JP2009266716A - Conductive paste, and manufacturing method of laminated ceramic capacitor - Google Patents

Conductive paste, and manufacturing method of laminated ceramic capacitor Download PDF

Info

Publication number
JP2009266716A
JP2009266716A JP2008116812A JP2008116812A JP2009266716A JP 2009266716 A JP2009266716 A JP 2009266716A JP 2008116812 A JP2008116812 A JP 2008116812A JP 2008116812 A JP2008116812 A JP 2008116812A JP 2009266716 A JP2009266716 A JP 2009266716A
Authority
JP
Japan
Prior art keywords
conductive paste
powder
internal electrode
ceramic
nickel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008116812A
Other languages
Japanese (ja)
Inventor
Masafumi Nakayama
雅文 中山
Kazuhiro Miura
和裕 三浦
Masaru Matsumura
優 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008116812A priority Critical patent/JP2009266716A/en
Publication of JP2009266716A publication Critical patent/JP2009266716A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive paste capable of preventing drop of capacitance by internal electrode breakage, and hardly causing a short failure; and a manufacturing method of a laminated ceramic capacitor. <P>SOLUTION: In this conductive paste, nickel powder 21 is coated with ceramic powder 22 adhering to surfaces of particles thereof, and its coverage factor is ≥50%; the internal electrode breakage can be thereby prevented even when it is formed into a thin layer by a sintering delay effect of the nickel powder by the ceramic powder; and a thin, flat and continuous internal electrode can be formed. This manufacturing method of a laminated ceramic capacitor using the conductive paste can manufacture, with a high yield, the laminated ceramic capacitor that can prevent drop of capacitance by the internal electrode breakage even when the internal electrode and a dielectric layer are each formed into the thin layer, is large in obtained capacitance and hardly causes a short failure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば積層セラミックコンデンサに用いられる導電性ペースト、およびこれを用いた積層セラミックコンデンサの製造方法に関するものである。   The present invention relates to a conductive paste used for, for example, a multilayer ceramic capacitor, and a method for manufacturing a multilayer ceramic capacitor using the same.

近年、代表的な積層セラミック電子部品である積層セラミックコンデンサにおいては、その小型化かつ大容量化を目的として、内部電極、誘電体層の薄層化および高積層化が進んでいる。例えば、積層セラミックコンデンサにおいて、その内部電極、誘電体層の厚みは、ともに1.0μm以下程度のものが実用化されようとしている。   2. Description of the Related Art In recent years, multilayer ceramic capacitors, which are typical multilayer ceramic electronic components, have been made thinner and higher in internal electrodes and dielectric layers in order to reduce the size and increase the capacity. For example, in a multilayer ceramic capacitor, both internal electrodes and dielectric layers having a thickness of about 1.0 μm or less are being put to practical use.

積層セラミックコンデンサの薄層化および高積層化を図るためには、内部電極の薄層化も重要な課題である。内部電極の薄層化のためには、内部電極となる乾燥後の導電性ペースト膜の薄層化が必要である。しかしながら、導電性ペースト膜を薄層化した場合には、一般に内部電極となる導電性ペースト膜中の金属粉の方が誘電体セラミックシートに比べて焼結が早いため、焼成の際に、焼結時の収縮挙動差による構造欠陥の発生や、内部電極の焼結が進みすぎた場合には内部電極の連続性が低下し、いわゆる内部電極切れに伴う静電容量の低下などの不具合が発生する。   In order to reduce the thickness and increase the number of multilayer ceramic capacitors, it is an important issue to reduce the thickness of the internal electrodes. In order to reduce the thickness of the internal electrode, it is necessary to reduce the thickness of the conductive paste film after drying that becomes the internal electrode. However, when the conductive paste film is thinned, generally, the metal powder in the conductive paste film serving as the internal electrode is sintered faster than the dielectric ceramic sheet. Occurrence of structural defects due to differences in shrinkage behavior at the time of sintering, or if the internal electrode is sintered too much, the continuity of the internal electrode is reduced, causing problems such as a decrease in capacitance due to so-called internal electrode breakage. To do.

これらの不具合を防ぐため、導電性ペーストには、内部電極となる金属粉、例えばニッケル粉のほかに、共材と言われるセラミック材料を添加し、内部電極となるニッケル粉の焼結を遅らせる方法が採られている。共材として使用されるセラミック材料は、誘電体セラミックシートに含まれるセラミック粉末と同じ組成のもの、またはセラミック粉末の主成分の材料が用いられる。   In order to prevent these problems, a method of adding a ceramic material called a co-material to the conductive paste in addition to the metal powder that becomes the internal electrode, for example, nickel powder, and delaying the sintering of the nickel powder that becomes the internal electrode Has been adopted. As the ceramic material used as the co-material, a material having the same composition as the ceramic powder contained in the dielectric ceramic sheet or a material having the main component of the ceramic powder is used.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1および特許文献2が知られている。
特開2001−110233号公報 特開2000−277369号公報
For example, Patent Document 1 and Patent Document 2 are known as prior art document information related to the invention of this application.
JP 2001-110233 A JP 2000-277369 A

しかしながら、上記従来の方法においても、内部電極の厚みを1.0μm以下程度と薄層化するために、内部電極となる乾燥後の導電性ペースト膜を薄層化した場合には、導電性ペースト膜中の金属粉が少量であるため、内部電極となる金属粉の過焼結による内部電極切れが発生し易く、静電容量が低下しまたそのバラツキが大きく、所望の静電容量が得られないという課題がある。さらに、内部電極となる金属粉の過焼結により内部電極の厚みが局部的に厚くなることから、誘電体層を薄層化し、かつ積層数が多い積層セラミックコンデンサの場合には、誘電体層を内部電極が突き破りショート不良を発生しやすいという課題がある。   However, even in the above-described conventional method, in order to reduce the thickness of the internal electrode to about 1.0 μm or less, when the conductive paste film after drying that becomes the internal electrode is thinned, the conductive paste Since the amount of metal powder in the film is small, internal electrode breakage due to oversintering of the metal powder that becomes the internal electrode is likely to occur, the capacitance decreases and the variation becomes large, and the desired capacitance can be obtained. There is no problem. Furthermore, since the internal electrode is locally thickened by oversintering of the metal powder used as the internal electrode, the dielectric layer is reduced in the case of a multilayer ceramic capacitor with a thin dielectric layer and a large number of layers. There is a problem that the internal electrode breaks through and short-circuit defects are likely to occur.

本発明は、上記課題を解決するもので、内部電極および誘電体層を薄層化した場合でも、内部電極切れによる静電容量の低下が防止できショート不良が少ない導電性ペーストおよび積層セラミックコンデンサの製造方法を提供することを目的とするものである。   SUMMARY OF THE INVENTION The present invention solves the above-described problem. Even when the internal electrode and the dielectric layer are thinned, the capacitance of the internal paste and the multilayer ceramic capacitor can be prevented from decreasing due to the internal electrode shortage and the short-circuit failure is reduced. The object is to provide a manufacturing method.

上記目的を達成するため、本発明の導電性ペーストは、ニッケル粉末とセラミック粉末と有機バインダと溶剤とを含む導電性ペーストであって、前記ニッケル粉末は、粒子表面に付着した前記セラミック粉末により被覆され、その被覆率が50%以上である構成としたものである。   In order to achieve the above object, the conductive paste of the present invention is a conductive paste containing nickel powder, ceramic powder, an organic binder, and a solvent, and the nickel powder is coated with the ceramic powder adhered to the particle surface. The coverage is 50% or more.

また、本発明の積層セラミックコンデンサの製造方法は、誘電体セラミック粉末と有機バインダとを含む誘電体セラミックシートを作製する第1の工程と、導電性ペーストを用いて導電性ペースト膜を形成する第2の工程と、前記誘電体セラミックシートと前記導電性ペースト膜とを積層して積層体を作製する第3の工程と、前記積層体を焼成して焼結体を作製する第4の工程とを備える積層セラミックコンデンサの製造方法であって、前記導電性ペーストは、ニッケル粉末とセラミック粉末と有機バインダと溶剤とを含み、前記ニッケル粉末は、粒子表面に付着した前記セラミック粉末により被覆され、その被覆率が50%以上であるものを用いる構成としたものである。   The method for producing a multilayer ceramic capacitor according to the present invention includes a first step of producing a dielectric ceramic sheet containing a dielectric ceramic powder and an organic binder, and a step of forming a conductive paste film using a conductive paste. A third step of laminating the dielectric ceramic sheet and the conductive paste film to produce a laminate, and a fourth step of firing the laminate to produce a sintered body, The conductive paste includes nickel powder, ceramic powder, an organic binder, and a solvent, and the nickel powder is coated with the ceramic powder attached to the particle surface, It is set as the structure using what has a coverage of 50% or more.

本発明の導電性ペーストによれば、上記した構成により、焼成時において、セラミック粉末によるニッケル粉末の焼結遅延効果により、薄層化した場合でも内部電極切れを防止することができ、薄く平坦で連続した内部電極を形成することができる。   According to the conductive paste of the present invention, due to the above-described configuration, the internal electrode breakage can be prevented even when thinned due to the sintering delay effect of the nickel powder by the ceramic powder during firing. A continuous internal electrode can be formed.

また、本発明の積層セラミックコンデンサの製造方法によれば、上記した構成により、内部電極および誘電体層を薄層化した場合でも、内部電極切れによる静電容量の低下が防止でき、得られる静電容量も大きく、ショート不良が少ない。また、構造欠陥不良やサーマルクラックなどの発生がなく、高品質で信頼性の高い積層セラミックコンデンサを歩留まり良く製造することができる。   In addition, according to the method for manufacturing a multilayer ceramic capacitor of the present invention, even when the internal electrode and the dielectric layer are thinned, the electrostatic capacity can be prevented from being lowered due to the internal electrode being cut off, and the obtained static electricity can be obtained. Large electric capacity and few short circuit defects. In addition, it is possible to manufacture a high-quality and highly reliable multilayer ceramic capacitor with a high yield without occurrence of structural defects or thermal cracks.

(実施の形態)
以下、一実施の形態を用いて、本発明の導電性ペースト、およびこれを用いた積層セラミックコンデンサの製造方法について、詳細に説明する。
(Embodiment)
Hereinafter, a conductive paste of the present invention and a method for manufacturing a multilayer ceramic capacitor using the same will be described in detail using an embodiment.

まず、チタン酸バリウムを主成分とする誘電体セラミック粉末に、溶剤、有機バインダを加えて混合したスラリーをドクターブレード法などの方法により成形して厚さ2μmの誘電体セラミックシートを得る。   First, a dielectric ceramic sheet having a thickness of 2 μm is obtained by forming a slurry obtained by adding a solvent and an organic binder to a dielectric ceramic powder containing barium titanate as a main component and mixing them, by a method such as a doctor blade method.

一方、以下のようにして、本実施の形態における導電性ペーストを作製する。走査型電子顕微鏡観察による平均粒径が0.2μm、0.4μmおよび0.5μmの3種のニッケル粉末を準備し、これらのニッケル粉末のそれぞれに、溶剤と有機バインダを加え、混練してニッケルペーストを作製する。また、共材のセラミック粉末として、走査型電子顕微鏡観察による平均粒径が0.05μmおよび0.1μmの2種のチタン酸バリウム粉末を準備し、これらのチタン酸バリウム粉末のそれぞれを、有機溶剤中で均一に分散し、バインダを含むビヒクルを加えた後、混練して共材ペーストを作製する。次に、上記のニッケルペーストと共材ペーストとを種々組み合わせて、チタン酸バリウム粉末の重量がニッケル粉末の20%の重量になるように、ニッケルペーストに共材ペーストを添加し、3本ロールで混練し分散して、(表1)に示す試料番号1〜8の8種の導電性ペーストを得た。なお、試料番号1、3、4、6、7は、共材としてのチタン酸バリウムのセラミック粉末がニッケル粉末に付着して被覆する被覆率を高めるため、3本ロールでの分散を5回繰り返した。これに対して、比較例とする試料番号2、5、8は3本ロールでの分散を1回のみとした。   On the other hand, the conductive paste in the present embodiment is produced as follows. Three types of nickel powders having an average particle diameter of 0.2 μm, 0.4 μm, and 0.5 μm by observation with a scanning electron microscope are prepared, and a solvent and an organic binder are added to each of these nickel powders, and the mixture is kneaded to obtain nickel. Make a paste. In addition, two kinds of barium titanate powders having an average particle diameter of 0.05 μm and 0.1 μm by observation with a scanning electron microscope were prepared as the co-material ceramic powder, and each of these barium titanate powders was treated with an organic solvent. A vehicle paste that is uniformly dispersed therein and added with a vehicle containing a binder is then kneaded to produce a co-material paste. Next, various combinations of the above-mentioned nickel paste and co-material paste are added, and the co-material paste is added to the nickel paste so that the weight of the barium titanate powder is 20% of the weight of the nickel powder. By kneading and dispersing, eight types of conductive pastes of sample numbers 1 to 8 shown in (Table 1) were obtained. Sample Nos. 1, 3, 4, 6, and 7 repeat the dispersion with three rolls five times in order to increase the coverage of the barium titanate ceramic powder adhering to and covering the nickel powder. It was. In contrast, Sample Nos. 2, 5, and 8 used as comparative examples were dispersed only once with three rolls.

Figure 2009266716
Figure 2009266716

続いて、(表1)の試料番号1〜8の導電性ペーストそれぞれを用い、上記の誘電体セラミックシート上に、スクリーン印刷により所定のパターンで0.5mg/cm2のニッケル粉末の塗布量になるように印刷し、80℃で乾燥して、内部電極となる導電性ペースト膜を形成した誘電体セラミックシートを8種作製した。なお、所定のパターンの内部電極となる導電性ペースト膜の寸法、形状および配置は、後の工程で切断、分離した時、個片の積層セラミックコンデンサが得られるように設定した。また、ニッケル粉末の塗布量は、蛍光X線測定法により測定した。導電性ペースト膜の厚みは1.2〜1.3μmであった。 Subsequently, using each of the conductive pastes of Sample Nos. 1 to 8 in (Table 1), a coating amount of 0.5 mg / cm 2 of nickel powder was applied on the above dielectric ceramic sheet in a predetermined pattern by screen printing. Eight types of dielectric ceramic sheets on which a conductive paste film serving as an internal electrode was formed were printed. Note that the size, shape, and arrangement of the conductive paste film serving as the internal electrode of the predetermined pattern were set so that an individual monolithic ceramic capacitor could be obtained when cut and separated in a later step. The amount of nickel powder applied was measured by a fluorescent X-ray measurement method. The thickness of the conductive paste film was 1.2 to 1.3 μm.

そして、これら8種の導電性ペースト膜を形成した誘電体セラミックシートについて、走査型電子顕微鏡を用いて導電性ペースト膜を観察し、共材としてのチタン酸バリウムのセラミック粉末がニッケル粉末に付着して被覆した被覆状態を評価した。   And about the dielectric ceramic sheet | seat in which these 8 types of conductive paste films | membranes were formed, a conductive paste film | membrane was observed using a scanning electron microscope, and the ceramic powder of barium titanate as a co-material adhered to nickel powder. The coated state was evaluated.

この時のセラミック粉末によるニッケル粉末の被覆状態の評価としては、図1および図2に示すように、一方方向から平面視した時すなわちニッケル粉末21の半球部分において、チタン酸バリウムのセラミック粉末22によって全く被覆されていない部分の最大部分23の面積が、半球部分の面積の50%未満である場合には、被覆率が50%以上のニッケル粉末とし、反対に、図3および図4に示すように、ニッケル粉末21の半球部分において、チタン酸バリウムのセラミック粉末22によって全く被覆されていない部分の最大部分23の面積が半球部分の面積の50%以上である場合には、被覆率が50%未満のニッケル粉末とした。そして、走査型電子顕微鏡を用いて、ニッケル粉末21の平均粒径の縦5倍、横10倍の視野で10視野観察して、セラミック粉末22による被覆率が50%未満のニッケル粉末21が1つでも存在した場合には被覆率が50%未満の導電性ペーストとし、1つも存在しない場合には被覆率が50%以上の導電性ペーストとして評価した。この評価結果を(表1)に併せて示す。   Evaluation of the coating state of the nickel powder with the ceramic powder at this time, as shown in FIG. 1 and FIG. 2, when viewed in plan from one direction, that is, in the hemispherical portion of the nickel powder 21, the barium titanate ceramic powder 22 When the area of the maximum part 23 of the part which is not covered at all is less than 50% of the area of the hemispherical part, the nickel powder having a covering rate of 50% or more is used. On the contrary, as shown in FIGS. In addition, in the hemispherical portion of the nickel powder 21, when the area of the maximum portion 23 of the portion not covered at all by the barium titanate ceramic powder 22 is 50% or more of the area of the hemispherical portion, the coverage is 50%. Less than nickel powder. Then, using a scanning electron microscope, 10 fields of view are observed in the field of 5 times and 10 times the average particle diameter of the nickel powder 21, and the nickel powder 21 with a coverage of less than 50% by the ceramic powder 22 is 1 When one was present, the conductive paste was evaluated as a conductive paste having a coverage of less than 50%. When none was present, the conductive paste was evaluated as a conductive paste having a coverage of 50% or more. The evaluation results are also shown in (Table 1).

次に、上記で作製した8種の導電性ペースト膜を形成した誘電体セラミックシートを用い、それぞれについて、導電性ペースト膜を形成した誘電体セラミックシート170枚を交互にずらして積層し、また、この上下に保護層として、導電性ペースト膜のない誘電体セラミックシートを複数枚積層し、積層体を得た。得られた積層体を加熱圧着して積層体ブロックとした後、所定形状に切断、分離し、個片の積層体を得た。その後、個片の積層体を、加熱処理してバインダを除去した後、ニッケルの非酸化性雰囲気中において最高温度1250℃で焼成し、焼結体を得た。得られた焼結体の内部電極が露出する両端面に銅ペーストを塗布し、工業用窒素雰囲気中で900℃にて焼付けを行い、その後、NiめっきおよびSnめっき処理を施して外部電極を形成し、上述の8種の導電性ペーストを用いた(表2)に示す試料番号11〜18の積層セラミックコンデンサ8種を作製した。   Next, using the dielectric ceramic sheets formed with the eight types of conductive paste films prepared above, for each, 170 dielectric ceramic sheets formed with conductive paste films were alternately shifted and laminated, A plurality of dielectric ceramic sheets without a conductive paste film were laminated as protective layers above and below to obtain a laminate. The obtained laminate was subjected to thermocompression bonding to form a laminate block, and then cut and separated into a predetermined shape to obtain individual laminates. Thereafter, the stack of individual pieces was heat-treated to remove the binder, and then fired at a maximum temperature of 1250 ° C. in a non-oxidizing atmosphere of nickel to obtain a sintered body. Copper paste is applied to both end faces where the internal electrode of the obtained sintered body is exposed and baked at 900 ° C. in an industrial nitrogen atmosphere, and then Ni plating and Sn plating are performed to form the external electrode Then, 8 types of multilayer ceramic capacitors of sample numbers 11 to 18 shown in Table 2 using the above-described 8 types of conductive paste were produced.

なお、作製した8種の積層セラミックコンデンサは、用いた導電性ペーストが異なるほかは、いずれも同一の設計仕様、すなわち、誘電体セラミックシートの材料、厚みおよび積層数、内部電極となる導体層パターンの面積を同一とし、目標の静電容量を1.0μF±10%とした。また、積層セラミックコンデンサの外形寸法は、いずれも長さ1.0mm、幅0.5mm、および厚さ0.5mmとした。   The eight types of multilayer ceramic capacitors thus produced were the same in design specifications except for the conductive paste used, that is, the material, thickness and number of layers of the dielectric ceramic sheet, and the conductor layer pattern serving as the internal electrode And the target capacitance was 1.0 μF ± 10%. In addition, the outer dimensions of the multilayer ceramic capacitor were 1.0 mm in length, 0.5 mm in width, and 0.5 mm in thickness.

以上のようにして作製した8種の積層セラミックコンデンサについて、電気特性、焼結体構造欠陥の有無、および耐熱衝撃性を評価した。これらの評価結果を(表2)に示す。   The eight types of multilayer ceramic capacitors produced as described above were evaluated for electrical characteristics, presence or absence of sintered body structural defects, and thermal shock resistance. The evaluation results are shown in (Table 2).

なお、電気特性は、試料各100個について、静電容量およびショート不良を評価した。静電容量は、LCRメーターを用い、1kHzの周波数、1Vrmsの測定電圧で測定し、その平均値を求めた。ショート不良は、静電容量を測定する際に、測定電圧1Vrmsが印加できないものをショート不良品として数え、ショート不良数とした。   In addition, the electrical characteristics evaluated the electrostatic capacitance and the short circuit defect about 100 samples. The capacitance was measured using an LCR meter at a frequency of 1 kHz and a measurement voltage of 1 Vrms, and the average value was obtained. The short-circuit defect was defined as the number of short-circuit defects by counting those that could not be applied with the measurement voltage of 1 Vrms as short-circuit defects when measuring the capacitance.

また、焼結体構造欠陥の有無は、試料各5000個について、金属顕微鏡を用いて観察し、焼結体の表面のクラック、ひび等の欠陥の発生個数を数え、構造欠陥不良数とした。そして、耐熱衝撃性は、試料各100個について、330℃の半田浴中に5秒間含浸して取り出した後、金属顕微鏡を用いて観察し、熱衝撃によるサーマルクラックの発生の有無を確認し、その発生数を調べた。   In addition, the presence or absence of a sintered body structural defect was observed for each of 5000 samples using a metal microscope, and the number of defects such as cracks and cracks on the surface of the sintered body was counted to determine the number of structural defect defects. The thermal shock resistance of each of 100 samples was impregnated in a solder bath at 330 ° C. for 5 seconds and taken out, and then observed using a metal microscope to check for the occurrence of thermal cracks due to thermal shock. The number of occurrences was examined.

Figure 2009266716
Figure 2009266716

(表2)の評価結果から明らかなように、用いた導電性ペーストがセラミック粉末によるニッケル粉末の被覆率が50%未満である、試料番号12(用いた導電性ペーストの試料番号2)、試料番号15(用いた導電性ペーストの試料番号5)および試料番号18(用いた導電性ペーストの試料番号8)の比較例の積層セラミックコンデンサは、いずれも、静電容量が0.9pF未満であり目標の静電容量1.0μF±10%に対して小さく、また、ショート不良数、構造欠陥不良数ともに多く、さらに、サーマルクラックが発生しており、目標の製品が得られていない。   As is clear from the evaluation results of (Table 2), Sample No. 12 (Sample No. 2 of the conductive paste used), Sample in which the conductive paste used has a nickel powder coverage of less than 50% with ceramic powder. Each of the multilayer ceramic capacitors of Comparative Example No. 15 (Sample No. 5 of the conductive paste used) and Sample No. 18 (Sample No. 8 of the conductive paste used) has a capacitance of less than 0.9 pF. The target capacitance is smaller than 1.0 μF ± 10%, the number of short-circuit defects and the number of structural defects are large, and thermal cracks are generated, and the target product is not obtained.

上記のように、用いた導電性ペーストがセラミック粉末によるニッケル粉末の被覆率が50%未満である場合には、焼成時において、セラミック粉末によるニッケル粉末の焼結遅延効果が十分に得られず、内部電極の連続性が損なわれ、局部的に内部電極が厚くなる部分が生じるために、静電容量が小さく、ショート不良が多数発生している。また、内部電極と誘電体セラミックとの焼結時の収縮挙動差も大きく、焼結後、積層セラミックコンデンサの内部に歪が残留しやすいことから、構造欠陥不良が発生しており、耐熱衝撃性試験でもサーマルクラックが発生している。   As described above, when the coverage of the nickel powder by the ceramic powder is less than 50%, the sintering delay effect of the nickel powder by the ceramic powder cannot be sufficiently obtained during firing, Since the continuity of the internal electrode is impaired and a portion where the internal electrode is locally thick is generated, the capacitance is small and a number of short-circuit defects are generated. In addition, there is a large difference in shrinkage behavior during sintering between the internal electrode and the dielectric ceramic, and strain is likely to remain inside the multilayer ceramic capacitor after sintering, resulting in structural defects and thermal shock resistance. Thermal cracks have also occurred in the test.

これに対して、用いた導電性ペーストがセラミック粉末によるニッケル粉末の被覆率が50%以上である、試料番号11(用いた導電性ペーストの試料番号1)、試料番号13(用いた導電性ペーストの試料番号3)、試料番号14(用いた導電性ペーストの試料番号4)、試料番号16(用いた導電性ペーストの試料番号6)および試料番号17(用いた導電性ペーストの試料番号7)の本発明の製造方法による積層セラミックコンデンサは、いずれも、静電容量が0.9pF以上であり目標の静電容量1.0μF±10%が得られ、また、ショート不良数が少なく、さらに、構造欠陥不良、サーマルクラックともに発生がなく、目標の製品が得られた。   In contrast, Sample No. 11 (Sample No. 1 of the used conductive paste) and Sample No. 13 (Used conductive paste) in which the conductive paste used had a nickel powder coverage of 50% or more with ceramic powder. Sample number 3), sample number 14 (sample number 4 of the conductive paste used), sample number 16 (sample number 6 of the conductive paste used) and sample number 17 (sample number 7 of the conductive paste used). Each of the multilayer ceramic capacitors according to the manufacturing method of the present invention has a capacitance of 0.9 pF or more and a target capacitance of 1.0 μF ± 10% is obtained, and the number of short-circuit defects is small. Neither structural defects nor thermal cracks occurred, and the target product was obtained.

そして、上記の試料番号11、13、14、16および17の本発明の製造方法による積層セラミックコンデンサについて、走査型電子顕微鏡によりその断面を観察した結果、厚みが0.9〜1.0μmで連続した平坦な内部電極であることが確認できた。   And about the laminated ceramic capacitor by the manufacturing method of this invention of said sample number 11, 13, 14, 16 and 17, the cross section was observed with the scanning electron microscope, As a result, thickness was 0.9-1.0 micrometer and it was continuous. It was confirmed that this was a flat internal electrode.

また特に、被覆率が50%以上でありニッケル粉末の平均粒径が0.4μm以下である試料番号3、4、6および7の本発明の導電性ペーストを用いた、試料番号13、14、16および17の本発明の製造方法による積層セラミックコンデンサは、いずれも、静電容量が0.95pF以上であり目標の静電容量1.0μF±10%が高い歩留まりで得られ、また、ショート不良数がより一層少なく、目標の製品を極めて歩留まり良く製造することができた。   In particular, sample numbers 13, 14, and 6 using the conductive pastes of the present invention of sample numbers 3, 4, 6 and 7 having a coverage of 50% or more and an average particle diameter of nickel powder of 0.4 μm or less. In the multilayer ceramic capacitors 16 and 17 according to the manufacturing method of the present invention, the capacitance is 0.95 pF or more, the target capacitance is 1.0 μF ± 10%, and the yield is high. The number was even smaller, and the target product could be manufactured with extremely high yield.

上記のように、用いた導電性ペーストがセラミック粉末によるニッケル粉末の被覆率が50%以上である場合には、焼成時において、セラミック粉末によるニッケル粉末の焼結遅延効果により、内部電極切れを防止することができ、薄く平坦で連続した内部電極が形成できる。これにより、得られる静電容量も大きく、薄く平坦な内部電極が形成できるので、誘電体セラミックシートを突き破ることがないことから、ショート不良が少ない。また、内部電極の焼結が、より誘電体セラミックの焼結と近づくことにより、焼結後の積層セラミックコンデンサの内部に歪が残留しにくく、構造欠陥不良やサーマルクラックなどの発生がなく、高品質で信頼性の高い積層セラミックコンデンサが得られる。   As mentioned above, when the conductive paste used has a nickel powder coverage of 50% or more with ceramic powder, the internal electrode is prevented from being cut off due to the sintering delay effect of the nickel powder with ceramic powder during firing. A thin, flat and continuous internal electrode can be formed. Thereby, the obtained electrostatic capacitance is large, and a thin and flat internal electrode can be formed. Therefore, the dielectric ceramic sheet is not pierced, so that there is little short-circuit defect. In addition, since the sintering of the internal electrode is closer to the sintering of the dielectric ceramic, it is difficult for distortion to remain in the sintered ceramic capacitor after sintering, and there is no occurrence of structural defects or thermal cracks. A multilayer ceramic capacitor with high quality and reliability can be obtained.

以上説明したように、本発明の導電性ペーストは、ニッケル粉末が粒子表面に付着したセラミック粉末により被覆され、その被覆率が50%以上であるものであり、これにより、焼成時において、セラミック粉末によるニッケル粉末の焼結遅延効果により、薄層化した場合でも内部電極切れを防止することができ、薄く平坦で連続した内部電極が形成できる。そして、本発明の積層セラミックコンデンサの製造方法は、上記の導電性ペーストを用いるものであり、これにより、内部電極および誘電体層を薄層化した場合でも、内部電極切れによる静電容量の低下が防止でき、得られる静電容量も大きく、ショート不良が少ない。また、構造欠陥不良やサーマルクラックなどの発生がなく、高品質で信頼性の高い積層セラミックコンデンサを歩留まり良く製造することができる。   As described above, the conductive paste of the present invention is coated with ceramic powder having nickel powder adhered to the particle surface, and the coverage is 50% or more. Due to the sintering delay effect of the nickel powder, the internal electrode can be prevented from being cut even when the layer is thinned, and a thin, flat and continuous internal electrode can be formed. And the manufacturing method of the multilayer ceramic capacitor of the present invention uses the above-mentioned conductive paste. Thereby, even when the internal electrode and the dielectric layer are thinned, the capacitance is reduced due to the internal electrode being cut. Can be prevented, the capacitance obtained is large, and there are few short-circuit defects. In addition, it is possible to manufacture a high-quality and highly reliable multilayer ceramic capacitor with a high yield without occurrence of structural defects or thermal cracks.

なお、上記本実施の形態では、比較例として示すために、セラミック粉末によるニッケル粉末の被覆率が50%未満である導電性ペーストを用いて積層セラミックコンデンサを作製した例を示したが、実際の積層セラミックコンデンサの製造においては、導電性ペーストの使用に先立ち、上述した方法により、導電性ペーストを観察し評価して、ニッケル粉末は粒子表面に付着したセラミック粉末により被覆されその被覆率が50%以上である導電性ペーストを選別して用いることが好ましい。これにより、製造ロスを避けることができる。   In the present embodiment, in order to show as a comparative example, an example in which a multilayer ceramic capacitor was manufactured using a conductive paste having a nickel powder coverage of less than 50% was shown. In the production of the multilayer ceramic capacitor, the conductive paste is observed and evaluated by the above-described method prior to the use of the conductive paste. The nickel powder is coated with the ceramic powder adhered to the particle surface, and the coverage is 50%. It is preferable to select and use the above conductive paste. Thereby, manufacturing loss can be avoided.

また、上記本実施の形態では、共材のセラミック粉末として、チタン酸バリウム粉末のみを用いた例を示したが、誘電体セラミックシートに含まれるセラミック粉末と同じ組成のもの、または誘電体セラミックシートのセラミック粉末の主成分の材料組成のものを用いても同様の効果が得られる。   In the present embodiment, an example in which only barium titanate powder is used as the co-material ceramic powder has been described. However, the ceramic powder having the same composition as the ceramic powder contained in the dielectric ceramic sheet, or the dielectric ceramic sheet The same effect can be obtained by using the material composition of the main component of the ceramic powder.

本発明に係る導電性ペーストは、薄層化した場合でも内部電極切れを防止することができ、薄く平坦で連続した内部電極が形成できる。そして、本発明に係る積層セラミックコンデンサの製造方法は、内部電極および誘電体層を薄層化した場合でも、内部電極切れによる静電容量の低下が防止できるので、静電容量が大きく、ショート不良が少ない積層セラミックコンデンサを歩留まり良く製造することができ、薄層化および高積層化が要求される積層セラミックコンデンサの製造方法として特に有用である。   The conductive paste according to the present invention can prevent the internal electrode from being cut even when it is thinned, and a thin, flat and continuous internal electrode can be formed. The method for manufacturing a multilayer ceramic capacitor according to the present invention can prevent a decrease in capacitance due to internal electrode shortage even when the internal electrode and the dielectric layer are thinned. Therefore, it is particularly useful as a method for manufacturing a multilayer ceramic capacitor in which a thin layer and a high multilayer are required.

セラミック粉末による被覆率が50%以上のニッケル粉末の例を示す模式的外観図Schematic external view showing an example of nickel powder with a ceramic powder coverage of 50% or more セラミック粉末による被覆率が50%以上のニッケル粉末の他の例を示す模式的外観図Schematic external view showing another example of nickel powder with a ceramic powder coverage of 50% or more セラミック粉末による被覆率が50%未満のニッケル粉末の例を示す模式的外観図Schematic external view showing an example of nickel powder with a ceramic powder coverage of less than 50% セラミック粉末による被覆率が50%未満のニッケル粉末の他の例を示す模式的外観図Schematic external view showing another example of nickel powder with a ceramic powder coverage of less than 50%

符号の説明Explanation of symbols

21 ニッケル粉末
22 セラミック粉末
23 被覆されていない部分の最大部分
21 Nickel powder 22 Ceramic powder 23 Maximum part of uncoated part

Claims (4)

ニッケル粉末とセラミック粉末と有機バインダと溶剤とを含む導電性ペーストであって、前記ニッケル粉末は、粒子表面に付着した前記セラミック粉末により被覆され、その被覆率が50%以上である導電性ペースト。 A conductive paste comprising nickel powder, ceramic powder, an organic binder, and a solvent, wherein the nickel powder is coated with the ceramic powder adhered to the particle surface, and the coverage is 50% or more. ニッケル粉末の平均粒径は、0.4μm以下である請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the average particle diameter of the nickel powder is 0.4 μm or less. 誘電体セラミック粉末と有機バインダとを含む誘電体セラミックシートを作製する第1の工程と、導電性ペーストを用いて導電性ペースト膜を形成する第2の工程と、前記誘電体セラミックシートと前記導電性ペースト膜とを積層して積層体を作製する第3の工程と、前記積層体を焼成して焼結体を作製する第4の工程とを備える積層セラミックコンデンサの製造方法であって、前記導電性ペーストは、ニッケル粉末とセラミック粉末と有機バインダと溶剤とを含み、前記ニッケル粉末は、粒子表面に付着した前記セラミック粉末により被覆され、その被覆率が50%以上であるものを用いる積層セラミックコンデンサの製造方法。 A first step of producing a dielectric ceramic sheet containing a dielectric ceramic powder and an organic binder, a second step of forming a conductive paste film using a conductive paste, the dielectric ceramic sheet and the conductive material A method for producing a multilayer ceramic capacitor comprising: a third step of laminating a conductive paste film to produce a laminated body; and a fourth step of firing the laminated body to produce a sintered body, The conductive paste includes a nickel powder, a ceramic powder, an organic binder, and a solvent, and the nickel powder is coated with the ceramic powder adhered to the particle surface, and a multilayer ceramic using a covering ratio of 50% or more Capacitor manufacturing method. 第2の工程に先立ち、導電性ペーストを評価し、ニッケル粉末は粒子表面に付着したセラミック粉末により被覆されその被覆率が50%以上である導電性ペーストを選別して用いる請求項3に記載の積層セラミックコンデンサの製造方法。 Prior to the second step, the conductive paste is evaluated, and the nickel powder is coated with ceramic powder adhered to the particle surface, and the conductive paste having a coverage of 50% or more is selected and used. Manufacturing method of multilayer ceramic capacitor.
JP2008116812A 2008-04-28 2008-04-28 Conductive paste, and manufacturing method of laminated ceramic capacitor Pending JP2009266716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116812A JP2009266716A (en) 2008-04-28 2008-04-28 Conductive paste, and manufacturing method of laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116812A JP2009266716A (en) 2008-04-28 2008-04-28 Conductive paste, and manufacturing method of laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2009266716A true JP2009266716A (en) 2009-11-12

Family

ID=41392273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116812A Pending JP2009266716A (en) 2008-04-28 2008-04-28 Conductive paste, and manufacturing method of laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2009266716A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221640A (en) * 2011-04-06 2012-11-12 Murata Mfg Co Ltd Conductive paste and method for producing the same
CN102867565A (en) * 2011-07-06 2013-01-09 三星电机株式会社 Conductive paste composition for internal electrodes and multilayer ceramic electronic component including the same
JP2015079728A (en) * 2013-10-17 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Conductive powder, production method thereof, and laminated ceramic capacitor
JP2016014194A (en) * 2015-09-10 2016-01-28 株式会社ノリタケカンパニーリミテド Core-shell particle and composition for conductor formation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335805A (en) * 2000-05-22 2001-12-04 Nippon Chem Ind Co Ltd Coated metal powder, its production method, coated metal powder paste and ceramic multilayer parts
JP2004269315A (en) * 2003-03-10 2004-09-30 Shin Etsu Chem Co Ltd Particulate double oxide, particulate mixture, and conductive paste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335805A (en) * 2000-05-22 2001-12-04 Nippon Chem Ind Co Ltd Coated metal powder, its production method, coated metal powder paste and ceramic multilayer parts
JP2004269315A (en) * 2003-03-10 2004-09-30 Shin Etsu Chem Co Ltd Particulate double oxide, particulate mixture, and conductive paste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221640A (en) * 2011-04-06 2012-11-12 Murata Mfg Co Ltd Conductive paste and method for producing the same
CN102867565A (en) * 2011-07-06 2013-01-09 三星电机株式会社 Conductive paste composition for internal electrodes and multilayer ceramic electronic component including the same
JP2013016454A (en) * 2011-07-06 2013-01-24 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrodes and multilayer ceramic electronic component including the same
JP2015079728A (en) * 2013-10-17 2015-04-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Conductive powder, production method thereof, and laminated ceramic capacitor
JP2016014194A (en) * 2015-09-10 2016-01-28 株式会社ノリタケカンパニーリミテド Core-shell particle and composition for conductor formation

Similar Documents

Publication Publication Date Title
JP5930705B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP6257060B2 (en) Multilayer ceramic electronic components
US9165712B2 (en) Multilayer ceramic electronic component and fabrication method thereof
US8488297B2 (en) Multilayer ceramic electronic component
US20130258546A1 (en) Multilayer ceramic electronic component and fabrication method thereof
JP6138442B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
US20140022689A1 (en) Multi-layered ceramic electronic component and method of manufacturing the same
US8947849B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP5293951B2 (en) Electronic components
JP2013030775A (en) Multi-layered ceramic electronic component
JP5870625B2 (en) Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component
JP2009266716A (en) Conductive paste, and manufacturing method of laminated ceramic capacitor
JP4826881B2 (en) Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component
US8885323B2 (en) Multilayered ceramic electronic component and fabricating method thereof
KR20120020916A (en) A method of manufacturing ceramic paste for multilayer ceramic electronic component and a method of manufacturing multilayer ceramic electronic component
US7605051B2 (en) Method for forming internal electrode pattern and method for manufacturing multilayer ceramic electronic component using same
KR20150011264A (en) Multilayer ceramic electronic component and method for manufacturing the same
JP5899912B2 (en) Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component
JP5887919B2 (en) Electrode sintered body and laminated electronic component
JP2007165753A (en) Conductive paste, laminate ceramic electronic component and manufacturing method therefor
JP2008258468A (en) Laminated ceramic capacitor and its manufacturing method
JP2000315616A (en) Laminated ceramic electronic parts

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20100128

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Effective date: 20110317

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120316

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211