capacitor sample was prepared by the following manufacturing method, and the electrical characteristics and the like were evaluated. That is, an internal electrode pattern mainly composed of Ni was formed on a ceramic green sheet having a relative dielectric constant (εr) mainly composed of CaZrO 3 and a thickness of 20 μm by a printing method. Thereafter, several ceramic green sheets were stacked, and further, ceramic green sheets for outer layers were stacked and pressure-bonded to obtain a ceramic laminate. And after degreasing | defatting this ceramic laminated body at 270 degreeC, it baked at 1250-1350 degreeC and it was set as the ceramic body.

次に、焼成後のセラミック素体にCuペーストを塗布して焼き付け、外部電極を形成した。このとき、Cuペーストを還元雰囲気と酸化雰囲気の2種類の雰囲気でそれぞれ焼き付けた。その後、電解めっき法によってNi層、Sn層を順に外部電極表面上に形成した。   Next, Cu paste was applied to the fired ceramic body and baked to form external electrodes. At this time, the Cu paste was baked in two types of atmospheres, a reducing atmosphere and an oxidizing atmosphere. Thereafter, a Ni layer and a Sn layer were sequentially formed on the surface of the external electrode by electrolytic plating.

こうして得られたセラミックコンデンサにおいて、外部電極用Cuペーストを還元雰囲気中で焼き付けたセラミックコンデンサは、静電容量が設計通り1000pF(Q>1000)の値であった。なお、Qはtanδの逆数で、数値が大きいほど外部電極と内部電極パターンとの接合部での等価直列抵抗が低いことを示す。しかし、外部電極用Cuペーストを酸化雰囲気中で焼き付けたセラミックコンデンサは、外部電極と内部電極パターンとの接合部に生じた酸化膜によって電気的接合不良となり、表1の「高周波印加前」に示したような電気特性となった。この電気的接合不良のセラミックコンデンサの一対の外部電極間に630Vp−p(300kHz)の高周波電圧を10時間印加した後の電気特性を表1の「高周波印加後」に示す。表1より、高周波電圧を印加することで、3個のセラミックコンデンサの全てが良品レベル(約1000pF、Q>1000)の電気特性をもつまでになっていることが認められる。   In the ceramic capacitor thus obtained, the ceramic capacitor in which the external electrode Cu paste was baked in a reducing atmosphere had a capacitance of 1000 pF (Q> 1000) as designed. Q is the reciprocal of tan δ, and the larger the value, the lower the equivalent series resistance at the junction between the external electrode and the internal electrode pattern. However, the ceramic capacitor in which the external electrode Cu paste is baked in an oxidizing atmosphere results in poor electrical connection due to the oxide film formed at the joint between the external electrode and the internal electrode pattern. The electrical characteristics were as follows. The electrical characteristics after applying a high frequency voltage of 630 Vp-p (300 kHz) for 10 hours between a pair of external electrodes of the ceramic capacitor with poor electrical connection are shown in “After high frequency application” in Table 1. From Table 1, it is recognized that by applying a high frequency voltage, all of the three ceramic capacitors have electrical characteristics of a non-defective product level (about 1000 pF, Q> 1000).

Figure 0005251589
Figure 0005251589

また、本実施例では、セラミックコンデンサの一対の外部電極間に630Vp−p(300kHz)の高周波電圧を印加しているが、外部電極と内部電極パターンとの接合部改善のポイントは交流電流値(2πfCV、f:周波数、C:静電容量、V:電圧)である。交流電流値と接合部改善性の関係は表2に示した。表2の交流電流値は1個のセラミックコンデンサ当りの電流値である。表2より、交流電流は0.1mA以上の高周波電流であることが好ましいことが認められる。   In this embodiment, a high-frequency voltage of 630 Vp-p (300 kHz) is applied between the pair of external electrodes of the ceramic capacitor, but the point of improving the junction between the external electrode and the internal electrode pattern is the alternating current value ( 2πfCV, f: frequency, C: capacitance, V: voltage). Table 2 shows the relationship between the AC current value and the joint improvement property. The alternating current values in Table 2 are current values per ceramic capacitor. From Table 2, it is recognized that the alternating current is preferably a high-frequency current of 0.1 mA or more.

Figure 0005251589
Figure 0005251589

2 セラミック素体
3,4 外部電極
5,6 金属端子
10 セラミックコンデンサ
2 Ceramic body 3, 4 External electrode 5, 6 Metal terminal 10 Ceramic capacitor

Claims (3)

セラミック素体と、前記セラミック素体の外表面上に設けられた第1外部電極および第2外部電極と、前記セラミック素体の内部に設けられ、前記第1外部電極と接合している第1内部電極および前記第2外部電極と接合している第2内部電極と、を有するセラミックコンデンサの製造方法であって、
前記第1外部電極と前記第2外部電極との間に0.1mA以上の高周波交流電流を流して、前記第1外部電極と前記第1内部電極との接合部および前記第2外部電極と前記第2内部電極との接合部にそれぞれ生じた酸化膜を除去する工程を備えたこと、を特徴とする、セラミックコンデンサの製造方法。
A ceramic body, a first external electrode and a second external electrode provided on an outer surface of the ceramic body, and a first body provided in the ceramic body and joined to the first external electrode A method of manufacturing a ceramic capacitor having an internal electrode and a second internal electrode joined to the second external electrode,
A high-frequency alternating current of 0.1 mA or more is allowed to flow between the first external electrode and the second external electrode, and a junction between the first external electrode and the first internal electrode, the second external electrode, A method for producing a ceramic capacitor, comprising a step of removing oxide films respectively formed at joint portions with a second internal electrode.
前記第1外部電極および前記第2外部電極は酸化雰囲気で焼き付けられていることを特徴とする、請求項1に記載のセラミックコンデンサの製造方法。 The method of manufacturing a ceramic capacitor according to claim 1, wherein the first external electrode and the second external electrode are baked in an oxidizing atmosphere. 前記第1外部電極および前記第2外部電極が卑金属からなることを特徴とする、請求項1または請求項2に記載のセラミックコンデンサの製造方法。 The method for manufacturing a ceramic capacitor according to claim 1, wherein the first external electrode and the second external electrode are made of a base metal.
JP2009040124A 2009-02-24 2009-02-24 Manufacturing method of ceramic capacitor Active JP5251589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009040124A JP5251589B2 (en) 2009-02-24 2009-02-24 Manufacturing method of ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040124A JP5251589B2 (en) 2009-02-24 2009-02-24 Manufacturing method of ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2010199168A JP2010199168A (en) 2010-09-09
JP5251589B2 true JP5251589B2 (en) 2013-07-31

Family

ID=42823630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040124A Active JP5251589B2 (en) 2009-02-24 2009-02-24 Manufacturing method of ceramic capacitor

Country Status (1)

Country Link
JP (1) JP5251589B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312525B2 (en) * 2017-04-14 2023-07-21 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP7136333B2 (en) * 2019-03-28 2022-09-13 株式会社村田製作所 Chip type ceramic electronic component and manufacturing method thereof
KR102558658B1 (en) * 2019-03-28 2023-07-24 가부시키가이샤 무라타 세이사쿠쇼 Method for manufacturing chip-type ceramic electronic components
JP2021086972A (en) 2019-11-29 2021-06-03 株式会社村田製作所 Multilayer ceramic capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870317B2 (en) * 1992-09-03 1999-03-17 松下電器産業株式会社 Manufacturing method of ceramic porcelain element
JPH09129414A (en) * 1995-10-26 1997-05-16 Matsushita Electric Ind Co Ltd Manufacture of chip electronic component
JPH1074661A (en) * 1996-08-30 1998-03-17 Matsushita Electric Ind Co Ltd Manufacture of electronic part and conductive paste used therefor
JP2000124088A (en) * 1998-10-13 2000-04-28 Matsushita Electric Ind Co Ltd Method for sorting stacked ceramic capacitor
JP4654620B2 (en) * 2004-06-28 2011-03-23 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component

Also Published As

Publication number Publication date
JP2010199168A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP6720660B2 (en) Monolithic ceramic capacitors
JP5654102B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR101444536B1 (en) Multi-Layered Ceramic Electronic Component And Manufacturing Method Thereof
JP5206440B2 (en) Ceramic electronic components
JP5483498B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP5870895B2 (en) Ceramic electronic component and method for manufacturing the same
JP2012253337A (en) Multilayer ceramic electronic component
JP2011124529A (en) Laminated ceramic capacitor
JP2018067568A (en) Method of manufacturing multilayer ceramic capacitor
JP2006210590A (en) Laminated ceramic capacitor and its manufacturing method
JP2010109238A (en) Ceramic electronic component
JP2013118357A (en) Ceramic electronic component and manufacturing method of the same
JP2016004885A (en) Method of manufacturing ceramic electronic component
JP5251589B2 (en) Manufacturing method of ceramic capacitor
JP3359522B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2014038820A (en) Conductive paste composition for internal electrode and multilayered ceramic electronic component containing the same
JP2015043448A (en) Multilayer ceramic capacitor
JP2012009556A (en) Ceramic electronic component and method of manufacturing the same
JP2014078674A (en) Multilayered ceramic electronic component and method of manufacturing the same
JP2001102243A (en) Coaxial capacitor
JPH11354374A (en) Laminated ceramic electronic parts, manufacture thereof, and conductive paste for forming internal electrodes
JP3679529B2 (en) Terminal electrode paste and multilayer ceramic capacitor
JP3544569B2 (en) Multilayer ceramic capacitors
JPWO2017002495A1 (en) Chip-type ceramic electronic components
JP2011165935A (en) Laminated electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3