JP2003059784A - Method for sorting multilayer ceramic capacitor - Google Patents

Method for sorting multilayer ceramic capacitor

Info

Publication number
JP2003059784A
JP2003059784A JP2001242691A JP2001242691A JP2003059784A JP 2003059784 A JP2003059784 A JP 2003059784A JP 2001242691 A JP2001242691 A JP 2001242691A JP 2001242691 A JP2001242691 A JP 2001242691A JP 2003059784 A JP2003059784 A JP 2003059784A
Authority
JP
Japan
Prior art keywords
insulation resistance
voltage
resistance value
ceramic capacitor
sorting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001242691A
Other languages
Japanese (ja)
Inventor
Nobuyuki Koizumi
信幸 小泉
Yoshio Kawaguchi
慶雄 川口
Giichi Takagi
義一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001242691A priority Critical patent/JP2003059784A/en
Publication of JP2003059784A publication Critical patent/JP2003059784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for sorting multilayer capacitors in which even a rejectable product having a microdefect internally can be sorted in a short time. SOLUTION: In the first sorting step, a voltage several times as high as the rated voltage of a multilayer ceramic capacitor being sorted is applied for a specified time under a high temperature exceeding a working temperature range and then the insulation resistance is measured. In the second sorting step, a voltage within the rated voltage is applied for a shorter time than the applying time in the first sorting step at the temperature in the first sorting step and then the insulation resistance is measured again. A new reference insulation resistance higher than that in the first sorting step is employed in the second sorting step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、積層セラミック
コンデンサの選別方法、さらに詳細には、高温高電圧印
加による絶縁抵抗値測定による積層セラミックコンデン
サの選別方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selecting a laminated ceramic capacitor, and more particularly to a method for selecting a laminated ceramic capacitor by measuring an insulation resistance value by applying a high temperature and high voltage.

【0002】[0002]

【従来の技術】積層セラミック電子部品では、該積層セ
ラミック電子部品を搭載する機器の小型化および軽量化
により、電子部品自体の小型化、軽量化が強く要求され
る。例えば、積層セラミックコンデンサにおいては、小
型化をしながら大容量化を行うために、内部電極間のセ
ラミック層の厚みを薄くすれることが行われている。
2. Description of the Related Art In a monolithic ceramic electronic component, there is a strong demand for miniaturization and weight reduction of the electronic component itself due to miniaturization and weight reduction of a device in which the monolithic ceramic electronic component is mounted. For example, in a monolithic ceramic capacitor, in order to increase the capacity while reducing the size, the thickness of the ceramic layer between the internal electrodes is reduced.

【0003】しかしながら、セラミック層が薄くなる
と、セラミックコンデンサは製造工程において、セラミ
ック層内に不純物の凝集、空隙等が発生する確率が高く
なって、コンデンサとして初期故障が起こりやすくな
り、信頼性を低下させることがあった。また、これらの
欠陥を有する不良品は常温下で定格電圧またはその数倍
の電圧を数秒印加して絶縁抵抗値を測定し、絶縁抵抗値
が基準に達していないものを不良品とすることにより検
出して、選別していた。
However, as the ceramic layer becomes thinner, the probability that agglomeration of impurities, voids, etc. will occur in the ceramic layer during the manufacturing process of the ceramic capacitor, and the initial failure of the capacitor is likely to occur, resulting in reduced reliability. There was something to do. For defective products with these defects, the insulation resistance value is measured by applying the rated voltage or a voltage several times higher than that at room temperature for several seconds, and the product whose insulation resistance value does not reach the standard is regarded as a defective product. It was detected and sorted.

【0004】[0004]

【発明が解決しようとする課題】しかし、内部電極間の
セラミック層の厚みが薄くなればなるほど、セラミック
層にわずかな構造欠陥が存在する場合であっても、積層
セラミックコンデンサの信頼性は低下する確率が大きく
なる。このようなわずかな構造欠陥は、通常、常温で積
層セラミックコンデンサの絶縁抵抗値を測定し、選別し
ても、検出が困難であるため、検出されなかった不良品
において、実使用時に欠陥による不良が遅れて発生する
おそれがあった。
However, the thinner the ceramic layer between the internal electrodes, the lower the reliability of the monolithic ceramic capacitor, even if there are slight structural defects in the ceramic layer. The probability increases. Such a slight structural defect is usually difficult to detect even if the insulation resistance value of the monolithic ceramic capacitor is measured and sorted at room temperature. Could be delayed.

【0005】そこで、特開2000−164471号の
ように積層セラミックコンデンサに高温下で、高電圧を
印加(例えば、105℃で定格電圧の3倍程度の30V
の電圧を5分間印加)して、内在している欠陥部分の破
壊、劣化を引き起こして欠陥を顕在化させ、その状態で
絶縁抵抗値を測定し選別する方法が考えられている。
Therefore, as in Japanese Patent Laid-Open No. 2000-164471, a high voltage is applied to a monolithic ceramic capacitor at a high temperature (for example, at 105 ° C., 30 V which is about three times the rated voltage).
Voltage is applied for 5 minutes) to cause destruction and deterioration of the existing defective portion to reveal the defect, and then the insulation resistance value is measured and selected in that state.

【0006】この選別方法は、常温での選別に比べて微
小な欠陥を検出することができるが、高温高電圧環境下
では良品も絶縁抵抗値が低下するため、微小な欠陥によ
り劣化しかけている欠陥品の絶縁抵抗値との差が小さく
なり、良品と不良品との判別が困難となる場合がある。
This sorting method can detect fine defects as compared with sorting at room temperature, but in a high temperature and high voltage environment, the insulation resistance value of a non-defective product also decreases, so that the defects are about to deteriorate. In some cases, the difference between the insulation resistance value of a defective product and the defective product becomes small, and it may be difficult to distinguish between a good product and a defective product.

【0007】この発明の目的は、微小な欠陥を内在する
不良品もさらに短時間で選別することができる積層コン
デンサの選別方法を提供することにある。
An object of the present invention is to provide a method of selecting a multilayer capacitor which can select a defective product having a minute defect therein in a shorter time.

【0008】[0008]

【課題を解決するための手段】この発明は、積層セラミ
ックコンデンサに高温下で定格電圧の数倍の大きさの第
1の電圧を印加して絶縁抵抗値を測定して不良品を選別
するとともに、積層セラミックコンデンサに内在する欠
陥を劣化させた後に、高温下で第1の電圧よりも低い第
2の電圧を印加して絶縁抵抗値を測定して不良品を選別
するという二つの選別工程を備えて積層セラミックコン
デンサを選別する。これにより、二条件下で積層セラミ
ックコンデンサの選別を行う。
According to the present invention, a defective ceramic is selected by applying a first voltage, which is several times larger than the rated voltage, to a laminated ceramic capacitor at high temperature and measuring an insulation resistance value. After deteriorating the defects inherent in the monolithic ceramic capacitor, a second voltage lower than the first voltage is applied at a high temperature to measure an insulation resistance value to select defective products. The multilayer ceramic capacitors are selected in preparation. Thereby, the monolithic ceramic capacitors are selected under the two conditions.

【0009】また、この発明は、第2の電圧を第2の基
準絶縁抵抗値で除算した値が、第1の電圧を第1の基準
絶縁抵抗値で除算した値の10分の1以上となるよう
に、第2の電圧を設定して積層セラミックコンデンサを
選別する。これにより、二回の選別工程の印加電圧を大
きく変更させる。
Further, according to the present invention, the value obtained by dividing the second voltage by the second reference insulation resistance value is 1/10 or more of the value obtained by dividing the first voltage by the first reference insulation resistance value. The second voltage is set so that the multilayer ceramic capacitors are selected. As a result, the applied voltage in the two sorting steps is greatly changed.

【0010】[0010]

【発明の実施の形態】本発明に係る積層セラミックコン
デンサの選別方法の一実施形態を以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method for selecting a multilayer ceramic capacitor according to the present invention will be described below.

【0011】選別される積層コンデンサはチタン酸バリ
ウム系セラミックスのような誘電体セラミックスよりな
るセラミック焼結体を有する。積層コンデンサ内には、
対向し合う複数の内部電極を有し、これらはセラミック
層を介して厚み方向に重なり合うように配置されてい
る。内部電極はセラミック層となるセラミックグリーン
シート等のセラミックスの表面に導電ペーストをスクリ
ーン印刷し、焼成することにより形成されている。これ
らの内部電極はセラミック焼結体の対向する二側面にそ
れぞれ交互に引き出されており、この対向する側面を覆
うようにそれぞれ外部電極が形成されている。外部電極
は導電ペーストの塗布、焼成などの方法により形成され
ている。
The multilayer capacitor to be selected has a ceramic sintered body made of a dielectric ceramic such as barium titanate ceramics. In the multilayer capacitor,
It has a plurality of internal electrodes facing each other, and these are arranged so as to overlap in the thickness direction with a ceramic layer interposed therebetween. The internal electrodes are formed by screen-printing a conductive paste on the surface of a ceramic such as a ceramic green sheet to be a ceramic layer and firing it. These internal electrodes are alternately drawn out to two opposing side surfaces of the ceramic sintered body, and external electrodes are formed so as to cover the opposing side surfaces. The external electrodes are formed by a method such as applying a conductive paste and firing.

【0012】このような積層セラミックコンデンサの不
良品を選別する方法として、以下に示す二種類の選別を
連続して行う。
As a method for selecting defective products of such a monolithic ceramic capacitor, the following two kinds of selection are carried out successively.

【0013】第1の選別として、選別される積層セラミ
ックコンデンサの定格電圧の約10倍程度の電圧を、使
用温度範囲を超えた高温下で一定時間印加し、この際の
絶縁抵抗値を測定する。絶縁抵抗値は電圧印加時に発生
する微少な電流(漏れ電流)を測定することにより得ら
れる。この測定した絶縁抵抗値が予め設定された第1の
基準の絶縁抵抗値よりも測定品の絶縁抵抗値が低い場合
には、不良品として選別される。
As the first selection, a voltage about 10 times the rated voltage of the selected monolithic ceramic capacitor is applied for a certain period of time at a high temperature exceeding the operating temperature range, and the insulation resistance value at this time is measured. . The insulation resistance value can be obtained by measuring a minute current (leakage current) generated when a voltage is applied. When the measured insulation resistance value is lower than the preset first reference insulation resistance value, the insulation resistance value of the measured product is lower, the product is selected as a defective product.

【0014】次に、第1の選別において充電された電圧
を放電した後、第2の選別として、定格電圧内の電圧
を、第1の選別における温度で、第1の選別における印
加時間よりも短い時間印加し、再度、絶縁抵抗値を測定
する。この選別においては、予め設定された第1の選別
の基準となる絶縁抵抗値よりも高い、新たな基準の絶縁
抵抗値により選別する。ここで、第2の選別の基準とな
る絶縁抵抗値よりも低い場合に、不良品として選別され
る。
Next, after discharging the voltage charged in the first screening, as a second screening, the voltage within the rated voltage is the temperature in the first screening, and is longer than the application time in the first screening. Apply it for a short time and measure the insulation resistance again. In this selection, a new reference insulation resistance value that is higher than the preset insulation resistance value that is the reference for the first selection is used. Here, if it is lower than the insulation resistance value that is the reference for the second selection, it is selected as a defective product.

【0015】このような構成とすることにより、第1の
選別において、積層コンデンサを一次選別するととも
に、第1の選別で、積層コンデンサにとっては高温、高
圧の高ストレスを与えることにより、積層コンデンサに
内在する微小な欠陥の破壊、劣化を引き起こさせる。
With such a structure, in the first screening, the multilayer capacitors are primarily screened, and in the first screening, high stress of high temperature and high pressure is applied to the multilayer capacitors, so that the multilayer capacitors are applied to the multilayer capacitors. It causes the destruction and deterioration of the internal minute defects.

【0016】ここで、第2の選別を行うことにより、微
小な欠陥は表面化し、選別が容易になる。
Here, by carrying out the second selection, minute defects are surfaced and the selection becomes easy.

【0017】また、第1の選別は高温下で行われるた
め、良品についても、その絶縁抵抗値が下がるため、高
ストレスによってそれほど欠陥部分が劣化しなかった微
小な欠陥を内在する潜在的不良品との差が小さく、区別
をつけることが困難である。しかし、温度をそのままに
して印加電圧を低くすると良品の絶縁抵抗値は高くな
る。このため、良品と潜在的不良品との絶縁抵抗値の差
が広がり、少しの内部構造の差でも、絶縁抵抗値の差を
判別することができる。
Since the first screening is carried out at a high temperature, the insulation resistance value of the good product is also lowered, so that a latent defect product containing minute defects whose defect portions are not so deteriorated due to high stress. The difference between and is small and it is difficult to make a distinction. However, if the applied voltage is lowered while keeping the temperature as it is, the insulation resistance value of a good product increases. Therefore, the difference in the insulation resistance value between the non-defective product and the potentially defective product is widened, and the difference in the insulation resistance value can be discriminated even with a slight difference in the internal structure.

【0018】よって、第2の選別を、第1の選別と同じ
温度で第1の選別における印加電圧よりも低い電圧であ
る、例えば定格電圧に近い電圧下で、絶縁抵抗値を測定
することにより、さほど大きな欠陥を内在していなくて
も、良品の絶縁抵抗値との違いを確実に検出することが
できる。
Therefore, the second screening can be performed by measuring the insulation resistance value at the same temperature as the first screening and at a voltage lower than the applied voltage in the first screening, for example, a voltage close to the rated voltage. Even if it does not have such a large defect, it is possible to reliably detect the difference from the insulation resistance value of a good product.

【0019】次に、本実施形態に係る実験の結果を以下
に説明する。
Next, the results of the experiment according to this embodiment will be described below.

【0020】実験に用いた積層セラミックコンデンサ
は、チタン酸バリウムの誘電体層にニッケルの内部電極
を形成したものであり、定格電圧は6.3Vで、使用温
度範囲は−25℃〜85℃である。
The monolithic ceramic capacitor used in the experiment was one in which a nickel internal electrode was formed on a dielectric layer of barium titanate, the rated voltage was 6.3 V, and the operating temperature range was -25 ° C to 85 ° C. is there.

【0021】この実験は、この積層セラミックコンデン
サを以下の4種類の条件において選別を行い、選別され
た良品について信頼性試験を行い、選別後の良品内に不
良品が存在するかどうかを確認している。ここで、信頼
性試験の条件は、125℃の温度下で、30Vの電圧を
6時間に亘り印加することであり、その後に、積層セラ
ミックコンデンサの絶縁抵抗値を測定し、良否を判断し
た。
In this experiment, this laminated ceramic capacitor was selected under the following four conditions, and a reliability test was performed on the selected good product to confirm whether or not there is a defective product in the good product after selection. ing. Here, the condition of the reliability test is that a voltage of 30 V is applied for 6 hours at a temperature of 125 ° C., and thereafter, the insulation resistance value of the laminated ceramic capacitor was measured to judge whether it was good or bad.

【0022】の選別は、温度が125℃、印加電圧が
65V、印加時間60秒の条件で通電し、この状態での
絶縁抵抗値を測定し、絶縁抵抗値が0.7MΩ以上であ
れば良品としている。の選別は、−1での選別と
同じ条件で選別を行った後、良品として選別されたもの
を、−2で温度が125℃、印加電圧が45V、印加
時間10秒の条件で通電し、この状態での絶縁抵抗値が
1.5MΩ以上であれば良品としている。の選別は、
−1での選別と同じ条件で選別を行った後、良品と
して選別されたものを、−2で温度が125℃、印加
電圧が25V、印加時間10秒の条件で通電し、この状
態での絶縁抵抗値が4.0MΩ以上であれば良品として
いる。の選別は、−1での選別と同じ条件で選別
を行った後、良品として選別されたものを、−2で温
度が125℃、印加電圧が10V、印加時間10秒の条
件で通電し、この状態での絶縁抵抗値が10.0MΩ以
上であれば良品としている。この結果を表1に示す。
For selection, the current is applied under conditions of a temperature of 125 ° C., an applied voltage of 65 V and an applied time of 60 seconds, and the insulation resistance value in this state is measured. I am trying. In the selection of No. 1, after performing the selection under the same conditions as the selection in -1, the products selected as non-defective products are energized under the conditions of -2 at a temperature of 125 ° C, an applied voltage of 45 V, and an application time of 10 seconds, If the insulation resistance value in this state is 1.5 MΩ or more, it is considered a good product. The selection of
After sorting under the same conditions as the sorting in -1, the sorted products as good products are energized at -2 in temperature of 125 ° C., applied voltage of 25 V, and applied time of 10 seconds. If the insulation resistance value is 4.0 MΩ or more, it is regarded as a good product. In the selection of No. 1, after performing the selection under the same conditions as the selection in -1, the products selected as non-defective products are energized under the conditions of -2 at a temperature of 125 ° C, an applied voltage of 10 V, and an application time of 10 seconds, If the insulation resistance value in this state is 10.0 MΩ or more, it is determined as a good product. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示されるように、一度、高温・高電
圧条件で選別したのち、高温で定格電圧に近い電圧を印
加して高い絶縁抵抗値基準で選別することにより、高温
・高電圧条件のみで選別した場合と比較して潜在不良の
検出率は向上する。
As shown in Table 1, once selected under high temperature and high voltage conditions, a voltage close to the rated voltage is applied at high temperature and selected according to a high insulation resistance value. The detection rate of latent defects is improved as compared with the case of selecting only by itself.

【0025】また、二度目の選別が、低電圧であり、高
い絶縁抵抗基準であるほど、不良の検出率は向上する。
Further, the lower the voltage of the second selection and the higher the insulation resistance standard, the higher the defect detection rate.

【0026】このように、一度目に高温・高電圧条件で
選別した後に、高温・低電圧(一度目よりも低い電圧で
あり、定格電圧に近い電圧)条件で選別することによ
り、不良品の検出率を向上することができる。
As described above, after the first selection under the high temperature / high voltage condition, the selection under the high temperature / low voltage (voltage lower than the first time and close to the rated voltage) condition, The detection rate can be improved.

【0027】なお、本実施形態では、前述の積層セラミ
ックコンデンサを用い、前述の具体的な選別条件を得
た。これらの条件は、積層セラミックコンデンサの形
状、電気特性、信頼性特性等により変化するものであ
り、それぞれの積層セラミックコンデンサに適応した条
件を予め実験的に得ることにより、同様の選別を行うこ
とができる。
In this embodiment, the above-mentioned specific selection conditions are obtained by using the above-mentioned laminated ceramic capacitor. These conditions vary depending on the shape, electrical characteristics, reliability characteristics, etc. of the monolithic ceramic capacitor, and similar selection can be performed by experimentally obtaining the conditions suitable for each monolithic ceramic capacitor in advance. it can.

【0028】また、本実施形態では、高温条件として1
25℃で高電圧印加を行ったが、常温(約25℃)より
も高い温度であれば、常温時よりも劣化が進むため、本
願において高温とは常温よりも高い温度を示している。
なお、高温高電圧条件における時間を考慮すると85℃
〜180℃程度の温度が望ましい。
In this embodiment, the high temperature condition is 1
Although a high voltage was applied at 25 ° C., if the temperature is higher than room temperature (about 25 ° C.), the deterioration is higher than that at room temperature, so the high temperature in the present application indicates a temperature higher than room temperature.
When considering the time under high temperature and high voltage conditions, 85 ° C
A temperature of about 180 ° C is desirable.

【0029】[0029]

【発明の効果】この発明によれば、積層セラミックコン
デンサに高温下で第1の電圧を印加して絶縁抵抗値を測
定して不良品を選別するとともに、積層セラミックコン
デンサに内在する欠陥を劣化させた後に、高温下で第1
の電圧よりも低い第2の電圧を印加して絶縁抵抗値を測
定して不良品を選別するという二つの選別工程を備えて
積層セラミックコンデンサを選別する。これにより、第
1の選別で表面化している欠陥を含む不良品を、内在す
る欠陥を含む不良品および良品から検出し、第2の選別
で、第1の選別において選別できなかった内在する欠陥
を含む不良品を検出することができる。
According to the present invention, a first voltage is applied to a monolithic ceramic capacitor at a high temperature to measure an insulation resistance value to select a defective product, and a defect inherent in the monolithic ceramic capacitor is deteriorated. First after high temperature
The multi-layer ceramic capacitor is selected by the two selection processes of applying a second voltage lower than the voltage of 1 to measure the insulation resistance value and selecting defective products. As a result, defective products including defects that have been surfaced in the first screening are detected from defective products including internal defects and non-defective products, and inherent defects that cannot be sorted in the first screening in the second screening. It is possible to detect defective products including.

【0030】また、この発明によれば、第2の電圧を第
2の基準絶縁抵抗値で除算した値が、第1の電圧を第1
の基準絶縁抵抗値で除算した値の10分の1以上となる
ように、第2の電圧を設定して積層セラミックコンデン
サを選別する。このように、二回の選別工程の印加電圧
の差を大きくすることにより、表面化した欠陥を有する
不良品を第2の選別にてさらに確実かつ容易に検出する
ことができる。
According to the present invention, the value obtained by dividing the second voltage by the second reference insulation resistance value gives the first voltage as the first value.
The multilayer ceramic capacitors are selected by setting the second voltage so as to be 1/10 or more of the value divided by the reference insulation resistance value of. In this way, by increasing the difference in applied voltage between the two sorting steps, defective products having surfaced defects can be detected more reliably and easily in the second sorting.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 義一 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 5E082 AB03 BC40 FG26 MM19 MM35   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshikazu Takagi             2-10-10 Tenjin, Nagaokakyo, Kyoto Stock             Murata Manufacturing Co., Ltd. F term (reference) 5E082 AB03 BC40 FG26 MM19 MM35

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の内部電極がセラミック層を介して
積層された積層セラミックコンデンサの選別方法であっ
て、 前記積層セラミックコンデンサに高温下で定格電圧の数
倍の大きさの第1の電圧を印加して絶縁抵抗値を測定
し、該絶縁抵抗値が第1の基準絶縁抵抗値よりも低い積
層セラミックコンデンサを不良品として選別するととも
に、前記積層セラミックコンデンサに内在する欠陥を劣
化させ、 前記選別後に、前記高温下で第1の電圧よりも低い第2
の電圧を印加して絶縁抵抗値を測定し、該絶縁抵抗値が
第2の基準絶縁抵抗値よりも低い積層セラミックコンデ
ンサを不良品として選別する積層セラミックコンデンサ
の選別方法。
1. A method for selecting a laminated ceramic capacitor in which a plurality of internal electrodes are laminated via ceramic layers, wherein a first voltage having a magnitude several times higher than a rated voltage is applied to the laminated ceramic capacitor at a high temperature. Insulation resistance value is applied to measure the insulation resistance value, and a monolithic ceramic capacitor whose insulation resistance value is lower than the first reference insulation resistance value is selected as a defective product, and defects inherent in the monolithic ceramic capacitor are deteriorated. Later, a second voltage lower than the first voltage at the high temperature
Voltage is applied to measure the insulation resistance value, and the insulation resistance value of the insulation resistance value is lower than the second reference insulation resistance value is selected as a defective product.
【請求項2】 前記第2の電圧を前記第2の基準絶縁抵
抗値で除算した第2の漏れ電流値が、前記第1の電圧を
前記第1の基準絶縁抵抗値で除算した第1の漏れ電流値
の10分の1以上となるように、前記第2の電圧を設定
した請求項1に記載の積層セラミックコンデンサの選別
方法。
2. A second leakage current value obtained by dividing the second voltage by the second reference insulation resistance value is a first leakage current value obtained by dividing the first voltage by the first reference insulation resistance value. The method for selecting a monolithic ceramic capacitor according to claim 1, wherein the second voltage is set so as to be 1/10 or more of a leakage current value.
JP2001242691A 2001-08-09 2001-08-09 Method for sorting multilayer ceramic capacitor Pending JP2003059784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242691A JP2003059784A (en) 2001-08-09 2001-08-09 Method for sorting multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242691A JP2003059784A (en) 2001-08-09 2001-08-09 Method for sorting multilayer ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2003059784A true JP2003059784A (en) 2003-02-28

Family

ID=19072927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242691A Pending JP2003059784A (en) 2001-08-09 2001-08-09 Method for sorting multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2003059784A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460884C (en) * 2003-09-25 2009-02-11 Tdk株式会社 Screening method for laminated ceramic capacitors
JP2020102483A (en) * 2018-12-20 2020-07-02 株式会社村田製作所 Quality determination device and quality determination method of multilayer ceramic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460884C (en) * 2003-09-25 2009-02-11 Tdk株式会社 Screening method for laminated ceramic capacitors
JP2020102483A (en) * 2018-12-20 2020-07-02 株式会社村田製作所 Quality determination device and quality determination method of multilayer ceramic capacitor
JP7243175B2 (en) 2018-12-20 2023-03-22 株式会社村田製作所 Apparatus for Determining Quality of Multilayer Ceramic Capacitor and Method for Determining Quality Thereof

Similar Documents

Publication Publication Date Title
JP2760263B2 (en) Screening method for early failure products of ceramic capacitors
US6437579B1 (en) Screening method for a multi-layered ceramic capacitor
JP7352209B2 (en) Mechanism to detect abnormal current
JP2003059784A (en) Method for sorting multilayer ceramic capacitor
US6509741B2 (en) Method for screening multi-layer ceramic electronic component
KR100877041B1 (en) Screening method of multilayer ceramic capacitor
JPH0421329B2 (en)
JP2009295606A (en) Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
JPH10293107A (en) Internal defect inspection method for multilayer ceramic capacitor
JPH08227826A (en) Method for screening laminated ceramic capacitor
JP2994911B2 (en) Screening method for ceramic electronic components
JP2003249424A (en) Selecting method of laminated capacitor
JP2969666B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2002168897A (en) Screening method for ceramic electronic part
JP2000208380A (en) Method for selecting multilayer ceramic capacitor
JP4117357B2 (en) Screening method for multilayer ceramic capacitors
JP3144224B2 (en) Screening method for ceramic capacitors
JP2001035758A (en) Method and apparatus for screening laminated ceramic electronic component
JP2000150329A (en) Screening method for laminated ceramic capacitor
JP4131776B2 (en) Screening method for multilayer capacitors
JP3223910B2 (en) Multilayer ceramic electronic components
JP2004103909A (en) Method for designing degreasing step in manufacturing method for laminated ceramic capacitor
US7470291B2 (en) Production process of ceramic electronic component
JPH0837125A (en) Method for screening monolithic ceramic capacitor
JP2019212843A (en) Quality determination method of multilayer ceramic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A02 Decision of refusal

Effective date: 20061212

Free format text: JAPANESE INTERMEDIATE CODE: A02