JP2008258468A - Laminated ceramic capacitor and its manufacturing method - Google Patents

Laminated ceramic capacitor and its manufacturing method Download PDF

Info

Publication number
JP2008258468A
JP2008258468A JP2007100210A JP2007100210A JP2008258468A JP 2008258468 A JP2008258468 A JP 2008258468A JP 2007100210 A JP2007100210 A JP 2007100210A JP 2007100210 A JP2007100210 A JP 2007100210A JP 2008258468 A JP2008258468 A JP 2008258468A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic capacitor
average particle
internal electrode
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007100210A
Other languages
Japanese (ja)
Inventor
Fuyuki Abe
冬希 阿部
Masaru Matsumura
優 松村
Masafumi Nakayama
雅文 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007100210A priority Critical patent/JP2008258468A/en
Publication of JP2008258468A publication Critical patent/JP2008258468A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated ceramic capacitor of high reliability, miniature, and high capacity and its manufacturing method. <P>SOLUTION: An average particle diameter of dielectric particles constituting a dielectric layer 11 is made to be different depending on layer directions of the dielectric layer 11, in which an average particle diameter of dielectric particles 13B located in the vicinity of a circumferential part 12B of an internal electrode layer 12 is made smaller than that of dielectric particles 13A in the vicinity of a central portion 12A of the internal electrode layer 12. Therefore, it is possible to make large the permittivity and electrostatic capacity per unit area. Further, there is reduced an average particle diameter of dielectric particles 13B located in the vicinity of the circumferential part 12B of the internal electrode layer 12 where there easily occur short circuiting and bad reliability so that short circuiting and bad reliability can be restrained, ensuring a high reliability, miniature, high capacitance laminated ceramic capacitor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、積層セラミックコンデンサおよびその製造方法に関するものである。   The present invention relates to a multilayer ceramic capacitor and a method for manufacturing the same.

近年、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型化、大容量化が急速に進んでいる。その実現のために、積層セラミックコンデンサにおける1層あたりの誘電体層を薄層化するという方法がとられている。また、誘電体層の薄層化に伴い、1層の誘電体層を構成する誘電体粒子の数は少なくなってきており、誘電体粒子の構造はコンデンサの特性に大きく影響するので、誘電体粒子の構造の制御が極めて重要になってきている。   In recent years, there has been a high demand for downsizing of electronic components accompanying the increase in the density of electronic circuits, and the downsizing and increase in capacity of multilayer ceramic capacitors are rapidly progressing. In order to realize this, a method has been adopted in which the dielectric layer per layer in the multilayer ceramic capacitor is thinned. Further, as the thickness of the dielectric layer is reduced, the number of dielectric particles constituting one dielectric layer is decreasing, and the structure of the dielectric particles greatly affects the characteristics of the capacitor. Control of the structure of the particles has become extremely important.

そして、たとえば特許文献1では、誘電体粒子を微細化し、積層セラミックコンデンサを薄層化した場合においても、誘電体層の1層あたりの平均粒子数を3 以上、6以下とすることにより、ショート不良率を低く抑え、B特性を満足する良好な温度特性を有し、且つ、良好なDCバイアス特性を有する積層セラミックコンデンサを実現する技術が提案されている。また、特許文献2では、誘電体層を構成する誘電体粒子における内部電極層と平行な方向の平均粒径を、誘電体層の厚みよりも大きくすることにより、単位体積当たりの静電容量が大きく、小型化しても大容量を有する積層セラミックコンデンサを実現する技術が提案されている。
特開2005−129802号公報 特開2002−305124号公報
For example, in Patent Document 1, even when the dielectric particles are miniaturized and the multilayer ceramic capacitor is thinned, the average number of particles per layer of the dielectric layer is set to 3 or more and 6 or less. There has been proposed a technique for realizing a multilayer ceramic capacitor that has a good temperature characteristic satisfying the B characteristic while keeping the defect rate low, and also has a good DC bias characteristic. Further, in Patent Document 2, the electrostatic capacity per unit volume is increased by making the average particle size of the dielectric particles constituting the dielectric layer in the direction parallel to the internal electrode layer larger than the thickness of the dielectric layer. A technology for realizing a multilayer ceramic capacitor having a large capacity even when it is large and small is proposed.
JP 2005-129802 A JP 2002-305124 A

しかしながら、誘電体粒子を微細化した場合には、誘電体粒子を微細化すると誘電率が減少し、単位体積当たりの静電容量が大きな積層セラミックコンデンサを実現することが困難となる。また一方、誘電体粒子を大きくした場合には、単位体積当たりの静電容量を大きくすることが可能となるが、温度特性等の電気特性が悪化し、また、誘電体層を薄層化した場合にショート不良や信頼性不良を発生しやすいという問題を有している。したがって、誘電体層を薄層化した場合にショート不良や信頼性不良を抑制し、かつ高い誘電率を得ることは、困難とされていた。   However, when the dielectric particles are miniaturized, the dielectric constant decreases when the dielectric particles are miniaturized, and it becomes difficult to realize a multilayer ceramic capacitor having a large capacitance per unit volume. On the other hand, when the dielectric particles are made larger, the capacitance per unit volume can be increased, but the electrical characteristics such as temperature characteristics deteriorate, and the dielectric layer is made thinner. In some cases, there is a problem that short circuit failure and reliability failure are likely to occur. Therefore, when the dielectric layer is thinned, it has been difficult to suppress short circuit defects and reliability defects and to obtain a high dielectric constant.

本発明は、上記従来の問題点を解決するもので、誘電体層を薄層化、高積層化した場合でもショート不良や信頼性不良を抑制し、高信頼性でかつ小型で高容量の積層セラミックコンデンサおよびその製造方法を提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, and suppresses short-circuit failure and reliability failure even when the dielectric layer is thinned and highly laminated, and is a highly reliable, small-sized and high-capacity laminated layer. An object of the present invention is to provide a ceramic capacitor and a manufacturing method thereof.

上記目的を達成するため、本発明は、内部電極層と誘電体層とを有する積層セラミックコンデンサであって、前記誘電体層を構成する誘電体粒子の平均粒径を誘電体層の層方向で異ならせたもので、前記内部電極層の周辺部分近傍の誘電体粒子の平均粒径を、前記内部電極層の中央部分近傍の誘電体粒子の平均粒径に比して小さくした積層セラミックコンデンサであり、内部電極層の中央部分近傍の誘電体粒子の平均粒径を大きくすることにより、誘電率が大きく単位体積当たりの静電容量を大きくすることが可能となるとともに、ショート不良や信頼性不良を発生しやすい部位である内部電極層の周辺部分近傍の誘電体粒子の平均粒径を小さくしているので、ショート不良や信頼性不良の発生を抑制することができ、高信頼性でかつ小型で高容量の積層セラミックコンデンサとなる。   In order to achieve the above object, the present invention provides a multilayer ceramic capacitor having an internal electrode layer and a dielectric layer, wherein the average particle size of the dielectric particles constituting the dielectric layer is determined in the layer direction of the dielectric layer. A multilayer ceramic capacitor in which the average particle size of the dielectric particles in the vicinity of the peripheral portion of the internal electrode layer is smaller than the average particle size of the dielectric particles in the vicinity of the central portion of the internal electrode layer. Yes, by increasing the average particle size of the dielectric particles near the center of the internal electrode layer, the dielectric constant is large and the capacitance per unit volume can be increased. The average particle size of the dielectric particles in the vicinity of the peripheral part of the internal electrode layer, which is a part that tends to generate defects, is reduced, so that occurrence of short-circuit failure and reliability failure can be suppressed, and high reliability and small size so The multilayer ceramic capacitor of capacity.

また、本発明は、誘電体粉末を含むセラミック生シートと、内部電極となる導電性金属粉末と誘電体粉末とを含む導電性ペースト膜とを交互に積層して積層体を形成する工程を備え、前記導電性ペースト膜に含まれる誘電体粉末の単位面積当たりの重量を、導電性ペースト膜の面方向で異ならせたもので、前記導電性ペースト膜の周辺部分に含まれる誘電体粉末の単位面積当たりの重量を、前記導電性ペースト膜の中央部分に含まれる誘電体粉末の単位面積当たりの重量に比して少なくした積層セラミックコンデンサの製造方法であり、これにより、導電性ペースト膜に含まれる誘電体粉末が誘電体層の粒成長を促進する成分として働くため、導電性ペースト膜の中央部分の誘電体粉末を多くしているので内部電極層の中央部分近傍の誘電体粒子の平均粒径を大きくすることができ、誘電率が大きく単位体積当たりの静電容量を大きくすることが可能となる。また、導電性ペースト膜の周辺部分の誘電体粉末を少なくしているので内部電極層の周辺部分近傍の誘電体粒子の粒成長を抑制し平均粒径を小さくできる。したがって、ショート不良や信頼性不良の発生を抑制することができ、高信頼性でかつ小型で高容量の積層セラミックコンデンサを容易に生産性良く製造することができる。   The present invention also includes a step of forming a laminate by alternately laminating a ceramic raw sheet containing dielectric powder and a conductive paste film containing conductive metal powder and dielectric powder serving as internal electrodes. The dielectric powder contained in the conductive paste film has a different weight per unit area in the surface direction of the conductive paste film, and the unit of the dielectric powder contained in the peripheral portion of the conductive paste film A method of manufacturing a multilayer ceramic capacitor in which the weight per area is less than the weight per unit area of the dielectric powder contained in the central portion of the conductive paste film, thereby including in the conductive paste film Since the dielectric powder acts as a component that promotes grain growth of the dielectric layer, the dielectric powder in the central portion of the internal electrode layer is increased because the dielectric powder in the central portion of the conductive paste film is increased. It is possible to increase the average particle size of the child, it is possible dielectric constant to increase the capacitance per large unit volume. Further, since the dielectric powder in the peripheral portion of the conductive paste film is reduced, the growth of dielectric particles in the vicinity of the peripheral portion of the internal electrode layer can be suppressed and the average particle size can be reduced. Therefore, it is possible to suppress occurrence of short-circuit failure and reliability failure, and it is possible to easily manufacture a highly reliable, small and high-capacity multilayer ceramic capacitor with high productivity.

本発明の積層セラミックコンデンサによれば、誘電率が大きく単位体積当たりの静電容量を大きくすることが可能となるとともに、ショート不良や信頼性不良の発生を抑制することができ、高信頼性でかつ小型で高容量の積層セラミックコンデンサとなる。   According to the multilayer ceramic capacitor of the present invention, the dielectric constant is large and the capacitance per unit volume can be increased, and the occurrence of short-circuit failure and reliability failure can be suppressed. And it becomes a small and high capacity multilayer ceramic capacitor.

また、本発明の積層セラミックコンデンサの製造方法によれば、内部電極層の中央部分近傍の誘電体粒子の平均粒径を大きくすることができ、誘電率が大きく単位体積当たりの静電容量を大きくすることが可能となり、また、内部電極層の周辺部分近傍の誘電体粒子の粒成長を抑制し平均粒径を小さくできる。したがって、ショート不良や信頼性不良の発生を抑制することができ、高信頼性でかつ小型で高容量の積層セラミックコンデンサを容易に生産性良く製造することができる。   Further, according to the method for manufacturing a multilayer ceramic capacitor of the present invention, the average particle size of the dielectric particles in the vicinity of the central portion of the internal electrode layer can be increased, the dielectric constant is large, and the capacitance per unit volume is increased. In addition, it is possible to suppress the growth of dielectric particles in the vicinity of the peripheral portion of the internal electrode layer and to reduce the average particle size. Therefore, it is possible to suppress occurrence of short-circuit failure and reliability failure, and it is possible to easily manufacture a highly reliable, small and high-capacity multilayer ceramic capacitor with high productivity.

以下、本発明を実施するための最良の形態について、図面に基づき詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は、本発明の一実施の形態における積層セラミックコンデンサの概略断面図であり、図2および図3は、図1に示す誘電体層の要部拡大断面図であり、図2は、内部電極層の中央部分近傍の誘電体層の拡大断面図であり、図3は、内部電極層の周辺部分近傍の誘電体層の拡大断面図である。   FIG. 1 is a schematic cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention. FIGS. 2 and 3 are enlarged cross-sectional views of main parts of the dielectric layer shown in FIG. FIG. 3 is an enlarged cross-sectional view of the dielectric layer near the central portion of the electrode layer, and FIG. 3 is an enlarged cross-sectional view of the dielectric layer near the peripheral portion of the internal electrode layer.

図1、図2および図3に示すように、本発明の一実施の形態における積層セラミックコンデンサ10は、誘電体層11を構成する誘電体粒子の平均粒径を誘電体層11の層方向で異ならせたもので、内部電極層12の周辺部分12B近傍の誘電体粒子13Bの平均粒径を、内部電極層12の中央部分12A近傍の誘電体粒子13Aの平均粒径に比して小さくしている。   As shown in FIGS. 1, 2, and 3, the multilayer ceramic capacitor 10 according to one embodiment of the present invention has an average particle size of dielectric particles constituting the dielectric layer 11 in the layer direction of the dielectric layer 11. The average particle size of the dielectric particles 13B in the vicinity of the peripheral portion 12B of the internal electrode layer 12 is made smaller than the average particle size of the dielectric particles 13A in the vicinity of the central portion 12A of the internal electrode layer 12. ing.

上記したように、本実施の形態における積層セラミックコンデンサ10は、内部電極層12の中央部分12A近傍の誘電体粒子13Aの平均粒径を大きくすることにより、誘電率が大きく単位体積当たりの静電容量を大きくすることが可能となるとともに、ショート不良や信頼性不良を発生しやすい部位である内部電極層12の周辺部分12B近傍の誘電体粒子13Bの平均粒径を小さくしているので、ショート不良や信頼性不良の発生を抑制することができ、高信頼性でかつ小型で高容量の積層セラミックコンデンサが得られる。   As described above, the multilayer ceramic capacitor 10 according to the present embodiment has a large dielectric constant and a high electrostatic capacity per unit volume by increasing the average particle diameter of the dielectric particles 13A in the vicinity of the central portion 12A of the internal electrode layer 12. Since the capacity can be increased and the average particle size of the dielectric particles 13B in the vicinity of the peripheral portion 12B of the internal electrode layer 12 which is a portion where short-circuit failure and reliability failure are likely to occur is reduced. The occurrence of defects and reliability failures can be suppressed, and a highly reliable, small and high capacity multilayer ceramic capacitor can be obtained.

(実施例)
続いて、本発明の実施の形態における積層セラミックコンデンサの製造方法について、本発明の実施の形態における積層セラミックコンデンサの初期特性および信頼性の評価結果とともに、実施例に基づき以下に詳細に説明する。
(Example)
Next, a method for manufacturing a multilayer ceramic capacitor according to an embodiment of the present invention will be described in detail below based on examples, together with evaluation results of initial characteristics and reliability of the multilayer ceramic capacitor according to the embodiment of the present invention.

まず、平均粒子径約0.2μmのチタン酸バリウムを主成分とし、これに希土類元素の酸化物やSiO2、MgO、MnO2などの添加物を加えたセラミック原料粉末を混合し、仮焼し、粉砕して平均粒子径約0.2μmの誘電体粉末を作製した。 First, ceramic raw material powder containing barium titanate with an average particle size of about 0.2 μm as the main component and added with rare earth oxides and additives such as SiO 2 , MgO, MnO 2 is mixed and calcined. And dielectric powder having an average particle size of about 0.2 μm was prepared.

この誘電体粉末と、ポリビニルブチラール樹脂やアクリル樹脂などのバインダー、フタル酸エステルなどの可塑剤、酢酸ブチルなどの溶剤とを混合してセラミックスラリーとした。このセラミックスラリーをドクターブレードなどの方法を用いて、ポリエチレンテレフタレート(以下PETと称する)フィルム上に塗布、乾燥してセラミック生シートを作製して準備した。この時、その乾燥後の厚みを約2μmとしたセラミック生シートを準備した。   This dielectric powder was mixed with a binder such as polyvinyl butyral resin or acrylic resin, a plasticizer such as phthalate ester, and a solvent such as butyl acetate to obtain a ceramic slurry. The ceramic slurry was applied on a polyethylene terephthalate (hereinafter referred to as PET) film using a method such as a doctor blade and dried to prepare a ceramic raw sheet. At this time, a ceramic raw sheet having a thickness after drying of about 2 μm was prepared.

また一方で、PETフィルム上に内部電極となる導電性ペースト膜を形成して準備した。内部電極となる導電性ペースト膜は、以下のようして、準備した。   On the other hand, a conductive paste film serving as an internal electrode was formed on a PET film and prepared. A conductive paste film to be an internal electrode was prepared as follows.

まず、内部電極となる導電性金属粉末として金属ニッケル粉末を用い、これを主成分とし、これに誘電体粉末として平均粒子径約0.05μmのチタン酸バリウムを金属ニッケル粉末の重量に対し20wt%の比率で添加し、ポリビニルブチラール樹脂などのバインダー、フタル酸エステルなどの可塑剤、酢酸ブチルなどの溶剤と混合してニッケルペーストを作製して準備した。   First, metallic nickel powder is used as a conductive metal powder to be an internal electrode, and this is used as a main component. Barium titanate having an average particle diameter of about 0.05 μm as a dielectric powder is 20 wt% with respect to the weight of the metallic nickel powder. The nickel paste was prepared by mixing with a binder such as polyvinyl butyral resin, a plasticizer such as phthalate ester, and a solvent such as butyl acetate.

このニッケルペーストを用い、グラビア印刷法により、PETフィルム上に内部電極となるパターン状に塗布、乾燥して、導電性ペースト膜を形成し準備した。なお、内部電極となる導電性ペースト膜のパターンは、その寸法、形状および位置を、後の工程で切断、分離した時、個片の積層セラミックコンデンサが得られるように矩形状のパターンを縦横に多数個配列したパターンとした。   Using this nickel paste, a conductive paste film was prepared by applying and drying the PET film in a pattern to be an internal electrode by a gravure printing method. Note that the pattern of the conductive paste film that becomes the internal electrode is a rectangular pattern that is vertically and horizontally so that individual multilayer ceramic capacitors can be obtained when the dimensions, shape, and position are cut and separated in a later step. It was set as the pattern which arranged many pieces.

そして、この時の1個の矩形状のパターンの導電性ペースト膜は、図4に示すように、その断面形状が中央部分で厚く、周辺部分で薄い形状とした。なお、図4に示したのは、1個の矩形状のパターンの短手方向の断面形状、つまり、積層セラミックコンデンサの内部電極とした時に図1に示した断面となる方向の断面形状であるが、矩形状のパターンの長手方向の断面形状についても同様に、その断面形状が中央部分で厚く、周辺部分で薄い形状とした。   Then, as shown in FIG. 4, the conductive paste film of one rectangular pattern at this time has a cross-sectional shape that is thick at the central portion and thin at the peripheral portion. FIG. 4 shows the cross-sectional shape in the short direction of one rectangular pattern, that is, the cross-sectional shape in the direction of the cross-section shown in FIG. 1 when used as the internal electrode of the multilayer ceramic capacitor. However, the cross-sectional shape in the longitudinal direction of the rectangular pattern is similarly thick at the central portion and thin at the peripheral portion.

上記で準備したセラミック生シートと導電性ペースト膜とを用い、これらを交互に積層して、導電性ペースト膜の層数が300層の積層体を作製し、この積層体を焼成後に1.6mm×0.8mmの寸法となるように所定の寸法で切断、分離し、個片の積層体グリーンチップとした。この積層体グリーンチップを焼成し外部電極を形成して、本実施例の積層セラミックコンデンサを作製した。   Using the ceramic raw sheet and the conductive paste film prepared above, these were alternately laminated to produce a laminate having 300 conductive paste films, and this laminate was fired 1.6 mm after firing. It cut | disconnected and isolate | separated by the predetermined dimension so that it might become a * 0.8mm dimension, and it was set as the individual laminated body green chip. This multilayer green chip was fired to form external electrodes, and a multilayer ceramic capacitor of this example was produced.

一方、比較のために、上記のニッケルペーストを用い、スクリーン印刷法により、PETフィルム上に内部電極となるパターン状に塗布、乾燥して、上記とは別の比較例の導電性ペースト膜を形成し準備した。なおこの時も、内部電極となる導電性ペースト膜のパターンは、その寸法、形状および位置を、後の工程で切断、分離した時、個片の積層セラミックコンデンサが得られるように矩形状のパターンを縦横に多数個配列したパターンとした。そして、この時の1個の矩形状のパターンの導電性ペースト膜は、図5に示すように、その断面形状は、中央部分、周辺部分ともにほぼ同じ厚みの形状であった。なお、図5に示したのは、1個の矩形状のパターンの短手方向の断面形状、つまり、積層セラミックコンデンサの内部電極とした時に図1に示した断面となる方向の断面形状であるが、矩形状のパターンの長手方向の断面形状についても同様に、中央部分、周辺部分ともにほぼ同じ厚みの形状であった。   On the other hand, for comparison, the above-mentioned nickel paste was used and applied to a pattern to be an internal electrode on a PET film by a screen printing method and dried to form a conductive paste film of a comparative example different from the above. And prepared. Also at this time, the pattern of the conductive paste film that becomes the internal electrode is a rectangular pattern so that when the dimensions, shape, and position are cut and separated in a later step, a single piece multilayer ceramic capacitor is obtained. It was set as the pattern which arranged many in length and breadth. At this time, as shown in FIG. 5, the conductive paste film having one rectangular pattern had a cross-sectional shape having substantially the same thickness in both the central portion and the peripheral portion. FIG. 5 shows the cross-sectional shape in the short direction of one rectangular pattern, that is, the cross-sectional shape in the direction that becomes the cross-section shown in FIG. 1 when used as the internal electrode of the multilayer ceramic capacitor. However, the cross-sectional shape in the longitudinal direction of the rectangular pattern was also the shape having substantially the same thickness in both the central portion and the peripheral portion.

上記の実施例と同じセラミック生シートと、上記の比較例の導電性ペースト膜とを用い、これらを交互に積層して、導電性ペースト膜の層数が300層の積層体を作製し、この積層体を焼成後に1.6mm×0.8mmの寸法となるように所定の寸法で切断、分離し、個片の積層体グリーンチップとした。この積層体グリーンチップを焼成し外部電極を形成して、比較例の積層セラミックコンデンサを作製した。   Using the same ceramic raw sheet as in the above example and the conductive paste film in the above comparative example, these were alternately laminated to produce a laminate having 300 conductive paste films. The laminated body was cut and separated at a predetermined size so as to have a size of 1.6 mm × 0.8 mm after firing to obtain a piece-by-piece laminated body green chip. This multilayer green chip was fired to form external electrodes, and a multilayer ceramic capacitor of a comparative example was produced.

次いで、上記で得られた本実施例の積層セラミックコンデンサおよび比較例の積層セラミックコンデンサについて評価した。評価としては、誘電体層の誘電体粒子の平均粒径、静電容量、ショート不良率、および信頼性試験として高温負荷試験後の絶縁抵抗の劣化を評価した。これらの評価結果を(表1)に示す。   Next, the multilayer ceramic capacitor of the present example obtained above and the multilayer ceramic capacitor of the comparative example were evaluated. As the evaluation, the average particle diameter of the dielectric particles of the dielectric layer, the capacitance, the short-circuit defect rate, and the deterioration of the insulation resistance after the high-temperature load test were evaluated as a reliability test. The evaluation results are shown in (Table 1).

Figure 2008258468
Figure 2008258468

誘電体粒子の平均粒径の測定方法としては、得られた積層セラミックコンデンサを、内部電極に垂直で外部電極を形成した端面に平行な面(図1に示した面)で切断し、その切断面を研磨し、ケミカルエッチングを施し、その後、走査型電子顕微鏡(SEM)により観察を行い、誘電体粒子の断面積を円の面積に換算して直径を算出し、その直径の1.5倍を粒径とした。また、観察測定としては、それぞれ各10個の積層セラミックコンデンサを試料として、内部電極層の中央部分近傍および周辺部分近傍の誘電体層について、10000倍のSEM写真を各5視野撮影し、1視野について各10個の誘電体粒子の大きさを測定して平均値を求めた。なお、上記において内部電極層の周辺部分近傍の誘電体層とは、上記の切断面における内部電極層の両端部から内部電極層の長さに対してそれぞれ10%までの両領域の誘電体層を指している。   As a method for measuring the average particle diameter of the dielectric particles, the obtained multilayer ceramic capacitor is cut along a plane (surface shown in FIG. 1) that is perpendicular to the internal electrode and parallel to the end face on which the external electrode is formed. The surface is polished, subjected to chemical etching, and then observed with a scanning electron microscope (SEM). The diameter is calculated by converting the cross-sectional area of the dielectric particles into the area of a circle, and 1.5 times the diameter. Was the particle size. In addition, as an observation measurement, each of ten multilayer ceramic capacitors was used as a sample, and five 10000-times SEM photographs were taken for each of the dielectric layers near the central portion and the peripheral portion of the internal electrode layer. The average value was obtained by measuring the size of each of 10 dielectric particles. In the above description, the dielectric layer in the vicinity of the peripheral portion of the internal electrode layer refers to the dielectric layers in both regions up to 10% of the length of the internal electrode layer from both ends of the internal electrode layer on the cut surface. Pointing.

静電容量については、20℃の恒温槽中でデジタルLCRメータにて、測定周波数1kHz、測定電圧1.0Vrmsで測定を行い、ショート不良を除いた試料100個の平均値として評価した。また、ショート不良率は、100個のコンデンサ試料について抵抗値を測定し、抵抗値が10Ω以下のものをショート不良として、その不良個数を求めた。   The capacitance was measured with a digital LCR meter in a constant temperature bath at 20 ° C. at a measurement frequency of 1 kHz and a measurement voltage of 1.0 Vrms, and evaluated as an average value of 100 samples excluding short-circuit defects. The short-circuit defect rate was determined by measuring the resistance value of 100 capacitor samples and setting the resistance value of 10Ω or less as a short-circuit defect.

信頼性試験としての高温負荷試験は、次のようにして評価した。絶縁抵抗計を用い定格電圧6.3Vを1分間印加後の抵抗値を測定し、抵抗値が100MΩ以上のものを良品として各100個選別し、これらの試料の平均値を初期値とした。これら各100個に試料について、85℃の恒温槽中で定格電圧6.3Vを印加した状態で1000時間放置し、その後取出して、絶縁抵抗計を用い、定格電圧6.3Vを1分間印加後の抵抗値を測定し、これらの平均値を試験後値とした。また、抵抗値が2MΩ以下のものを絶縁抵抗劣化不良とした。   The high temperature load test as a reliability test was evaluated as follows. A resistance value after applying a rated voltage of 6.3 V for 1 minute was measured using an insulation resistance meter, and 100 resistance values of 100 MΩ or more were selected as non-defective products, and the average value of these samples was used as the initial value. Each of these 100 samples was left for 1000 hours with a rated voltage of 6.3 V applied in a constant temperature bath at 85 ° C., then taken out, and after applying a rated voltage of 6.3 V for 1 minute using an insulation resistance meter. The resistance value was measured, and the average value of these was taken as the post-test value. In addition, those having a resistance value of 2 MΩ or less were regarded as poor insulation resistance degradation.

(表1)に示したように、本実施例の積層セラミックコンデンサ10の誘電体層11の誘電体粒子の平均粒径は、誘電体層11の層方向で異なり、内部電極層12の周辺部分12B近傍の誘電体粒子13Bの平均粒径が0.30μmであり、内部電極層12の中央部分12A近傍の誘電体粒子13Aの平均粒径が0.39μmであり、周辺部分近傍の誘電体粒子13Bの平均粒径は、中央部分近傍の誘電体粒子13Aの平均粒径に比して小さく、中央部分近傍の誘電体粒子13Aの平均粒径の1.3分の1である。   As shown in (Table 1), the average particle diameter of the dielectric particles of the dielectric layer 11 of the multilayer ceramic capacitor 10 of this example differs in the layer direction of the dielectric layer 11, and the peripheral portion of the internal electrode layer 12 The average particle size of the dielectric particles 13B near 12B is 0.30 μm, the average particle size of the dielectric particles 13A near the central portion 12A of the internal electrode layer 12 is 0.39 μm, and the dielectric particles near the peripheral portion The average particle size of 13B is smaller than the average particle size of the dielectric particles 13A in the vicinity of the central portion, and is one-third of the average particle size of the dielectric particles 13A in the vicinity of the central portion.

本実施例の積層セラミックコンデンサ10において、誘電体層11の内部電極層12の周辺部分近傍の誘電体粒子13Bの平均粒径を中央部分近傍の誘電体粒子13Aの平均粒径に比して小さくできたのは、次の理由による。導電性ペースト膜に含まれる平均粒子径約0.05μmのチタン酸バリウムの誘電体粉末が誘電体層の粒成長を促進する成分として働くため、導電性ペースト膜を中央部分で厚くし含まれる誘電体粉末の単位面積当たりの重量を多くしているので、内部電極層の中央部分近傍の誘電体粒子の平均粒径を大きくすることができ、また、導電性ペースト膜を周辺部分で薄くし含まれる誘電体粉末の単位面積当たりの重量を少なくしているので内部電極層の周辺部分近傍の誘電体粒子の粒成長を抑制し平均粒径を小さくできる。なお、中央部分と周辺部分とで導電性ペースト膜に含まれる誘電体粉末の単位面積当たりの重量を変える方法としては、上記のように厚さを変える方法のほかに、導電性ペースト膜として中央部分と周辺部分とで誘電体粉末の添加量を変える方法によることもできる。   In the multilayer ceramic capacitor 10 of this embodiment, the average particle size of the dielectric particles 13B in the vicinity of the peripheral portion of the internal electrode layer 12 of the dielectric layer 11 is smaller than the average particle size of the dielectric particles 13A in the vicinity of the central portion. The reason is as follows. Since the dielectric powder of barium titanate having an average particle diameter of about 0.05 μm contained in the conductive paste film works as a component for promoting the grain growth of the dielectric layer, the conductive paste film is thickened in the central portion and included in the dielectric paste. Since the weight per unit area of the body powder is increased, the average particle size of the dielectric particles in the vicinity of the central portion of the internal electrode layer can be increased, and the conductive paste film is thinned and included in the peripheral portion. Since the weight per unit area of the dielectric powder is reduced, the growth of dielectric particles in the vicinity of the peripheral portion of the internal electrode layer can be suppressed and the average particle size can be reduced. As a method of changing the weight per unit area of the dielectric powder contained in the conductive paste film between the central portion and the peripheral portion, in addition to the method of changing the thickness as described above, the central portion of the conductive paste film It is also possible to use a method in which the addition amount of the dielectric powder is changed between the portion and the peripheral portion.

一方、比較例では、導電性ペースト膜を、中央部分、周辺部分ともにほぼ同じ厚みで含まれる誘電体粉末の量をほぼ同じにしたので、比較例の積層セラミックコンデンサの誘電体層の誘電体粒子の平均粒径は誘電体層の層方向で異なることがなく、内部電極層の周辺部分近傍および中央部分近傍ともに平均粒径が0.37μmである。   On the other hand, in the comparative example, the amount of dielectric powder contained in the conductive paste film in the central portion and the peripheral portion with substantially the same thickness is made substantially the same, so the dielectric particles of the dielectric layer of the multilayer ceramic capacitor of the comparative example The average particle size of the dielectric layer does not vary in the layer direction of the dielectric layer, and the average particle size is 0.37 μm in the vicinity of the peripheral portion and the central portion of the internal electrode layer.

そして、(表1)に示した評価結果から明らかなように、本実施例の積層セラミックコンデンサは、比較例の積層セラミックコンデンサとほぼ同様の値の静電容量であるにもかかわらず、比較例の積層セラミックコンデンサに比べて、ショート不良および高温負荷試験後の絶縁抵抗の劣化が極めて少なく、本実施例により、信頼性の高い積層セラミックコンデンサが歩留まり良く得られることがわかる。これは、以下の理由によると考えられる。   As is clear from the evaluation results shown in (Table 1), the multilayer ceramic capacitor of this example has a capacitance almost the same as that of the multilayer ceramic capacitor of the comparative example. Compared with the multilayer ceramic capacitor, it is found that the short-circuit defect and the deterioration of the insulation resistance after the high temperature load test are extremely small, and according to this example, a highly reliable multilayer ceramic capacitor can be obtained with a high yield. This is considered to be due to the following reason.

ショート不良については次のように考えられる。比較例では、周辺部分の導電性ペースト膜が厚いので、セラミック生シートと導電性ペースト膜とを積層加圧して積層体を作製する時に、導電性ペースト膜の有無による大きな段差により導電性ペースト膜の周辺部分に加圧力が集中しやすく、この部分でセラミック生シートが薄くなる方向に変形し導電性ペースト膜同士が近接する。そして、この部分である内部電極層の周辺部分近傍の誘電体粒子は、焼成時に粒成長し粒径が大きくなるとともに、誘電体粒子周辺に存する導電性ペーストの金属ニッケル粉末を移動させ、近接した導電性ペースト膜同士の金属ニッケル粉末が接続されショート不良となる。これに対して、本実施例では、周辺部分の導電性ペースト膜が薄いので、導電性ペースト膜の有無による段差が小さく、導電性ペースト膜の周辺部分のセラミック生シートの変形は少なく導電性ペースト膜同士は近接しにくい。そして、この部分である内部電極層の周辺部分近傍の誘電体粒子は、焼成時にあまり粒成長せず粒径が小さいので、誘電体粒子周辺に存する導電性ペーストの金属ニッケル粉末は移動することがなく、隣の層の導電性ペースト膜の金属ニッケル粉末と接続することがないので、ショート不良の発生を少なくできる。   The short circuit failure can be considered as follows. In the comparative example, since the conductive paste film in the peripheral portion is thick, when producing a laminate by laminating and pressing the ceramic raw sheet and the conductive paste film, the conductive paste film is caused by a large step due to the presence or absence of the conductive paste film. The pressing force is likely to concentrate on the peripheral part of the ceramic, and the ceramic raw sheet is deformed in this part in the direction of thinning, and the conductive paste films are close to each other. The dielectric particles in the vicinity of the peripheral portion of the internal electrode layer, which is this portion, grow and grow in size when fired, and move the metallic nickel powder of the conductive paste existing around the dielectric particles to make it close The metallic nickel powder between the conductive paste films is connected to cause a short circuit failure. On the other hand, in this embodiment, since the conductive paste film in the peripheral portion is thin, the level difference due to the presence or absence of the conductive paste film is small, and the deformation of the ceramic raw sheet in the peripheral portion of the conductive paste film is small. It is difficult for films to be close to each other. The dielectric particles in the vicinity of the peripheral portion of the internal electrode layer, which is this portion, do not grow so much during firing and the particle size is small, so that the metal nickel powder of the conductive paste existing around the dielectric particles can move. In addition, since there is no connection with the metallic nickel powder of the conductive paste film of the adjacent layer, the occurrence of short-circuit defects can be reduced.

また、高温負荷試験後の絶縁抵抗の劣化については次のように考えられる。一般的に、セラミックコンデンサにおいては電圧の印加によりセラミック誘電体粒子にひずみを生じ、このひずみ量は、誘電体粒子の誘電率が大きいほど大きくなる(いわゆる電歪現象)。そして、積層セラミックコンデンサにおいては、内部電極層の存する誘電体層では、電圧の印加により誘電体層の厚み方向に伸びる方向のひずみを生じるが、内部電極層のない周囲の誘電体セラミック部分では、ひずみを生じない。このため、内部電極層の有無の境界部分では、このひずみの有無による応力により、誘電体層に微小なクラックが生じやすく絶縁抵抗の劣化をもたらしやすい。そして、上記したように、電歪によるひずみ量は、誘電率が大きいほど大きくなるので、誘電体粒子の粒径が大きく誘電率が大きいほど、誘電体層に微小なクラックが生じやすくなり絶縁抵抗の劣化をもたらしやすくなる。   Moreover, the deterioration of the insulation resistance after the high temperature load test is considered as follows. In general, in a ceramic capacitor, distortion is generated in ceramic dielectric particles by applying a voltage, and the amount of distortion increases as the dielectric constant of the dielectric particles increases (so-called electrostriction phenomenon). In the multilayer ceramic capacitor, the dielectric layer in which the internal electrode layer exists causes distortion in the direction extending in the thickness direction of the dielectric layer due to the application of voltage, but in the surrounding dielectric ceramic portion without the internal electrode layer, Does not cause distortion. For this reason, in the boundary portion with or without the internal electrode layer, a minute crack is likely to occur in the dielectric layer due to the stress due to the presence or absence of the strain, and the insulation resistance is likely to deteriorate. As described above, the amount of strain due to electrostriction increases as the dielectric constant increases. Therefore, as the particle size of the dielectric particles increases and the dielectric constant increases, fine cracks are more likely to occur in the dielectric layer. It is easy to bring about deterioration.

上記の理由により、比較例では、内部電極層の有無の境界部分の近傍である内部電極層の周辺部分近傍の誘電体粒子の平均粒径が大きく誘電率が大きいため、誘電体層に微小なクラックが生じ絶縁抵抗が劣化し、絶縁抵抗劣化不良が100個中2個発生したものと考える。これに対して、本実施例では、内部電極層の周辺部分近傍の誘電体粒子の平均粒径が小さいので、誘電体層にクラックが生じず絶縁抵抗の劣化不良を発生していないものと考える。   For the above reason, in the comparative example, since the average particle size of the dielectric particles in the vicinity of the peripheral portion of the internal electrode layer that is in the vicinity of the boundary portion with or without the internal electrode layer is large and the dielectric constant is large, It is considered that cracks occurred and the insulation resistance deteriorated, resulting in 2 out of 100 defective insulation resistance deteriorations. On the other hand, in this example, since the average particle diameter of the dielectric particles in the vicinity of the peripheral portion of the internal electrode layer is small, it is considered that the dielectric layer is not cracked and the insulation resistance is not deteriorated. .

以上の結果から、本発明の積層セラミックコンデンサは、内部電極層の周辺部分近傍の誘電体粒子の平均粒径を、内部電極層の中央部分近傍の誘電体粒子の平均粒径に比して小さくした積層セラミックコンデンサであり、内部電極層の中央部分近傍の誘電体粒子の平均粒径を大きくすることにより、誘電率が大きく単位体積当たりの静電容量を大きくすることが可能となるとともに、ショート不良や信頼性不良を発生しやすい部位である内部電極層の周辺部分近傍の誘電体粒子の平均粒径を小さくしているので、ショート不良や絶縁抵抗の劣化不良といった信頼性不良の発生を抑制することができ、高信頼性でかつ小型で高容量の積層セラミックコンデンサとなることがわかる。   From the above results, in the multilayer ceramic capacitor of the present invention, the average particle size of the dielectric particles near the peripheral portion of the internal electrode layer is smaller than the average particle size of the dielectric particles near the central portion of the internal electrode layer. A multilayer ceramic capacitor that has a large dielectric constant and a large capacitance per unit volume by increasing the average particle size of the dielectric particles in the vicinity of the center portion of the internal electrode layer. The average particle size of the dielectric particles in the vicinity of the peripheral part of the internal electrode layer, where defects and reliability defects are likely to occur, is reduced, so that the occurrence of reliability defects such as short-circuit defects and insulation resistance deterioration defects is suppressed. It can be seen that the multilayer ceramic capacitor has a high reliability, a small size and a high capacity.

なお、内部電極層の周辺部分近傍の誘電体粒子の平均粒径を内部電極層の中央部分近傍の誘電体粒子の平均粒径に比して小さくすることにより、上記の効果が得られるが、内部電極層の周辺部分近傍の誘電体粒子の平均粒径を中央部分近傍の誘電体粒子の平均粒径の1.3分の1以下とすることにより、より顕著な上記の効果が得られる。   The above effect can be obtained by reducing the average particle size of the dielectric particles in the vicinity of the peripheral portion of the internal electrode layer as compared with the average particle size of the dielectric particles in the vicinity of the central portion of the internal electrode layer. By making the average particle size of the dielectric particles in the vicinity of the peripheral portion of the internal electrode layer 1/3 or less of the average particle size of the dielectric particles in the vicinity of the central portion, the above-described more remarkable effect can be obtained.

本発明に係る積層セラミックコンデンサおよびその製造方法は、誘電率が大きく単位体積当たりの静電容量を大きくすることが可能となるとともに、ショート不良や信頼性不良の発生を抑制することができ、薄層化、高積層化した場合においても高信頼性の積層セラミックコンデンサを歩留まり良く製造することができ、小型で高容量の積層セラミックコンデンサおよびその製造方法として特に有用である。   The multilayer ceramic capacitor and the method for manufacturing the same according to the present invention have a large dielectric constant and can increase the capacitance per unit volume, and can suppress the occurrence of short-circuit defects and reliability defects. Even in the case of layering and increasing the number of layers, a highly reliable multilayer ceramic capacitor can be manufactured with a high yield, and is particularly useful as a small-sized and high-capacity multilayer ceramic capacitor and a method for manufacturing the same.

実施の形態における積層セラミックコンデンサの概略断面図Schematic cross-sectional view of a multilayer ceramic capacitor in an embodiment 同積層セラミックコンデンサの内部電極層の中央部分近傍の誘電体層の拡大断面図Enlarged sectional view of the dielectric layer near the center of the internal electrode layer of the same multilayer ceramic capacitor 同積層セラミックコンデンサの内部電極層の周辺部分近傍の誘電体層の拡大断面図Enlarged sectional view of the dielectric layer near the periphery of the internal electrode layer of the same multilayer ceramic capacitor 実施の形態における導電性ペースト膜の断面形状を示す図The figure which shows the cross-sectional shape of the electrically conductive paste film | membrane in embodiment 比較例における導電性ペースト膜の断面形状を示す図The figure which shows the cross-sectional shape of the electrically conductive paste film | membrane in a comparative example

符号の説明Explanation of symbols

10 積層セラミックコンデンサ
11 誘電体層
12 内部電極層
12A 内部電極層の中央部分
12B 内部電極層の周辺部分
13A、13B 誘電体粒子
DESCRIPTION OF SYMBOLS 10 Multilayer ceramic capacitor 11 Dielectric layer 12 Internal electrode layer 12A Central part of internal electrode layer 12B Peripheral part of internal electrode layer 13A, 13B Dielectric particle

Claims (4)

内部電極層と誘電体層とを有する積層セラミックコンデンサであって、前記誘電体層を構成する誘電体粒子の平均粒径を誘電体層の層方向で異ならせたもので、前記内部電極層の周辺部分近傍の誘電体粒子の平均粒径を、前記内部電極層の中央部分近傍の誘電体粒子の平均粒径に比して小さくした積層セラミックコンデンサ。 A multilayer ceramic capacitor having an internal electrode layer and a dielectric layer, wherein the average particle diameter of the dielectric particles constituting the dielectric layer is made different in the layer direction of the dielectric layer. A multilayer ceramic capacitor in which an average particle size of dielectric particles in the vicinity of a peripheral portion is smaller than an average particle size of dielectric particles in the vicinity of a central portion of the internal electrode layer. 内部電極層の周辺部分近傍の誘電体粒子の平均粒径を、中央部分近傍の誘電体粒子の平均粒径の1.3分の1以下とした積層セラミックコンデンサ。 A multilayer ceramic capacitor in which an average particle size of dielectric particles in the vicinity of the peripheral portion of the internal electrode layer is set to 1/3 or less of an average particle size of dielectric particles in the vicinity of the central portion. 誘電体粉末を含むセラミック生シートと、内部電極となる導電性金属粉末と誘電体粉末とを含む導電性ペースト膜とを交互に積層して積層体を形成する工程を備え、前記導電性ペースト膜に含まれる誘電体粉末の単位面積当たりの重量を、導電性ペースト膜の面方向で異ならせたもので、前記導電性ペースト膜の周辺部分に含まれる誘電体粉末の単位面積当たりの重量を、前記導電性ペースト膜の中央部分に含まれる誘電体粉末の単位面積当たりの重量に比して少なくした積層セラミックコンデンサの製造方法。 A step of forming a laminate by alternately laminating a ceramic raw sheet containing dielectric powder, and a conductive paste film containing conductive metal powder and dielectric powder serving as internal electrodes, the conductive paste film The weight per unit area of the dielectric powder contained in the conductive paste film is different in the surface direction of the conductive paste film, the weight per unit area of the dielectric powder contained in the peripheral portion of the conductive paste film, A method for manufacturing a multilayer ceramic capacitor, wherein the dielectric powder contained in the central portion of the conductive paste film is less than the weight per unit area. 導電性ペースト膜の周辺部分の厚さを中央部分の厚さに比して薄くすることにより、前記導電性ペースト膜の周辺部分に含まれる誘電体粉末の単位面積当たりの重量を、前記導電性ペースト膜の中央部分に含まれる誘電体粉末の単位面積当たりの重量に比して少なくした請求項3に記載の積層セラミックコンデンサの製造方法。 By reducing the thickness of the peripheral portion of the conductive paste film compared to the thickness of the central portion, the weight per unit area of the dielectric powder contained in the peripheral portion of the conductive paste film 4. The method for manufacturing a multilayer ceramic capacitor according to claim 3, wherein the dielectric powder contained in the central portion of the paste film is less than the weight per unit area of the dielectric powder.
JP2007100210A 2007-04-06 2007-04-06 Laminated ceramic capacitor and its manufacturing method Pending JP2008258468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100210A JP2008258468A (en) 2007-04-06 2007-04-06 Laminated ceramic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100210A JP2008258468A (en) 2007-04-06 2007-04-06 Laminated ceramic capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008258468A true JP2008258468A (en) 2008-10-23

Family

ID=39981727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100210A Pending JP2008258468A (en) 2007-04-06 2007-04-06 Laminated ceramic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008258468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159140A (en) * 2014-02-21 2015-09-03 京セラ株式会社 capacitor
KR20240104031A (en) 2022-12-27 2024-07-04 다이요 유덴 가부시키가이샤 Multilayer ceramic electronic component and method for manufacturing multilayer ceramic electronic component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317321A (en) * 1998-05-01 1999-11-16 Taiyo Yuden Co Ltd Laminated ceramic capacitor and manufacture of the same
JP2002305124A (en) * 2000-05-30 2002-10-18 Tdk Corp Monolithic ceramic capacitor and method of manufacturing the same
JP2004179349A (en) * 2002-11-26 2004-06-24 Kyocera Corp Laminated electronic component and its manufacturing method
JP2007173725A (en) * 2005-12-26 2007-07-05 Tdk Corp Laminated electronic component and manufacturing method thereof
JP2007242827A (en) * 2006-03-08 2007-09-20 Kyocera Corp Laminated ceramic capacitor
JP2008085041A (en) * 2006-09-27 2008-04-10 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317321A (en) * 1998-05-01 1999-11-16 Taiyo Yuden Co Ltd Laminated ceramic capacitor and manufacture of the same
JP2002305124A (en) * 2000-05-30 2002-10-18 Tdk Corp Monolithic ceramic capacitor and method of manufacturing the same
JP2004179349A (en) * 2002-11-26 2004-06-24 Kyocera Corp Laminated electronic component and its manufacturing method
JP2007173725A (en) * 2005-12-26 2007-07-05 Tdk Corp Laminated electronic component and manufacturing method thereof
JP2007242827A (en) * 2006-03-08 2007-09-20 Kyocera Corp Laminated ceramic capacitor
JP2008085041A (en) * 2006-09-27 2008-04-10 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159140A (en) * 2014-02-21 2015-09-03 京セラ株式会社 capacitor
KR20240104031A (en) 2022-12-27 2024-07-04 다이요 유덴 가부시키가이샤 Multilayer ceramic electronic component and method for manufacturing multilayer ceramic electronic component

Similar Documents

Publication Publication Date Title
JP5711696B2 (en) Multilayer ceramic electronic components
KR101843190B1 (en) Ceramic electronic component and method for manufacturing the same
JP5694249B2 (en) Multilayer ceramic electronic components
JP5655036B2 (en) Dielectric ceramics, dielectric ceramic manufacturing method and multilayer ceramic capacitor
JP2007142342A (en) Multi-layer ceramic capacitor and its manufacturing method
JP2010153485A (en) Electronic component
JP2007123835A (en) Laminated ceramic capacitor and manufacturing method thereof
JP2014082435A (en) Multi-layered ceramic electronic component and method of manufacturing the same
JP5293951B2 (en) Electronic components
JP2013030775A (en) Multi-layered ceramic electronic component
JP2008085041A (en) Multilayer ceramic capacitor and its manufacturing method
US9129750B2 (en) Multilayered ceramic electronic component and manufacturing method thereof
KR101994719B1 (en) Multilayer ceramic electronic component and method for manufacturing the same
JP4826881B2 (en) Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component
JP2008258468A (en) Laminated ceramic capacitor and its manufacturing method
JP2006128283A (en) Laminated ceramic capacitor
JP2009266716A (en) Conductive paste, and manufacturing method of laminated ceramic capacitor
JP2010212503A (en) Laminated ceramic capacitor
JP2007242827A (en) Laminated ceramic capacitor
JP2022081393A (en) Laminated electronic component
JP3939281B2 (en) Electrode paste and method for manufacturing ceramic electronic component using the same
JP2005294738A (en) Lamination ceramic electronic component and paste for lamination ceramic electronic component
JP2014172769A (en) Laminated ceramic capacitor
JP5887919B2 (en) Electrode sintered body and laminated electronic component
JP2006344669A (en) Manufacturing method of laminated electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A711 Notification of change in applicant

Effective date: 20100128

Free format text: JAPANESE INTERMEDIATE CODE: A711

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Effective date: 20120216

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120529

Free format text: JAPANESE INTERMEDIATE CODE: A02