JP2004289090A - Method for manufacturing laminated ceramic electronic component - Google Patents

Method for manufacturing laminated ceramic electronic component Download PDF

Info

Publication number
JP2004289090A
JP2004289090A JP2003082530A JP2003082530A JP2004289090A JP 2004289090 A JP2004289090 A JP 2004289090A JP 2003082530 A JP2003082530 A JP 2003082530A JP 2003082530 A JP2003082530 A JP 2003082530A JP 2004289090 A JP2004289090 A JP 2004289090A
Authority
JP
Japan
Prior art keywords
ceramic
green sheet
thickness
ceramic green
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082530A
Other languages
Japanese (ja)
Other versions
JP4186667B2 (en
Inventor
Makoto Matsuda
真 松田
Kiyoshi Nakagawa
潔 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003082530A priority Critical patent/JP4186667B2/en
Priority to TW093102792A priority patent/TWI236686B/en
Priority to CNB2004100077423A priority patent/CN100373509C/en
Priority to KR1020040019667A priority patent/KR20040084724A/en
Publication of JP2004289090A publication Critical patent/JP2004289090A/en
Application granted granted Critical
Publication of JP4186667B2 publication Critical patent/JP4186667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a thin-film multi-layered type laminated ceramic electronic component which has high reliability by deterring structural defects such as inter-layer peeling and a short circuit. <P>SOLUTION: When ceramic slurry to form a ceramic green sheet with a specified thickness through coating and drying is manufactured (s1), the content rate of resin consisting of an organic binder and a plasticizer to the ceramic slurry is set within a specified range according to the thickness of a ceramic layer formed by sintering the ceramic green sheet. Consequently, the ceramic layer has proper hardness and adhesive strength, so structural defects such as a short circuit and inter-layer peeling are deterred when the ceramic green sheet is heat pressed (s5) and a raw body is sintered (s7). Further, a ceramic sinter increases in strength, so high-temperature load life is improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、積層セラミックコンデンサ等の積層セラミック電子部品、特に焼成されて積層セラミック電子部品のセラミック層となるセラミックグリーンシートの製造方法に関するものである。
【0002】
【従来の技術】
積層セラミック電子部品である積層セラミックコンデンサの構造について、図を参照して説明する。
【0003】
図2は積層セラミックコンデンサの構造を示す断面図である。
図2に示すように、積層セラミックコンデンサは、複数の内部電極3a,3bと複数のセラミック層2とを交互に積層してなるセラミック焼結体1と、該セラミック焼結体1の両端部にそれぞれ内部電極3a,3bに接続するように設けられた外部電極4a,4bからなる。ここで、内部電極3a,3bはセラミック層2を介して、所定面積で対向するように積層されている。
【0004】
このような積層セラミックコンデンサは次に示す方法で製造される。
まず、BaTiO等を主成分とするセラミック粉末と溶剤とを混合して粉砕した後、これにポリブチルビニラール(以下、単に「PVB」という。)等の有機バインダと、可塑剤と、溶剤とを混合してセラミックスラリーを作製する。そして、このセラミックスラリーを所定厚みに塗工、乾燥してセラミックグリーンシートを形成する。
【0005】
次に、セラミックグリーンシートの表面に内部電極パターンを形成し、積層方向に隣り合う内部電極パターン同士が所定面積で重なり合うように所定枚数のセラミックグリーンシートを積層し、さらに、この上下層に内部電極パターンが形成されていないセラミックグリーンシートを積層して加熱プレスすることで、セラミック積層体を形成する。このセラミック積層体を、それぞれが積層セラミックコンデンサとなる大きさの素体に切り分け、これら素体を焼成炉で焼成することによりセラミック焼結体を得る。このセラミック焼結体の両端部に内部電極に接続するように外部電極ペーストを塗布し、焼結することで外部電極を形成して、積層セラミックコンデンサを得る。
【0006】
このような従来の積層セラミックコンデンサ、特に、セラミック層の厚みが10μm程度の積層セラミックコンデンサでは、セラミックグリーンシートに含まれる有機バインダの含有率が3重量%程度であった。これは、有機バインダの含有量が多いと、焼成時に有機バインダがセラミック焼結体から抜け出しにくくなり内部に空隙が生じてしまうからであり、さらには、有機バインダが抜ける際に内部電極との界面から有機バインダのガスが抜けるため、その量が多ければ界面剥離が発生する可能性が大きいからである。また、有機バインダの含有量が少なければセラミックグリーンシートの流動性が高くなり、加熱プレス時に成形しやすくなる。すなわち、セラミック積層体の各層で内部電極パターンが互いに対向する対向部とともに、一方の内部電極パターンのみが積層される内部電極非対向部でセラミック層同士が接合しやすくなり、接合強度を強くすることができる。
【0007】
ところが、近年、積層セラミックコンデンサは、多層化、薄膜化傾向にあり、セラミック層の厚みが5μm以下のものも多く製造されており、さらに薄いものでは、2μm以下のセラミック層からなる積層セラミックコンデンサも製造されている。
【0008】
しかしながら、このように薄膜化が進むと、図3に示すように、高温負荷寿命が短くなる等の信頼性低下の問題が生じる。
【0009】
図3は、セラミック層の厚みによる高温負荷寿命の変化を示す図である。
【0010】
この問題を解決するセラミック電子部品の製造方法として、セラミックスラリーの作製時にセラミック粉末と溶剤とを高圧分散することで、セラミックスラリーを均質化し、薄膜であっても安定したセラミックグリーンシートを形成する方法がある(例えば、特許文献1参照。)。
【0011】
【特許文献1】
特開平11−99514号公報
【0012】
【発明が解決しようとする課題】
上述のような積層セラミックコンデンサの製造方法であっても、セラミック積層体の加熱プレス時に、前記対向部から前記非対向部に向けてセラミックグリーンシートが流れてしまう。このため、対向部と非対向部との境界部でセラミックグリーンシートの厚みがさらに薄くなり、内部電極の先端部がこれに積層方向に隣り合う内部電極における前記境界部付近に近接するように変形してしまう。このセラミック積層体を焼成してなるセラミック焼結体を用いて積層セラミックコンデンサを形成すると、前記境界部で短絡しやすくなり、短絡不良の発生率が増加してしまう。
【0013】
上述のセラミックグリーンシートの流れ込みを抑制するには、重合度の高い有機バインダを使用して、セラミックグリーンシートの流動性を低く抑えればよい。しかしながら、重合度を高くすることで、逆にセラミック積層体の非対向部で加熱プレスに、セラミックグリーンシートが変形せず、重なり合うセラミックグリーンシート同士での接合強度が低下してしまい層間剥離が発生する可能性がある。
【0014】
この発明の目的は、層間剥離や短絡等の構造欠陥の発生を抑制し、高信頼性を有する、薄膜多層の積層セラミック電子部品を製造することにある。
【0015】
【課題を解決するための手段】
この発明は、セラミック粉末と、有機バインダおよび可塑剤を含む樹脂と、溶剤とを混合してなるセラミックスラリーを均一な厚みのセラミックグリーンシートに形成する工程と、該セラミックグリーンシート表面に内部電極ペーストを印刷し、所定枚数積層してセラミック積層体を形成する工程と、該セラミック積層体を所定形状に切断して、焼成することで、セラミック層と内部電極とが交互に積層するセラミック焼結体を形成する工程と、該セラミック焼結体に前記内部電極に接続する外部電極を形成する工程とを含む積層セラミック電子部品の製造方法であって、セラミック層の厚みに応じて、有機バインダを含む樹脂の含有率を次のように設定してセラミックグリーンシートを形成することを特徴としている。
ここで、セラミック層の厚みをdとし、含有率(重量%)をそれぞれwとすると、
(1)1μm≦d<2μmならば、13.5%≦w<18.0%、
(2)d≒2μmならば、13.5%≦w<16.5%、
(3)d≒3μmならば、9.8%≦w<12.8%、
(4)d≒4μmならば、8.5%≦w<11.5%、
(5)d≒5μmならば、7.8%≦w<10.8%とする。
【0016】
この構成では、形成されるセラミック層の厚みに応じて、有機バインダを含む樹脂の含有量が異なることにより、その厚みに応じて、加熱プレス時にセラミックグリーンシートを必要十分に変形させてセラミック層間の接合強度を得る。さらに、セラミックの流動性を適度に抑え、内部電極対向部と非対向部との境界部でセラミック層の厚みを確保して、短絡の発生を抑制する。
【0017】
また、有機バインダを含む樹脂の含有量が上述のように従来品よりも高くしても、積層セラミック電子部品が薄膜多層であるので、セラミック層と内部電極との界面が多層化した分増加し、バインダがセラミック焼結体から抜け出しやすくなり、セラミック焼結体内の空隙の発生や界面剥離の発生を抑制する。
【0018】
さらに、バインダとして重合度1000以下、または、異なる重合度のバインダを混合して平均重合度を1000以下にするのが好ましい。
【0019】
【発明の実施の形態】
本実施形態に係る積層セラミック電子部品の製造方法について図を参照して説明する。なお、本実施形態では、積層セラミック電子部品として、積層セラミックコンデンサを例に説明する。
図1は、本実施形態に係る積層セラミックコンデンサの製造工程を示すフローチャートである。
まず、BaTiOを主成分とするセラミック粉末と溶剤とを混合して粉砕し、さらに重合度が約1000のPVBからなる有機バインダとフタル酸ジオクチルからなる可塑剤とが所定の比率で混合された樹脂と、溶剤とを混合してセラミックスラリーを作製する(s1)。
【0020】
次に、セラミックスラリーをドクターブレード法等を用いて、支持フィルム表面に均一な厚みで塗工し、乾燥してセラミックグリーンシートを形成する(s2)。
【0021】
ここで、セラミックグリーンシートにおける樹脂(有機バインダと可塑剤の混合体)の含有量(重量%)は、後にセラミック焼結体になった状態でのセラミック層の厚みに応じて、次のように設定する。
【0022】
ここで、セラミック層の厚みをdとし、含有率(重量%)をそれぞれwとすると、
(1)1μm≦d<2μmならば、13.5%≦w<18.0%、
(2)d≒2μmならば、13.5%≦w<16.5%、
(3)d≒3μmならば、9.8%≦w<12.8%、
(4)d≒4μmならば、8.5%≦w<11.5%、
(5)d≒5μmならば、7.8%≦w<10.8%とする。
【0023】
次に、このセラミックグリーンシートの表面に、Ni等の金属粉末、前記有機バインダ、および溶剤を混合してなる導電性ペーストを所定パターンでスクリーン印刷して、乾燥することで内部電極パターンを形成する(s3)。なお、導電性ペーストの塗工方法は、スクリーン印刷に限らず、蒸着法やメッキ法等を用いてもよい。
【0024】
このように内部電極パターンが形成されたセラミックグリーンシートを、積層方向に隣り合う内部電極パターン同士がセラミックグリーンシートを介して所定面積で重なり合うように、内部電極パターンの位置をずらしながら、所定枚数積層する。さらに、その上下層に所定枚数、内部電極パターンが形成されていないセラミックグリーンシートを積層して、セラミック積層体を形成する(s4)。
【0025】
次に、このセラミック積層体を弾性体シートで挟み込み、さらに剛体板で挟み込んで、所定温度に加熱しながら剛体板により積層方向に加圧することで、セラミック積層体の加熱プレスを行う(s5)。
【0026】
次に、この加熱プレスされたグリーンシート積層体を、それぞれが積層セラミックコンデンサとなる大きさに切り分けて複数の素体を得る(s6)。
【0027】
そして、これら素体を匣等に積載して焼成炉に投入する。焼成炉内は所定の雰囲気に設定されており、まず所定の酸素濃度を有するN雰囲気中で約350℃まで昇温して素体を加熱し、素体に含まれる有機バインダを燃焼させ、飛散させた後、還元性雰囲気中で約1000℃〜1100℃の所定温度で焼成を行うことで素体を焼結し、セラミック焼結体を得る(s7)。
【0028】
このセラミック焼結体の内部電極が露出した対向する両端面に、Cu等の金属粉末と、B−LiO−SiO−BaO系等のガラスフリットとを含有する導電性ペーストを浸漬法等を用いて塗布し、N雰囲気中で所定温度で焼結させて、外部電極を形成する(s8→s9)。
【0029】
そして、外部電極の表面には、必要に応じ、Ni、Cu、Ni−Cu合金等からなる下地メッキを施し(s10)、さらに、このメッキの表面にSnまたはSn−Pbからなる半田メッキを施す(s11)。
【0030】
なお、前述の製造方法では、素体の焼結と外部電極の焼結とを別工程で行ったが、素体の焼結を行わない状態で外部電極用の導電性ペーストを塗布し、素体と外部電極とを同時に焼結してもよい。
【0031】
次に、セラミックグリーンシートにおける樹脂の含有量が積層セラミックコンデンサの構造欠陥および信頼性に及ぼす影響について実験した結果を以下に示す。ここで、サンプルとなる積層セラミックコンデンサは、樹脂の含有率を複数種類異ならせて作製したセラミックスラリーを用い、上述の製造方法で作製した。なお、樹脂の含有率は、重量%(w)にして、8重量%〜18重量%とし、それぞれセラミック層の厚みが1.5μm、2.0μm、3.0μm、4.0μm、5.0μmの積層セラミックコンデンサを作製した。
【0032】
このように作製されたサンプルについて、積層不良、短絡不良、クラック不良、高温負荷寿命について観測した。
ここで、積層不良では、グリーンシート積層体形成時に、重なり合うセラミックグリーンシート同士が接合しているかどうかを観察し、接合していないものをN.G.とした。また、短絡不良では、温度が25℃の雰囲気中において、実効電圧が1Vで周波数が1kHzの交流電圧をサンプルに印加して短絡しているかどうかを測定した。また、クラック不良では、サンプルの側壁を実体顕微鏡で観察し、層間剥離(ハガレ)の有無を確認した。
また、高温負荷寿命試験では、サンプルを抵抗値が10kΩの保護抵抗に直列に接続し、温度が150℃の雰囲気中で直流電圧12kV/mmの電圧を印加し続け、絶縁抵抗値が20kΩ以下となった時点で故障と判断した。この故障時間を試験を行った全てのサンプルについて測定し、その平均時間を高温負荷寿命とした。
この結果を表1に示す。
【0033】
【表1】

Figure 2004289090
【0034】
表1に示すように、セラミック層の厚みが2μm未満(1.0μm)の場合には、樹脂の含有率を多くすることで、短絡不良が低下し、高温負荷寿命が向上する。これは、バインダ量を増加することによりセラミックグリーンシートの流動性を低くし、加熱プレス時における内部電極の対向部の境界部でのセラミックグリーンシートの流動を防ぎ、セラミック層が極端に薄くなることを抑制するからである。また、樹脂が増加することでクラック不良の発生も抑制される。これは、セラミックグリーンシート同士の接着性に影響を与える樹脂が多く含まれていることにより、セラミック層が薄くても、隣り合うセラミック層同士で十分に接合するからである。このように、樹脂の含有率を13.5重量%以上とすることで、短絡不良、およびクラック不良を抑制し、高温負荷寿命が向上する。
【0035】
一方、樹脂の含有率を18重量%以上にすると積層不良が発生する。これは、セラミックグリーンシートに含有される樹脂量が多いため、加熱プレス時の熱によるセラミックグリーンシートの熱収縮が大きく、変形して重なり合うセラミックグリーンシート同士で接合しにくくなるためである。
【0036】
このように、セラミック層の厚みが1μm以上2μm未満の場合、樹脂の含有率を13.5重量%以上、18重量%未満とすることで、信頼性に優れた積層セラミックコンデンサを製造することができる。
【0037】
同様に、セラミック層の厚みが約2μmの場合についても、樹脂の含有率を13.5重量%以上にすればよい。
しかし、セラミック層の厚みが約2μmの場合には、樹脂の含有率が16.5重量%以上になると、クラック不良が発生する。これは、セラミック層の厚みが大きくなることにより、含有される樹脂量に対して、主となる飛散経路である内部電極との界面の割合が低くなってしまい、樹脂成分が飛散しきれず、セラミック焼結体内に残り、界面剥離等を生じるためである。この現象は、セラミック層の厚みが厚くなり、内部電極との界面が少なくなるほど発生しやすくなる。
このように、セラミック層の厚みが約2μmの場合、樹脂の含有率を13.5重量%以上、16.5重量%未満とすることで、信頼性に優れた積層セラミックコンデンサを製造することができる。
【0038】
次に、セラミック層の厚みが約3μmに場合においては樹脂量が9.8重量%未満になると短絡不良が増加してしまい、樹脂量が12.8重量%以上になるとクラック不良が発生してしまう。
このように、セラミック層の厚みが約3μmの場合、樹脂の含有率を9.8重量%以上、12.8重量%未満とすることで、信頼性に優れた積層セラミックコンデンサを製造することができる。
【0039】
同様に、セラミック層の厚みが約4μmに場合においては樹脂量が8.5重量%未満になると短絡不良が増加してしまい、樹脂量が11.5重量%以上になるとクラック不良が発生してしまう。
このように、セラミック層の厚みが約4μmの場合、樹脂の含有率を8.5重量%以上、11.5重量%未満とすることで、信頼性に優れた積層セラミックコンデンサを製造することができる。
【0040】
また、セラミック層の厚みが約5μmに場合においては樹脂量が7.8重量%未満になると短絡不良が増加してしまい、樹脂量が10.8重量%以上になるとクラック不良が発生してしまう。
このように、セラミック層の厚みが約5μmの場合、樹脂の含有率を7.8重量%以上、10.8重量%未満とすることで、信頼性に優れた積層セラミックコンデンサを製造することができる。
【0041】
以上のように、セラミック層の厚みに応じて、セラミックグリーンシートにおける樹脂量すなわち有機バインダおよび可塑剤の量を調整することにより、信頼性に優れた積層セラミックコンデンサを製造することができる。
【0042】
なお、上述の実施形態では、有機バインダとして、重合度1000のPVB樹脂を用いたが、それぞれ異なる重合度を有する複数の樹脂を混合して、平均重合度が約1000となるようにした混合樹脂を用いてもよい。
【0043】
また、上述の実施形態では、積層セラミックコンデンサを例に説明したが、セラミック層を積層してなる他の積層セラミック電子部品についても上述の効果を適用することができる。
【0044】
【発明の効果】
この発明によれば、セラミック層の厚みに応じて、セラミックグリーンシートにおける樹脂量すなわち有機バインダおよび可塑剤の量を調整することにより、短絡不良やクラック不良等の構造欠陥の発生を抑制することができる。また、高温負荷寿命を向上することができる。特に、セラミック層の厚みが1μm〜5μm程度の薄膜多層の積層セラミックコンデンサにおいては、構造欠陥の抑制および高温負荷寿命の向上に大きな効果を得ることができる。これにより、信頼性に優れた薄膜多層の積層セラミックコンデンサを製造することができる。
【図面の簡単な説明】
【図1】本実施形態に係る積層セラミックコンデンサの製造工程を示すフローチャート
【図2】積層セラミックコンデンサの構造を示す断面図
【図3】セラミック層の厚みによる高温負荷寿命の変化を示す図
【符号の説明】
1−セラミック焼結体
2−セラミック層
3a,3b−内部電極
4a,4b−外部電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer ceramic electronic component such as a multilayer ceramic capacitor, and more particularly to a method for manufacturing a ceramic green sheet which is fired to be a ceramic layer of the multilayer ceramic electronic component.
[0002]
[Prior art]
The structure of a multilayer ceramic capacitor, which is a multilayer ceramic electronic component, will be described with reference to the drawings.
[0003]
FIG. 2 is a sectional view showing the structure of the multilayer ceramic capacitor.
As shown in FIG. 2, the multilayer ceramic capacitor includes a ceramic sintered body 1 in which a plurality of internal electrodes 3 a and 3 b and a plurality of ceramic layers 2 are alternately laminated, and two end portions of the ceramic sintered body 1. It comprises external electrodes 4a and 4b provided to be connected to the internal electrodes 3a and 3b, respectively. Here, the internal electrodes 3a and 3b are stacked so as to face each other with a predetermined area via the ceramic layer 2.
[0004]
Such a multilayer ceramic capacitor is manufactured by the following method.
First, a ceramic powder mainly composed of BaTiO 3 or the like and a solvent are mixed and pulverized, and then, an organic binder such as polybutylvinylal (hereinafter simply referred to as “PVB”), a plasticizer, and a solvent are mixed. Are mixed to produce a ceramic slurry. Then, the ceramic slurry is applied to a predetermined thickness and dried to form a ceramic green sheet.
[0005]
Next, an internal electrode pattern is formed on the surface of the ceramic green sheet, and a predetermined number of ceramic green sheets are laminated so that internal electrode patterns adjacent in the laminating direction overlap with a predetermined area. A ceramic laminate is formed by laminating ceramic green sheets on which no pattern is formed and hot pressing. This ceramic laminated body is cut into element bodies each having a size to be a laminated ceramic capacitor, and these element bodies are fired in a firing furnace to obtain a ceramic sintered body. An external electrode paste is applied to both ends of the ceramic sintered body so as to be connected to the internal electrodes, and sintered to form external electrodes, thereby obtaining a multilayer ceramic capacitor.
[0006]
In such a conventional multilayer ceramic capacitor, particularly in a multilayer ceramic capacitor having a ceramic layer thickness of about 10 μm, the content of the organic binder contained in the ceramic green sheet was about 3% by weight. This is because, when the content of the organic binder is large, the organic binder is difficult to escape from the ceramic sintered body during firing and voids are generated inside, and furthermore, the interface with the internal electrode when the organic binder escapes. This is because the gas of the organic binder escapes from the substrate, and if the amount is large, the possibility of occurrence of interfacial separation is large. In addition, when the content of the organic binder is small, the fluidity of the ceramic green sheet increases, and the ceramic green sheet is easily formed at the time of hot pressing. That is, the ceramic layers can be easily joined to each other in the non-opposite portion of the internal electrode where only one internal electrode pattern is laminated, together with the facing portions where the internal electrode patterns face each other in each layer of the ceramic laminate, and the joining strength is increased. Can be.
[0007]
However, in recent years, multilayer ceramic capacitors have tended to be multilayered and thinned, and many ceramic layers having a ceramic layer thickness of 5 μm or less have been manufactured. Being manufactured.
[0008]
However, as the film becomes thinner in this way, as shown in FIG. 3, there arises a problem of reduced reliability such as a shorter high-temperature load life.
[0009]
FIG. 3 is a diagram showing a change in the high temperature load life depending on the thickness of the ceramic layer.
[0010]
As a method of manufacturing a ceramic electronic component that solves this problem, a method of dispersing a ceramic powder and a solvent under high pressure during the production of a ceramic slurry to homogenize the ceramic slurry and form a stable ceramic green sheet even in a thin film. (For example, see Patent Document 1).
[0011]
[Patent Document 1]
JP-A-11-99514
[Problems to be solved by the invention]
Even in the method for manufacturing a multilayer ceramic capacitor as described above, the ceramic green sheets flow from the facing portion toward the non-facing portion during the hot pressing of the ceramic laminate. For this reason, the thickness of the ceramic green sheet is further reduced at the boundary between the facing portion and the non-facing portion, and the tip of the internal electrode is deformed so as to approach the vicinity of the boundary of the internal electrode adjacent to the internal electrode in the laminating direction. Resulting in. When a multilayer ceramic capacitor is formed using a ceramic sintered body obtained by firing this ceramic laminate, a short circuit is likely to occur at the boundary, and the occurrence rate of short circuit failure increases.
[0013]
In order to suppress the inflow of the above-mentioned ceramic green sheet, the fluidity of the ceramic green sheet may be suppressed to a low level by using an organic binder having a high degree of polymerization. However, by increasing the degree of polymerization, conversely, the ceramic green sheets are not deformed by the heating press at the non-opposite part of the ceramic laminate, the bonding strength between the overlapping ceramic green sheets is reduced, and delamination occurs. there's a possibility that.
[0014]
An object of the present invention is to suppress the occurrence of structural defects such as delamination and short-circuit, and to produce a highly reliable thin-film multilayer ceramic electronic component.
[0015]
[Means for Solving the Problems]
The present invention provides a step of forming a ceramic slurry obtained by mixing a ceramic powder, a resin containing an organic binder and a plasticizer, and a solvent into a ceramic green sheet having a uniform thickness, and forming an internal electrode paste on the surface of the ceramic green sheet. A ceramic sintered body in which ceramic layers and internal electrodes are alternately laminated by printing and laminating a predetermined number of sheets to form a ceramic laminate, and cutting and firing the ceramic laminate into a predetermined shape. And a step of forming an external electrode connected to the internal electrode on the ceramic sintered body, the method comprising the steps of: The ceramic green sheet is formed by setting the content of the resin as follows.
Here, assuming that the thickness of the ceramic layer is d and the content (% by weight) is w,
(1) If 1 μm ≦ d <2 μm, 13.5% ≦ w <18.0%,
(2) If d ≒ 2 μm, 13.5% ≦ w <16.5%,
(3) If d ≒ 3 μm, 9.8% ≦ w <12.8%,
(4) If d ≒ 4 μm, 8.5% ≦ w <11.5%,
(5) If d ≒ 5 μm, 7.8% ≦ w <10.8%.
[0016]
In this configuration, the content of the resin containing the organic binder varies according to the thickness of the ceramic layer to be formed. Get joint strength. Further, the fluidity of the ceramic is appropriately suppressed, and the thickness of the ceramic layer is secured at the boundary between the internal electrode facing portion and the non-facing portion, thereby suppressing the occurrence of a short circuit.
[0017]
Further, even if the content of the resin containing the organic binder is higher than that of the conventional product as described above, the multilayer ceramic electronic component is a thin film multilayer, so that the interface between the ceramic layer and the internal electrode is increased by the number of layers. In addition, the binder easily escapes from the ceramic sintered body, thereby suppressing the generation of voids and the occurrence of interface separation in the ceramic sintered body.
[0018]
Further, it is preferable that the average degree of polymerization be 1000 or less by mixing a binder having a degree of polymerization of 1000 or less as a binder or a binder having a different degree of polymerization.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
A method for manufacturing a multilayer ceramic electronic component according to the present embodiment will be described with reference to the drawings. In the present embodiment, a multilayer ceramic capacitor will be described as an example of a multilayer ceramic electronic component.
FIG. 1 is a flowchart showing a manufacturing process of the multilayer ceramic capacitor according to the present embodiment.
First, a ceramic powder mainly composed of BaTiO 3 and a solvent were mixed and pulverized, and further, an organic binder composed of PVB having a degree of polymerization of about 1000 and a plasticizer composed of dioctyl phthalate were mixed at a predetermined ratio. A resin and a solvent are mixed to prepare a ceramic slurry (s1).
[0020]
Next, the ceramic slurry is applied to the surface of the support film with a uniform thickness by using a doctor blade method or the like, and dried to form a ceramic green sheet (s2).
[0021]
Here, the content (% by weight) of the resin (mixture of an organic binder and a plasticizer) in the ceramic green sheet is determined as follows according to the thickness of the ceramic layer in a state of being a ceramic sintered body later. Set.
[0022]
Here, assuming that the thickness of the ceramic layer is d and the content (% by weight) is w,
(1) If 1 μm ≦ d <2 μm, 13.5% ≦ w <18.0%,
(2) If d ≒ 2 μm, 13.5% ≦ w <16.5%,
(3) If d ≒ 3 μm, 9.8% ≦ w <12.8%,
(4) If d ≒ 4 μm, 8.5% ≦ w <11.5%,
(5) If d ≒ 5 μm, 7.8% ≦ w <10.8%.
[0023]
Next, on the surface of the ceramic green sheet, a conductive paste formed by mixing a metal powder such as Ni, the organic binder, and a solvent is screen-printed in a predetermined pattern and dried to form an internal electrode pattern. (S3). The method for applying the conductive paste is not limited to screen printing, but may be an evaporation method, a plating method, or the like.
[0024]
A predetermined number of ceramic green sheets on which the internal electrode patterns are formed are stacked while shifting the positions of the internal electrode patterns so that the internal electrode patterns adjacent in the laminating direction overlap with a predetermined area via the ceramic green sheets. I do. Further, a predetermined number of ceramic green sheets on which the internal electrode patterns are not formed are laminated on the upper and lower layers to form a ceramic laminate (s4).
[0025]
Next, the ceramic laminate is sandwiched by elastic sheets, further sandwiched by rigid plates, and pressed in the laminating direction by the rigid plates while being heated to a predetermined temperature, whereby the ceramic laminate is heated and pressed (s5).
[0026]
Next, the hot-pressed green sheet laminate is cut into pieces each having a size of a multilayer ceramic capacitor to obtain a plurality of element bodies (s6).
[0027]
Then, these element bodies are loaded on a box or the like and are put into a firing furnace. The inside of the firing furnace is set to a predetermined atmosphere. First, the temperature is raised to about 350 ° C. in an N 2 atmosphere having a predetermined oxygen concentration to heat the element, and the organic binder contained in the element is burned. After being scattered, the element is sintered by performing firing at a predetermined temperature of about 1000 ° C. to 1100 ° C. in a reducing atmosphere to obtain a ceramic sintered body (s7).
[0028]
A conductive paste containing a metal powder such as Cu and a glass frit such as a B 2 O 3 —Li 2 O—SiO 2 —BaO system is applied to the opposite end surfaces of the ceramic sintered body where the internal electrodes are exposed. An external electrode is formed by sintering at a predetermined temperature in an N 2 atmosphere by applying by using an immersion method or the like (s8 → s9).
[0029]
Then, on the surface of the external electrode, if necessary, a base plating made of Ni, Cu, Ni-Cu alloy or the like is applied (s10), and further, a solder plating made of Sn or Sn-Pb is applied to the surface of the plating. (S11).
[0030]
In the above-described manufacturing method, the sintering of the element body and the sintering of the external electrode were performed in separate steps, but the conductive paste for the external electrode was applied without sintering the element body, and The body and the external electrode may be sintered simultaneously.
[0031]
Next, the results of experiments on the effect of the resin content in the ceramic green sheet on the structural defects and reliability of the multilayer ceramic capacitor are shown below. Here, the multilayer ceramic capacitor serving as a sample was manufactured by the above-described manufacturing method using ceramic slurries manufactured by changing a plurality of types of resin contents. The content of the resin is 8% by weight to 18% by weight in terms of weight% (w), and the thickness of the ceramic layer is 1.5 μm, 2.0 μm, 3.0 μm, 4.0 μm, 5.0 μm, respectively. Was manufactured.
[0032]
With respect to the sample thus manufactured, lamination failure, short-circuit failure, crack failure, and high-temperature load life were observed.
Here, in the case of lamination failure, it is observed whether or not the overlapping ceramic green sheets are joined at the time of forming the green sheet laminate. G. FIG. And In the case of short-circuit failure, an AC voltage having an effective voltage of 1 V and a frequency of 1 kHz was applied to the sample in an atmosphere at a temperature of 25 ° C. to determine whether or not the sample was short-circuited. In the case of crack failure, the side wall of the sample was observed with a stereoscopic microscope, and the presence or absence of delamination (scraping) was confirmed.
In the high temperature load life test, the sample was connected in series to a protective resistor having a resistance value of 10 kΩ, and a DC voltage of 12 kV / mm was continuously applied in an atmosphere at a temperature of 150 ° C., and the insulation resistance value was reduced to 20 kΩ or less. At that point, it was determined to have failed. This failure time was measured for all the tested samples, and the average time was taken as the high temperature load life.
Table 1 shows the results.
[0033]
[Table 1]
Figure 2004289090
[0034]
As shown in Table 1, when the thickness of the ceramic layer is less than 2 μm (1.0 μm), by increasing the content of the resin, short-circuit failure is reduced and the high-temperature load life is improved. This means that by increasing the amount of binder, the fluidity of the ceramic green sheet is lowered, the flow of the ceramic green sheet at the boundary between the facing portions of the internal electrodes during hot pressing is prevented, and the ceramic layer becomes extremely thin. It is because it suppresses. In addition, the increase in the amount of resin also suppresses occurrence of crack failure. This is because, since a large amount of resin affecting the adhesion between the ceramic green sheets is contained, even if the ceramic layers are thin, the adjacent ceramic layers are sufficiently bonded. As described above, by setting the content of the resin to 13.5% by weight or more, short-circuit failure and crack failure are suppressed, and the high-temperature load life is improved.
[0035]
On the other hand, when the content of the resin is 18% by weight or more, lamination failure occurs. This is because the amount of resin contained in the ceramic green sheets is large, so that the heat shrinkage of the ceramic green sheets due to heat during hot pressing is large, and it is difficult for the ceramic green sheets that are deformed and overlapped to be joined to each other.
[0036]
As described above, when the thickness of the ceramic layer is 1 μm or more and less than 2 μm, by setting the content of the resin to 13.5% by weight or more and less than 18% by weight, a multilayer ceramic capacitor having excellent reliability can be manufactured. it can.
[0037]
Similarly, when the thickness of the ceramic layer is about 2 μm, the content of the resin may be set to 13.5% by weight or more.
However, when the thickness of the ceramic layer is about 2 μm, crack failure occurs when the resin content is 16.5% by weight or more. This is because, by increasing the thickness of the ceramic layer, the ratio of the interface with the internal electrode, which is the main scattering path, is reduced with respect to the amount of the contained resin, and the resin component cannot be scattered completely. This is because they remain in the sintered body and cause interfacial separation and the like. This phenomenon is more likely to occur as the thickness of the ceramic layer increases and the interface with the internal electrode decreases.
As described above, when the thickness of the ceramic layer is about 2 μm, by setting the resin content to 13.5% by weight or more and less than 16.5% by weight, a multilayer ceramic capacitor having excellent reliability can be manufactured. it can.
[0038]
Next, when the thickness of the ceramic layer is about 3 μm, short-circuit failure increases when the amount of resin is less than 9.8% by weight, and crack failure occurs when the amount of resin is 12.8% by weight or more. I will.
As described above, when the thickness of the ceramic layer is about 3 μm, by setting the content of the resin to 9.8% by weight or more and less than 12.8% by weight, a multilayer ceramic capacitor having excellent reliability can be manufactured. it can.
[0039]
Similarly, when the thickness of the ceramic layer is about 4 μm, short-circuit failure increases when the amount of resin is less than 8.5% by weight, and crack failure occurs when the amount of resin is 11.5% by weight or more. I will.
As described above, when the thickness of the ceramic layer is about 4 μm, by setting the content of the resin to 8.5% by weight or more and less than 11.5% by weight, a multilayer ceramic capacitor having excellent reliability can be manufactured. it can.
[0040]
When the thickness of the ceramic layer is about 5 μm, short-circuit failure increases when the resin amount is less than 7.8% by weight, and crack failure occurs when the resin amount is 10.8% by weight or more. .
As described above, when the thickness of the ceramic layer is about 5 μm, by setting the resin content to 7.8% by weight or more and less than 10.8% by weight, a multilayer ceramic capacitor having excellent reliability can be manufactured. it can.
[0041]
As described above, by adjusting the amount of the resin in the ceramic green sheet, that is, the amounts of the organic binder and the plasticizer in accordance with the thickness of the ceramic layer, a multilayer ceramic capacitor having excellent reliability can be manufactured.
[0042]
In the above embodiment, a PVB resin having a degree of polymerization of 1000 was used as the organic binder. However, a mixed resin in which a plurality of resins having different degrees of polymerization were mixed so that the average degree of polymerization was about 1000 was used. May be used.
[0043]
Further, in the above embodiment, the multilayer ceramic capacitor has been described as an example, but the above-described effects can be applied to other multilayer ceramic electronic components formed by laminating ceramic layers.
[0044]
【The invention's effect】
According to the present invention, by adjusting the amount of the resin in the ceramic green sheet, that is, the amounts of the organic binder and the plasticizer, in accordance with the thickness of the ceramic layer, it is possible to suppress the occurrence of a structural defect such as a short circuit defect or a crack defect. it can. Further, the high temperature load life can be improved. In particular, in the case of a multilayer ceramic capacitor of a thin film multilayer having a ceramic layer thickness of about 1 μm to 5 μm, a great effect can be obtained in suppressing structural defects and improving the high temperature load life. This makes it possible to manufacture a thin-film multilayer ceramic capacitor having excellent reliability.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a manufacturing process of the multilayer ceramic capacitor according to the embodiment; FIG. 2 is a cross-sectional view showing a structure of the multilayer ceramic capacitor; FIG. Description]
1—ceramic sintered body 2—ceramic layers 3a, 3b—internal electrodes 4a, 4b—external electrodes

Claims (2)

セラミック粉末と、有機バインダおよび可塑剤を含む樹脂と、溶剤とを混合してなるセラミックスラリーを均一な厚みのセラミックグリーンシートに形成する工程と、該セラミックグリーンシート表面に内部電極パターンを印刷し、所定枚数積層してセラミック積層体を形成する工程と、該セラミック積層体を所定形状に切断して、焼成することで、セラミック層と内部電極とが交互に積層するセラミック焼結体を形成する工程とを含む積層セラミック電子部品の製造方法であって、
前記セラミック層の厚みが1μm以上2μm未満である場合に、前記セラミックグリーンシートに含まれる前記樹脂の重量%(w)が、13.5%≦w<18.0%であり、
前記セラミック層の厚みが略2μmである場合に、前記セラミックグリーンシートに含まれる前記樹脂の重量%(w)が、13.5%≦w<16.5%であり、
前記セラミック層の厚みが略3μmである場合に、前記セラミックグリーンシートに含まれる前記樹脂の重量%(w)が、9.8%≦w<12.8%であり、
前記セラミック層の厚みが略4μmである場合に、前記セラミックグリーンシートに含まれる前記樹脂の重量%(w)が、8.5%≦w<11.5%であり、
前記セラミック層の厚みが略5μmである場合に、前記セラミックグリーンシートに含まれる前記樹脂の重量%(w)が、7.8%≦w<10.8%であることを特徴とする積層セラミック電子部品の製造方法。
Ceramic powder, a resin containing an organic binder and a plasticizer, and a step of forming a ceramic slurry formed by mixing a solvent into a ceramic green sheet having a uniform thickness, and printing an internal electrode pattern on the surface of the ceramic green sheet, A step of forming a ceramic laminate by laminating a predetermined number of pieces, and a step of forming a ceramic sintered body in which ceramic layers and internal electrodes are alternately laminated by cutting and firing the ceramic laminate into a predetermined shape. A method for manufacturing a multilayer ceramic electronic component comprising:
When the thickness of the ceramic layer is 1 μm or more and less than 2 μm, the weight% (w) of the resin contained in the ceramic green sheet is 13.5% ≦ w <18.0%,
When the thickness of the ceramic layer is approximately 2 μm, the weight% (w) of the resin contained in the ceramic green sheet is 13.5% ≦ w <16.5%,
When the thickness of the ceramic layer is approximately 3 μm, the weight% (w) of the resin contained in the ceramic green sheet is 9.8% ≦ w <12.8%,
When the thickness of the ceramic layer is approximately 4 μm, the weight% (w) of the resin contained in the ceramic green sheet is 8.5% ≦ w <11.5%,
When the thickness of the ceramic layer is approximately 5 μm, the weight percent (w) of the resin contained in the ceramic green sheet satisfies 7.8% ≦ w <10.8%. Manufacturing method of electronic components.
前記バインダは、重合度が約1000以下のバインダ、または、重合度の異なるバインダを混合して平均重合度を1000以下にしたバインダであることを特徴とする請求項1に記載の積層セラミック電子部品の製造方法。The multilayer ceramic electronic component according to claim 1, wherein the binder is a binder having a degree of polymerization of about 1000 or less, or a binder having a mean degree of polymerization of 1000 or less by mixing binders having different degrees of polymerization. Manufacturing method.
JP2003082530A 2003-03-25 2003-03-25 Manufacturing method of multilayer ceramic electronic component Expired - Fee Related JP4186667B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003082530A JP4186667B2 (en) 2003-03-25 2003-03-25 Manufacturing method of multilayer ceramic electronic component
TW093102792A TWI236686B (en) 2003-03-25 2004-02-06 Method for manufacturing multilayer ceramic electronic component
CNB2004100077423A CN100373509C (en) 2003-03-25 2004-03-05 Method for producing laminated ceramic electronic part
KR1020040019667A KR20040084724A (en) 2003-03-25 2004-03-23 Method for manufacturing multilayer ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082530A JP4186667B2 (en) 2003-03-25 2003-03-25 Manufacturing method of multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2004289090A true JP2004289090A (en) 2004-10-14
JP4186667B2 JP4186667B2 (en) 2008-11-26

Family

ID=33295805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082530A Expired - Fee Related JP4186667B2 (en) 2003-03-25 2003-03-25 Manufacturing method of multilayer ceramic electronic component

Country Status (4)

Country Link
JP (1) JP4186667B2 (en)
KR (1) KR20040084724A (en)
CN (1) CN100373509C (en)
TW (1) TWI236686B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562141B (en) * 2008-04-16 2012-02-01 株式会社村田制作所 Method and apparatus for manufacturing electronic device
JP2012028456A (en) * 2010-07-21 2012-02-09 Murata Mfg Co Ltd Method of manufacturing ceramic electronic component, ceramic electronic component and wiring board
JP2013070024A (en) * 2011-09-05 2013-04-18 Murata Mfg Co Ltd Method for manufacturing laminated ceramic electronic component

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738652B1 (en) * 2005-09-02 2007-07-11 한국과학기술원 Method for fabricating embedded capacitor
KR100978654B1 (en) * 2008-04-28 2010-08-30 삼성전기주식회사 Pressing jig for ceramic lamination and manufacturing method for multi-layer ceramic substrate
CN105225835B (en) * 2014-07-04 2018-06-22 上海金沛电子有限公司 A kind of preparation method of crystal silicon chip capacitor
CN113507805B (en) * 2021-07-07 2023-01-10 Oppo广东移动通信有限公司 Shell, preparation method thereof and electronic equipment
CN115974535A (en) * 2022-12-30 2023-04-18 河北中瓷电子科技股份有限公司 Tape casting slurry, raw porcelain tape material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998639B2 (en) * 1996-06-20 2000-01-11 株式会社村田製作所 Multilayer ceramic capacitors
JP2001307947A (en) * 2000-04-25 2001-11-02 Tdk Corp Laminated chip component and its manufacturing method
TW592963B (en) * 2000-12-27 2004-06-21 Murata Manufacturing Co Ceramic slurry composition, ceramic green sheet and multilayer ceramic electronic part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562141B (en) * 2008-04-16 2012-02-01 株式会社村田制作所 Method and apparatus for manufacturing electronic device
JP2012028456A (en) * 2010-07-21 2012-02-09 Murata Mfg Co Ltd Method of manufacturing ceramic electronic component, ceramic electronic component and wiring board
US9007161B2 (en) 2010-07-21 2015-04-14 Murata Manufacturing Co. Ltd. Method of manufacturing ceramic electronic component, ceramic electronic component, and wiring board
JP2013070024A (en) * 2011-09-05 2013-04-18 Murata Mfg Co Ltd Method for manufacturing laminated ceramic electronic component

Also Published As

Publication number Publication date
CN1532858A (en) 2004-09-29
KR20040084724A (en) 2004-10-06
TWI236686B (en) 2005-07-21
CN100373509C (en) 2008-03-05
TW200503012A (en) 2005-01-16
JP4186667B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
KR101843190B1 (en) Ceramic electronic component and method for manufacturing the same
JP5271377B2 (en) Multilayer ceramic capacitor
TWI326090B (en)
CN103050278B (en) Multilayer ceramic capacitor and preparation method thereof
JP5012899B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP6402829B2 (en) Multilayer ceramic substrate and method for manufacturing multilayer ceramic substrate
JP2006210590A (en) Laminated ceramic capacitor and its manufacturing method
JP4998222B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4186667B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3514117B2 (en) Multilayer ceramic electronic component, method of manufacturing multilayer ceramic electronic component, and conductive paste for forming internal electrode
JPH10172855A (en) Laminated layer chip parts and conductive paste used for the parts
JPH09106925A (en) Method of manufacturing layered ceramic capacitor
JPH10335168A (en) Laminated ceramic capacitor
JP2002343674A (en) Manufacturing method of laminated ceramic capacitor
JPH11354370A (en) Layered ceramic electronic parts
JP2009266716A (en) Conductive paste, and manufacturing method of laminated ceramic capacitor
JP3939281B2 (en) Electrode paste and method for manufacturing ceramic electronic component using the same
JP2005303029A (en) Method of manufacturing laminated ceramic electronic part
JP3849446B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4696410B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH11273995A (en) Laminated ceramic electronic part and its manufacture
JP3142013B2 (en) Multilayer electronic components
JP2004259897A (en) Layered ceramic capacitor and method of manufacturing the same
JPH08181032A (en) Laminated ceramic capacitor
JPH11340082A (en) Multilayer chip component and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4186667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees