JP2009295606A - Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor - Google Patents

Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor Download PDF

Info

Publication number
JP2009295606A
JP2009295606A JP2008144470A JP2008144470A JP2009295606A JP 2009295606 A JP2009295606 A JP 2009295606A JP 2008144470 A JP2008144470 A JP 2008144470A JP 2008144470 A JP2008144470 A JP 2008144470A JP 2009295606 A JP2009295606 A JP 2009295606A
Authority
JP
Japan
Prior art keywords
value
multilayer ceramic
current
ceramic capacitor
current ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008144470A
Other languages
Japanese (ja)
Inventor
Fuyuki Abe
冬希 阿部
Hiroyuki Takeuchi
宏之 竹内
Kimihiko Ikeda
公彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008144470A priority Critical patent/JP2009295606A/en
Publication of JP2009295606A publication Critical patent/JP2009295606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for testing a multilayer ceramic capacitor, capable of evaluating the reliability of a multilayer capacitor with high accuracy, having a dielectric layer of 2 μm or smaller thickness at an initial stage. <P>SOLUTION: A voltage is applied to the multilayer ceramic capacitor to measure a current value I1, then a voltage reverse to this voltage is applied to measure a current value I2, a current ratio of the current value I2 to the current value I1 is obtained, and the obtained current ratio is used as a first current ratio. The current ratios of a plurality of multilayer ceramic capacitors, each having the manufacturing method same as that of the above multilayer ceramic capacitor are calculated, in the same manner as that of the current ratio, and the calculated current ratios are each used as a second current ratio. A multilayer ceramic capacitor having the first current ratio which is not smaller than that of a lower value a-3×σ and not larger than that of an upper value a+3×σ, calculated from a mean value between the second current ratio and the standard deviation value σ is evaluated as not having problems in reliability, in a high-temperature load environment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、誘電体層と内部電極層を有した積層セラミックコンデンサの試験方法および積層セラミックコンデンサの製造方法に関するものである。   The present invention relates to a method for testing a multilayer ceramic capacitor having a dielectric layer and an internal electrode layer, and a method for manufacturing the multilayer ceramic capacitor.

近年、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型化、大容量化が急速に進んでいる。   In recent years, there has been a high demand for downsizing of electronic components accompanying the increase in the density of electronic circuits, and the downsizing and increase in capacity of multilayer ceramic capacitors are rapidly progressing.

その実現のために、チタン酸バリウム等からなる強誘電体セラミックの誘電体層を薄層化するという方法が採用されており誘電体層の1層の厚みは1〜3μmになってきている。   In order to realize this, a method of thinning a dielectric layer of a ferroelectric ceramic made of barium titanate or the like is adopted, and the thickness of one layer of the dielectric layer has become 1 to 3 μm.

そのため、所定の定格電圧を有する積層セラミックコンデンサの誘電体層の1層当たりの電界が非常に大きくなり、信頼性試験において積層セラミックコンデンサの絶縁抵抗が劣化する課題があった。   Therefore, the electric field per dielectric layer of the multilayer ceramic capacitor having a predetermined rated voltage becomes very large, and there is a problem that the insulation resistance of the multilayer ceramic capacitor deteriorates in the reliability test.

そして、従来の積層セラミックコンデンサの信頼性を評価する試験方法として、例えば特許文献1では、積層セラミックコンデンサに極性が同じ電圧を連続して印加したときの夫々の電流値を測定し、その電流値の比の値によりセラミックコンデンサの高温負荷試験における信頼性を評価する方法が提案されている。
特開平10−335174号公報
As a test method for evaluating the reliability of a conventional multilayer ceramic capacitor, for example, in Patent Document 1, each current value when a voltage having the same polarity is continuously applied to the multilayer ceramic capacitor is measured, and the current value is measured. A method has been proposed for evaluating the reliability of ceramic capacitors in a high-temperature load test based on the value of the ratio.
JP-A-10-335174

しかしながら、このような従来の積層セラミックコンデンサの試験方法は、同一極性の電圧を連続して印加するものであり、強誘電体セラミックからなる誘電体層の厚みが2μm以下の薄厚の場合、1回目の電流値に比較し2回目の電流値は非常に小さくなり、電流値の比と高温負荷試験における絶縁抵抗劣化との相関を得ることができなくなり、積層セラミックコンデンサの信頼性を評価することができないという課題があった。   However, such a conventional method for testing a multilayer ceramic capacitor is one in which a voltage having the same polarity is continuously applied. When the thickness of the dielectric layer made of a ferroelectric ceramic is 2 μm or less, the first test is performed. The current value of the second time becomes very small compared to the current value of the current, and it becomes impossible to obtain a correlation between the ratio of the current value and the deterioration of the insulation resistance in the high temperature load test, and the reliability of the multilayer ceramic capacitor can be evaluated. There was a problem that it was not possible.

本発明は、このような従来の課題を解決するもので、積層セラミックコンデンサの初期特性から高温負荷環境における積層セラミックコンデンサの信頼性を精度良く評価できる試験方法を提供することを目的とする。   An object of the present invention is to solve such a conventional problem and to provide a test method capable of accurately evaluating the reliability of a multilayer ceramic capacitor in a high temperature load environment from the initial characteristics of the multilayer ceramic capacitor.

また、高温負荷環境において絶縁抵抗の劣化を低減した積層セラミックコンデンサの製造方法を提供することを目的とするものである。   It is another object of the present invention to provide a method for manufacturing a multilayer ceramic capacitor in which deterioration of insulation resistance is reduced in a high temperature load environment.

上記目的を達成するために本発明は、誘電体層と内部電極層とが交互に積層されたセラミック素体に外部電極を有する積層セラミックコンデンサの試験方法であって、前記積層セラミックコンデンサに電圧を印加し電流値I1を測定し、続いて前記電圧の逆電圧を印加し電流値I2を測定し、前記電流値I1に対する前記電流値I2の電流比の値により高温負荷環境における前記積層セラミックコンデンサの信頼性を評価する前記積層セラミックコンデンサの試験方法である。   In order to achieve the above object, the present invention provides a method for testing a multilayer ceramic capacitor having an external electrode on a ceramic body in which dielectric layers and internal electrode layers are alternately stacked, wherein a voltage is applied to the multilayer ceramic capacitor. The current value I1 is applied, and then the reverse voltage of the voltage is applied to measure the current value I2. The current ratio of the current value I2 to the current value I1 is determined according to the current ratio of the multilayer ceramic capacitor in a high temperature load environment. This is a test method for the multilayer ceramic capacitor for evaluating reliability.

また、誘電体層と内部電極層とが交互に積層されたセラミック素体に外部電極を有する積層セラミックコンデンサを用意し、前記積層セラミックコンデンサに電圧を印加し電流値I1を測定し、次に前記電圧の逆電圧を印加し電流値I2を測定し、前記電流値I1に対する前記電流値I2の電流比を算出し、この電流比を第1の電流比とする工程と、前記積層セラミックコンデンサと同じ製造方法を有する複数個の積層セラミックコンデンサに電圧を印加し電流値I1aを測定し、次に前記電圧の逆電圧を印加し電流値I2aを測定し、前記電流値I1aに対する前記電流値I2aの電流比を算出し、この電流比を第2の電流比とする工程と、第2の電流比の平均値aと標準偏差値σを算出し下値a−k×σ、上値a+k×σ(kは正の値)を求める工程と、第1の電流比が、第2の電流比の前記下値以上、前記上値以下である前記積層セラミックコンデンサを良品とする選別工程と、を備える積層セラミックコンデンサの製造方法である。   Also, a multilayer ceramic capacitor having external electrodes on a ceramic body in which dielectric layers and internal electrode layers are alternately stacked is prepared, a voltage is applied to the multilayer ceramic capacitor, and a current value I1 is measured. Applying a reverse voltage, measuring a current value I2, calculating a current ratio of the current value I2 to the current value I1, and setting the current ratio as a first current ratio; and the same as the multilayer ceramic capacitor A voltage is applied to a plurality of multilayer ceramic capacitors having a manufacturing method to measure a current value I1a, then a reverse voltage of the voltage is applied to measure a current value I2a, and a current of the current value I2a with respect to the current value I1a A step of calculating a ratio and setting this current ratio as a second current ratio; calculating an average value a and a standard deviation value σ of the second current ratio; a lower value a−k × σ; an upper value a + k × σ (k is Positive value) And a selection step of making the multilayer ceramic capacitor having a first current ratio not less than the lower value and not more than the upper value of the second current ratio as non-defective products.

以上のように、積層セラミックコンデンサに電圧を印加し電流値I1を測定し、続いてこの電圧の逆電圧を印加し電流値I2を測定して電流値I1に対する電流値I2の比である電流比を算出し、この電流比の値と高温負荷環境における絶縁抵抗の劣化の関係に基づいて、電流比の値によって積層セラミックコンデンサが高温負荷環境において絶縁抵抗の劣化が生じないか否かを初期段階において精度良く評価することができる。   As described above, a voltage is applied to the multilayer ceramic capacitor to measure the current value I1, and then a reverse voltage of this voltage is applied to measure the current value I2 to obtain a current ratio that is a ratio of the current value I2 to the current value I1. Based on the relationship between the current ratio value and the insulation resistance deterioration in the high temperature load environment, the initial stage determines whether the multilayer ceramic capacitor causes the insulation resistance deterioration in the high temperature load environment based on the current ratio value. Can be evaluated with high accuracy.

電流比の値と高温負荷環境における絶縁抵抗の劣化との関係がある理由は、誘電体層の誘電体粒子内に添加物が異常に偏在したような不均一な箇所があると、極性が異なる電圧を印加した場合、均一な箇所に比べ誘電分極の挙動が異なり電流比の値が非常に大きくなる又は極めて小さくなり、またこのような誘電体粒子内の不均一な箇所は高温負荷環境において絶縁抵抗の劣化を生じ易く、そのため電流比の値が非常に大きい又は極めて小さいものは絶縁抵抗の劣化を引き起こし易いことによるものと考えている。   The reason there is a relationship between the value of the current ratio and the deterioration of the insulation resistance in a high-temperature load environment is that the polarity is different if there is an uneven location where the additive is abnormally distributed in the dielectric particles of the dielectric layer When voltage is applied, the behavior of dielectric polarization is different from that of a uniform part, and the value of the current ratio becomes very large or extremely small. In addition, uneven parts in such dielectric particles are insulated in a high temperature load environment. It is considered that resistance is likely to be deteriorated, so that the value of the current ratio is very large or extremely small is likely to cause deterioration of the insulation resistance.

また、選別する積層セラミックコンデンサと同じ製造方法を有する複数個の積層セラミックコンデンサの第2の電流比の平均値aと標準偏差値σから算出された下値a−k×σ及び上値a+k×σを求め、選別する積層セラミックコンデンサの第1の電流比が下値以上、上値以下のものを良品とすることにより、高温負荷環境における絶縁抵抗の劣化を低減した信頼性に優れた積層セラミックコンデンサを得ることができる作用効果を奏するものである。   Further, the lower value a−k × σ and the upper value a + k × σ calculated from the average value a and the standard deviation value σ of the second current ratio of the plurality of multilayer ceramic capacitors having the same manufacturing method as the multilayer ceramic capacitor to be selected are obtained. Obtaining and selecting a multilayer ceramic capacitor with excellent reliability with reduced deterioration of insulation resistance in a high-temperature load environment by making the first current ratio of the multilayer ceramic capacitor to be obtained higher than the lower value and lower than the upper value. The effect which can be produced is produced.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

(実施の形態)
本発明の実施の形態における積層セラミックコンデンサの試験方法及び製造方法について説明する。
(Embodiment)
A test method and a manufacturing method of the multilayer ceramic capacitor in the embodiment of the present invention will be described.

図1は、積層セラミックコンデンサの断面図である。   FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor.

図1に示すように、積層セラミックコンデンサは誘電体層1と内部電極層2とが交互に積層されたセラミック素体3に外部電極4を有するものであり、外部電極4はセラミック素体3の両端部に露出した内部電極層2と導通してセラミック素体3の両端部に配設されている。   As shown in FIG. 1, the multilayer ceramic capacitor has an external electrode 4 on a ceramic body 3 in which dielectric layers 1 and internal electrode layers 2 are alternately stacked. Conductive with the internal electrode layer 2 exposed at both end portions is disposed at both end portions of the ceramic body 3.

まず、積層セラミックコンデンサの外部電極4を形成するまでの製造方法について説明する。   First, a manufacturing method until forming the external electrode 4 of the multilayer ceramic capacitor will be described.

誘電体層1となるセラミック生シートと内部電極層2となる導電性ペースト膜を準備する。   A ceramic raw sheet to be the dielectric layer 1 and a conductive paste film to be the internal electrode layer 2 are prepared.

セラミック生シートは、セラミックスラリーをドクターブレードなどの方法を用いてPETフィルム上に塗布、乾燥して形成したものであり、セラミックスラリーはチタン酸バリウム等のセラミック原料粉末から生成した誘電体粉末と、ポリビニルブチラール樹脂やアクリル樹脂などのバインダーと、フタル酸エステルなどの可塑剤と、酢酸ブチルなどの溶剤とを混合したものである。   The ceramic raw sheet is formed by applying a ceramic slurry on a PET film using a method such as a doctor blade and drying, and the ceramic slurry is a dielectric powder generated from a ceramic raw material powder such as barium titanate, It is a mixture of a binder such as polyvinyl butyral resin or acrylic resin, a plasticizer such as phthalate ester, and a solvent such as butyl acetate.

導電性ペースト膜は、導電性ペーストをグラビア印刷法により、PETフィルム上パターン状に塗布、乾燥して形成したものであり、導電性ペーストはニッケル等を主成分とする導電性金属粉末と、ポリビニルブチラール樹脂などのバインダーと、フタル酸エステルなどの可塑剤と、酢酸ブチルなどの溶剤とを混合したものである。   The conductive paste film is formed by applying and drying a conductive paste in a pattern on a PET film by a gravure printing method, and the conductive paste is formed of a conductive metal powder mainly composed of nickel or the like and polyvinyl. It is a mixture of a binder such as butyral resin, a plasticizer such as phthalate ester, and a solvent such as butyl acetate.

次に、セラミック生シートと導電性ペースト膜とを交互に積層して積層体を作製し、この積層体を所定の寸法となるように切断、分離し、個片にして複数個の積層体グリーンチップを得た。これらの積層体グリーンチップを焼成しセラミック素体3を形成した。   Next, a ceramic raw sheet and a conductive paste film are alternately laminated to produce a laminated body, and this laminated body is cut and separated so as to have a predetermined size. I got a chip. These multilayer green chips were fired to form the ceramic body 3.

続いて、セラミック素体3の両端部に外部電極4を形成した。外部電極4は、セラミック素体3に導電性ペーストを塗布、焼成し下地電極5を形成後、下地電極5上に湿式めっきによりめっき層6を形成したものである。   Subsequently, external electrodes 4 were formed on both ends of the ceramic body 3. The external electrode 4 is obtained by applying a conductive paste to the ceramic body 3 and firing to form a base electrode 5 and then forming a plating layer 6 on the base electrode 5 by wet plating.

以上のように外部電極4まで同一ロットで形成した複数個の積層セラミックコンデンサを用意した。これをグループ1とする。   As described above, a plurality of laminated ceramic capacitors formed in the same lot up to the external electrode 4 were prepared. This is group 1.

図2は、本発明の実施の形態の電流値I1、電流値I2を測定し電流比を算出する工程を示す工程図である。   FIG. 2 is a process diagram showing a process of measuring a current value I1 and a current value I2 and calculating a current ratio according to the embodiment of the present invention.

次に、積層セラミックコンデンサの電流値I1、電流値I2を測定する。   Next, the current value I1 and the current value I2 of the multilayer ceramic capacitor are measured.

図2に示すように、電流値I1、電流値I2を測定する工程は、外部電極4を形成した積層セラミックコンデンサに対し、高温で熱処理を行い、次に定格電圧以下の電圧を印加してショート検査を行ってショート品を除去し、さらにショート検査における良品の放電を行う。   As shown in FIG. 2, in the process of measuring the current value I1 and the current value I2, the multilayer ceramic capacitor on which the external electrode 4 is formed is heat-treated at a high temperature, and then a voltage equal to or lower than the rated voltage is applied to cause a short circuit. Inspection is performed to remove short-circuited products, and non-defective products are discharged in the short-circuit inspection.

次に、積層セラミックコンデンサに電圧を印加し電流値I1を測定し、放電を行った後、電流値I2を測定し放電を順次行うものである。   Next, a voltage is applied to the multilayer ceramic capacitor, the current value I1 is measured and discharged, and then the current value I2 is measured and discharged sequentially.

電流値I1は、両端の外部電極4の一方を正極、他方を負極として電圧を印加して測定したものであり、電流値I2は、電流値I1の印加電圧と同一の電圧値であり、外部電極4の一方を負極、他方を正極として逆電圧を印加して測定したものである。   The current value I1 is measured by applying a voltage using one of the external electrodes 4 at both ends as a positive electrode and the other as a negative electrode, and the current value I2 is the same voltage value as the applied voltage of the current value I1, The measurement was performed by applying a reverse voltage with one of the electrodes 4 as a negative electrode and the other as a positive electrode.

印加電圧は、積層セラミックコンデンサの定格電圧の2倍〜破壊電圧の0.8倍とすることが好ましく、後述する電流比のバラツキが大きくなり積層セラミックコンデンサの信頼性の判別精度を向上することができる。   The applied voltage is preferably 2 times the rated voltage of the multilayer ceramic capacitor to 0.8 times the breakdown voltage, and the variation in the current ratio, which will be described later, is increased, thereby improving the accuracy of determining the reliability of the multilayer ceramic capacitor. it can.

また電流値I1、電流値I2の電圧の印加時間は同じであり、印加時間は10s以下が好ましい。   Moreover, the application time of the voltage of current value I1 and current value I2 is the same, and the application time is preferably 10 s or less.

次に、積層セラミックコンデンサの電流比を算出する。電流比は電流値I1に対する電流値I2の比であり、グループ1の積層セラミックコンデンサの電流比を第1の電流比とする。   Next, the current ratio of the multilayer ceramic capacitor is calculated. The current ratio is the ratio of the current value I2 to the current value I1, and the current ratio of the multilayer ceramic capacitors of group 1 is the first current ratio.

一方、第1の電流比の値を評価、判定するための基準値を求める。この基準値を求めるために外部電極4の形成までグループ1と同じ製造方法を有する複数個の積層セラミックコンデンサのグループを用意する。これをグループ2とする。   On the other hand, a reference value for evaluating and determining the value of the first current ratio is obtained. In order to obtain this reference value, a group of a plurality of multilayer ceramic capacitors having the same manufacturing method as that of group 1 until the formation of the external electrode 4 is prepared. This is group 2.

グループ1と同様にグループ2の積層セラミックコンデンサの電圧を印加し電流値I1を測定し、放電を行った後、この電圧の逆電圧を印加して電流値I2を測定し、この電流値I1、電流値I2を夫々電流値I1a、電流値I2aとし、電流値I1aに対する電流値I2aの比である電流比を求め、これを第2の電流比とし、第2の電流比の統計量である平均値aと標準偏差値σを算出する。   In the same manner as in group 1, the voltage of the multilayer ceramic capacitor of group 2 is applied to measure the current value I1, and after discharging, the reverse voltage of this voltage is applied to measure the current value I2, and this current value I1, The current value I2 is defined as a current value I1a and a current value I2a, respectively, a current ratio that is a ratio of the current value I2a to the current value I1a is obtained, this is defined as a second current ratio, and an average that is a statistic of the second current ratio The value a and the standard deviation value σ are calculated.

続いて、第2の電流比の平均値aと標準偏差値σから基準値となる下値及び上値を算出する。下値はa−k×σであり、上値はa+k×σ(kは正の値)である。   Subsequently, a lower value and an upper value as reference values are calculated from the average value a of the second current ratio and the standard deviation value σ. The lower value is a−k × σ, and the upper value is a + k × σ (k is a positive value).

グループ2は、グループ1の積層セラミックコンデンサの全部または一部とすることができ、またグループ1と異なるロットのものであってもよく、異なるロットの場合は、グループ1の第1の電流比を求める前に予めグループ2の第2の電流比の下値、上値を求めておくことができる。   Group 2 may be all or part of the multilayer ceramic capacitors of Group 1 and may be of a different lot than Group 1, in which case the first current ratio of Group 1 is Prior to the determination, the lower and upper values of the second current ratio of the group 2 can be determined in advance.

ここで、係数kは、外部電極4の形成までグループ1と同じ製造方法を有しグループ1と異なるロットの積層セラミックコンデンサのグループ3を用意し、グループ3の第3の電流比と高温負荷試験における絶縁抵抗の劣化との関係に基づいて予め定めておく。   Here, the coefficient k has the same manufacturing method as the group 1 until the formation of the external electrode 4, and a group 3 of multilayer ceramic capacitors of a lot different from the group 1 is prepared. The third current ratio and the high temperature load test of the group 3 are prepared. Is determined in advance based on the relationship with the deterioration of the insulation resistance.

第3の電流比は、グループ1と同様にグループ3の積層セラミックコンデンサの電流値I1、電流値I2を測定し、この電流値I1、電流値I2を夫々電流値I1b、電流値I2bとし、電流値I1bに対する電流値I2bの電流比とするものである。   The third current ratio is obtained by measuring the current value I1 and the current value I2 of the multilayer ceramic capacitor of the group 3 in the same manner as the group 1, and setting the current value I1 and the current value I2 as the current value I1b and the current value I2b, respectively. The current ratio of the current value I2b to the value I1b is used.

係数kは、誘電体層1の厚みが2μm以下を有する積層セラミックコンデンサでは2.5〜3.2であることが好ましく、これによって信頼性の高い積層セラミックコンデンサを選別することができる。   The coefficient k is preferably 2.5 to 3.2 for a multilayer ceramic capacitor having a dielectric layer 1 having a thickness of 2 μm or less, whereby a highly reliable multilayer ceramic capacitor can be selected.

次に、グループ1の積層セラミックコンデンサの第1の電流比と、グループ2の積層セラミックコンデンサの第2の電流比から得た下値及び上値とを比較する。   Next, the first current ratio of the multilayer ceramic capacitor of group 1 is compared with the lower value and the upper value obtained from the second current ratio of the multilayer ceramic capacitor of group 2.

積層セラミックコンデンサの試験方法に用いる場合は、第1の電流比が第2の電流比の下値以上かつ上値以下であるときは高温負荷試験における信頼性に問題ないと評価し、それ以外の第1の電流比のものは高温負荷試験における信頼性に問題がある場合があると評価して、第1の電流比の値によりグループ1の積層セラミックコンデンサの信頼性を評価する。   When used in the test method of the multilayer ceramic capacitor, it is evaluated that there is no problem in reliability in the high temperature load test when the first current ratio is not less than the lower value and not more than the second value of the second current ratio. It is evaluated that there may be a problem in reliability in the high temperature load test, and the reliability of the group 1 multilayer ceramic capacitors is evaluated based on the value of the first current ratio.

また、積層セラミックコンデンサの製造方法に用いる場合は、第1の電流比が第2の電流比の下値以上かつ上値以下であるときは良品と判定し、第1の電流比が第2の電流比の下値より小さい又は上値より大きいときは不良品と判定して、グループ1の積層セラミックコンデンサを選別する。   Further, when used in the method for manufacturing a multilayer ceramic capacitor, it is determined that the first current ratio is a non-defective product when the first current ratio is not less than the lower value and not more than the second current ratio, and the first current ratio is the second current ratio. When the value is smaller than the lower value or larger than the upper value, it is judged as a defective product, and the group 1 multilayer ceramic capacitors are selected.

以下、本発明の積層セラミックコンデンサの試験方法の具体的な実施例について説明する。   Hereinafter, specific examples of the testing method of the multilayer ceramic capacitor of the present invention will be described.

(実施例1)
実施例1の積層セラミックコンデンサは、誘電体層と内部電極層とが交互に積層されたセラミック素体に外部電極を有するものであり、内部電極層間にある誘電体層の厚みは2.0μmである。
(Example 1)
The multilayer ceramic capacitor of Example 1 has an external electrode on a ceramic body in which dielectric layers and internal electrode layers are alternately stacked, and the thickness of the dielectric layer between the internal electrode layers is 2.0 μm. is there.

セラミックスラリーは、誘電体粉末が平均粒子径約0.2μmのものを用い、誘電体粉末はチタン酸バリウムを主成分とし、これに希土類元素の酸化物やSiO2、MgO、MnO2などの添加物を約2wt%加えたセラミック原料粉末を混合したものを仮焼し、粉砕したものである。 The ceramic slurry has a dielectric powder with an average particle size of about 0.2 μm. The dielectric powder is mainly composed of barium titanate, and added with rare earth oxides, SiO 2 , MgO, MnO 2, etc. What mixed the ceramic raw material powder which added about 2 wt% of the thing was calcined and pulverized.

このセラミックスラリーをPETとフィルム上に塗布、乾燥してセラミック生シートを作製した。   This ceramic slurry was applied onto PET and a film and dried to prepare a green ceramic sheet.

導電性ペースト膜は、金属ニッケル粉末を含有する導電性ペーストを用いて作製した。   The conductive paste film was produced using a conductive paste containing metallic nickel powder.

次に、セラミック生シートと導電性ペースト膜とを交互に積層して導電性ペースト膜の層数が300層である積層体を形成した後、個片化してセラミック素体を作製し、さらにセラミック素体に外部電極を形成して複数個の積層セラミックコンデンサを得た。この複数個の積層セラミックコンデンサをグループ1とする。   Next, the ceramic raw sheet and the conductive paste film are alternately laminated to form a laminate having 300 conductive paste films, and then separated into individual pieces to produce a ceramic body. External electrodes were formed on the element body to obtain a plurality of multilayer ceramic capacitors. The plurality of multilayer ceramic capacitors are set as group 1.

次に、図2に示すように、積層セラミックコンデンサの電流値I1、電流値I2を測定した。電流値I1、電流値I2の測定は、まず、積層セラミックコンデンサを150℃、30分の熱処理後、ショート検査を行い、その後両端の外部電極を短絡して放電を行った。続いて電流値I1を測定し放電後、電流値I2を測定し放電を行った。   Next, as shown in FIG. 2, the current values I1 and I2 of the multilayer ceramic capacitor were measured. The current values I1 and I2 were measured by first conducting a short inspection after heat treatment of the multilayer ceramic capacitor at 150 ° C. for 30 minutes, and then discharging by short-circuiting the external electrodes at both ends. Subsequently, the current value I1 was measured and discharged, and then the current value I2 was measured and discharged.

電流値I1は定格電圧の5倍の電圧を印加した電流値であり、電流値I2は前記電圧と極性を逆にして定格電圧の5倍の電圧を印加した電流値であり、電流値I1、電流値I2から第1の電流比を得た。   The current value I1 is a current value obtained by applying a voltage five times the rated voltage, the current value I2 is a current value obtained by applying a voltage five times the rated voltage by reversing the polarity of the voltage, and the current values I1, A first current ratio was obtained from the current value I2.

また、実施の形態で述べた第2の電流比を求める積層セラミックコンデンサのグループ2をグループ1とするもので、第2の電流比すなわち第1の電流比の平均値aと標準偏差値σを求めた。平均値aは1.107、標準偏差値σは0.023であった。   Further, the group 2 of the multilayer ceramic capacitors for obtaining the second current ratio described in the embodiment is set as the group 1, and the second current ratio, that is, the average value a of the first current ratio and the standard deviation value σ are set as follows. Asked. The average value a was 1.107, and the standard deviation value σ was 0.023.

さらに、後述する結果に基づき係数kを3にして、第1の電流比が下値1.038(a−3×σ)から上値1.176(a+3×σ)のものは高温負荷試験における信頼性に問題ないと評価し、それ以外の第1の電流比のものは高温負荷試験における信頼性に問題がある場合があると評価した。   Furthermore, the coefficient k is set to 3 based on the results described later, and the first current ratio is from a lower value of 1.038 (a−3 × σ) to an upper value of 1.176 (a + 3 × σ). It was evaluated that there was a problem with reliability in the high temperature load test for the other current ratios.

係数kは、以下のようにグループ3から電流比と高温負荷試験における絶縁抵抗不良との関係に基づいて予め決める。   The coefficient k is determined in advance from group 3 based on the relationship between the current ratio and the insulation resistance failure in the high temperature load test as follows.

グループ3は、グループ1と外部電極形成まで同じ製造方法を有する積層セラミックコンデンサであり、グループ1と異なるロットで製造したものである。   Group 3 is a multilayer ceramic capacitor having the same manufacturing method up to formation of external electrodes as in Group 1, and is manufactured in a lot different from Group 1.

グループ3の積層セラミックコンデンサの電流値I1、電流値I2をグループ1と同様に測定し電流比を求め、この電流比の平均値a及び標準偏差値σを算出した。このときグループ3の電流比の平均値aは1.122、標準偏差値σは0.026であった。   The current values I1 and I2 of the multilayer ceramic capacitors of group 3 were measured in the same manner as in group 1 to obtain a current ratio, and an average value a and a standard deviation value σ of the current ratio were calculated. At this time, the average value a of the current ratio of group 3 was 1.122, and the standard deviation value σ was 0.026.

次に、グループ3の積層セラミックコンデンサから次の試料1〜試料4を抜き取った。   Next, the following samples 1 to 4 were extracted from the multilayer ceramic capacitors of group 3.

試料1は、係数kを3にして、電流比が下値1.044(a−3×σ)以上かつ上値1.200(a+3×σ)以下の範囲にあるものであり、グループ3から1000個を抜き取った。   Sample 1 has a coefficient k of 3 and a current ratio in the range of a lower value of 1.044 (a−3 × σ) or higher and an upper value of 1.200 (a + 3 × σ) or lower. Extracted.

試料2は、係数kが3であり、電流比が下値1.044より小さい、又は上値1.200より大きいものであり、グループ3から300個を抜き取った。   Sample 2 had a coefficient k of 3 and a current ratio smaller than the lower value of 1.044 or larger than the upper value of 1.200, and 300 samples were extracted from group 3.

試料3は、係数kを3.5にして、電流比が下値1.031(a−3.5×σ)以上かつ上値1.213(a+3.5×σ)以下の範囲にあるものであり、グループ3から1000個を抜き取った。   Sample 3 has a coefficient k of 3.5 and a current ratio in the range of a lower value of 1.031 (a−3.5 × σ) or higher and an upper value of 1.213 (a + 3.5 × σ) or lower. , 1000 pieces were extracted from group 3.

試料4は、係数kが3.5であり、電流比が下値1.031より小さい、又は上値1.213より大きいものであり、グループ3から50個を抜き取った。   Sample 4 had a coefficient k of 3.5 and a current ratio smaller than the lower value of 1.031 or larger than the upper value of 1.213, and 50 samples were extracted from group 3.

試料1〜試料4の積層セラミックコンデンサについて、温度85℃で定格電圧を印加する高温負荷試験を1000時間行い、高温負荷試験後の絶縁抵抗不良率を求めた。   The multilayer ceramic capacitors of Samples 1 to 4 were subjected to a high temperature load test in which a rated voltage was applied at a temperature of 85 ° C. for 1000 hours, and the insulation resistance failure rate after the high temperature load test was determined.

絶縁抵抗不良は、定格電圧を1分間印加して抵抗値を測定し抵抗値が2MΩ以下のものである。   Insulation resistance failure is a resistance value measured by applying a rated voltage for 1 minute and a resistance value of 2 MΩ or less.

この結果を(表1)に示す。   The results are shown in (Table 1).

Figure 2009295606
Figure 2009295606

(表1)に示すように、試料1〜試料4は、高温負荷試験での絶縁抵抗不良率は夫々0.0%、37.0%、0.1%、64.0%であり、電流比が下値a−3×σから上値a+3×σの範囲にある場合には高温負荷試験での絶縁抵抗不良が発生せず、電流比が下値a−3×σより小さい又は上値a+3×σより大きい場合には高温負荷試験での絶縁抵抗不良が発生している。   As shown in (Table 1), samples 1 to 4 have insulation resistance failure rates of 0.0%, 37.0%, 0.1%, and 64.0% in the high-temperature load test, respectively. When the ratio is in the range of the lower value a-3 × σ to the upper value a + 3 × σ, there is no insulation resistance failure in the high temperature load test, and the current ratio is smaller than the lower value a-3 × σ or higher value a + 3 × σ. If it is larger, an insulation resistance failure has occurred in the high temperature load test.

このことから、グループ3の電流比と高温負荷試験における絶縁抵抗不良との関係に基づいて、グループ3と同じ製造方法を有するグループ1について係数kを3とすることにより、グループ1の積層セラミックコンデンサは、第1の電流比が第1の電流比の下値以上から上値以下のものは、高温負荷試験で絶縁抵抗に劣化が生じないものであると評価することができる。   Therefore, based on the relationship between the current ratio of group 3 and the insulation resistance failure in the high temperature load test, the coefficient k is set to 3 for group 1 having the same manufacturing method as that of group 3, so that the multilayer ceramic capacitor of group 1 is obtained. If the first current ratio is lower than the lower limit than the first current ratio and lower than the upper limit, it can be evaluated that the insulation resistance does not deteriorate in the high temperature load test.

次に、本発明の積層セラミックコンデンサの製造方法の具体的な実施例について説明する。   Next, specific examples of the manufacturing method of the multilayer ceramic capacitor of the present invention will be described.

(実施例2)
実施例2は、外部電極の形成まで行った積層セラミックコンデンサを実施例1のグループ1から2000個を抜き取ったものである。
(Example 2)
In the second embodiment, 2000 multilayer ceramic capacitors that have been subjected to the formation of external electrodes are extracted from the group 1 of the first embodiment.

第1の電流比は、実施例1と同じであり良品選別前の平均値aが1.107、標準偏差値σが0.023である。   The first current ratio is the same as that of the first embodiment, and the average value “a” before selection of non-defective products is 1.107, and the standard deviation value σ is 0.023.

次に、実施例1に基づいて係数kを3にして、第1の電流比が下値1.038以上かつ上値1.176以下の範囲の積層セラミックコンデンサを良品と判定して積層セラミックコンデンサを選別した。   Next, based on Example 1, the coefficient k is set to 3, and a multilayer ceramic capacitor having a first current ratio in the range of a lower value of 1.038 or more and an upper value of 1.176 or less is judged as a non-defective product and selected. did.

(実施例3)
実施例3は、積層セラミックコンデンサの誘電体層の厚みが1.25μmである以外は、外部電極の形成まで実施例1と同様に2000個作製した。
(Example 3)
In Example 3, 2000 pieces were produced in the same manner as in Example 1 until the formation of the external electrodes, except that the thickness of the dielectric layer of the multilayer ceramic capacitor was 1.25 μm.

実施例1と同様に電流値I1、電流値I2を測定後、第1の電流比、及び第1の電流比の平均値aと標準偏差値σを求めた。良品選別前の第1の電流比の平均値aは1.291、標準偏差値σは0.090であった。   After measuring the current value I1 and the current value I2 as in Example 1, the first current ratio, the average value a of the first current ratio, and the standard deviation value σ were obtained. The average value a of the first current ratio before selection of non-defective products was 1.291, and the standard deviation value σ was 0.090.

次に、係数kを3にして、第1の電流比が下値1.021(a−3×σ)以上かつ上値1.561(a+3×σ)以下の範囲の積層セラミックコンデンサを良品と判定して積層セラミックコンデンサを選別した。   Next, a coefficient k is set to 3, and a multilayer ceramic capacitor having a first current ratio in the range of a lower value of 1.021 (a−3 × σ) or higher and an upper value of 1.561 (a + 3 × σ) or lower is determined as a non-defective product. The multilayer ceramic capacitors were selected.

(比較例)
比較例は、外部電極の形成まで実施例1と同様に作製したものであり、この外部電極を形成した積層セラミックコンデンサを実施例1のグループ1から2000個を抜き取り、150℃、30分の熱処理後、ショート検査、放電を順次行った。
(Comparative example)
The comparative example was manufactured in the same manner as in Example 1 until the formation of the external electrode, and 2000 multilayer ceramic capacitors formed with this external electrode were extracted from Group 1 of Example 1 and heat-treated at 150 ° C. for 30 minutes. Thereafter, a short inspection and a discharge were sequentially performed.

次に、実施例2、実施例3、比較例の積層セラミックコンデンサの良品から夫々1000個を選び、これを温度85℃で定格電圧を印加する高温負荷試験を1000時間行った。   Next, 1000 pieces were selected from non-defective products of the multilayer ceramic capacitors of Example 2, Example 3, and Comparative Example, respectively, and a high temperature load test was performed for 1000 hours by applying a rated voltage at a temperature of 85 ° C.

この結果を(表2)に示す。   The results are shown in (Table 2).

Figure 2009295606
Figure 2009295606

(表2)に示すように、実施例2、実施例3、比較例の高温負荷試験での絶縁抵抗不良率は夫々0.0%、0.0%、0.2%であり、実施例2、実施例3は絶縁抵抗不良の発生はなかった。   As shown in (Table 2), the insulation resistance defect rates in the high temperature load test of Example 2, Example 3, and Comparative Example are 0.0%, 0.0%, and 0.2%, respectively. 2. In Example 3, no insulation resistance failure occurred.

以上のように、積層セラミックコンデンサの誘電体層の厚みが2.0μm以下の場合、係数kを3に設定して第1の電流比が下値a−3×σから上値a+3×σの範囲であるものを選別することにより、信頼性の高い積層セラミックコンデンサを得ることができる。   As described above, when the thickness of the dielectric layer of the multilayer ceramic capacitor is 2.0 μm or less, the coefficient k is set to 3 and the first current ratio is in the range of the lower value a−3 × σ to the upper value a + 3 × σ. By sorting out certain ones, a highly reliable multilayer ceramic capacitor can be obtained.

本発明にかかる積層セラミックコンデンサの試験方法および製造方法は、積層セラミックコンデンサが高温負荷環境において絶縁抵抗の劣化が生じないか否かを初期段階において精度良く評価することができ、また、高温負荷環境における絶縁抵抗の劣化を低減した信頼性に優れた積層セラミックコンデンサを得ることができるので、高密度化を求められる電子回路や、電子機器に有用なものとなる。   The test method and the manufacturing method of the multilayer ceramic capacitor according to the present invention can accurately evaluate whether or not the multilayer ceramic capacitor causes deterioration of insulation resistance in a high temperature load environment, and can also accurately evaluate the high temperature load environment. Therefore, it is possible to obtain a multilayer ceramic capacitor excellent in reliability with reduced deterioration of insulation resistance, and is useful for electronic circuits and electronic devices that require high density.

積層セラミックコンデンサの断面図Cross section of multilayer ceramic capacitor 本発明の実施の形態の電流値I1、電流値I2を測定し電流比を算出する工程を示す工程図Process drawing which shows the process of measuring the electric current value I1 and the electric current value I2 of embodiment of this invention, and calculating a current ratio

符号の説明Explanation of symbols

1 誘電体層
2 内部電極層
3 セラミック素体
4 外部電極
1 Dielectric layer 2 Internal electrode layer 3 Ceramic body 4 External electrode

Claims (3)

誘電体層と内部電極層とが交互に積層されたセラミック素体に外部電極を有する積層セラミックコンデンサの試験方法であって、前記積層セラミックコンデンサに電圧を印加し電流値I1を測定し、続いて前記電圧の逆電圧を印加し電流値I2を測定し、前記電流値I1に対する前記電流値I2の電流比の値により高温負荷環境における前記積層セラミックコンデンサの信頼性を評価する積層セラミックコンデンサの試験方法。 A test method for a multilayer ceramic capacitor having external electrodes on a ceramic body in which dielectric layers and internal electrode layers are alternately stacked, wherein a voltage is applied to the multilayer ceramic capacitor to measure a current value I1, and then A test method for a multilayer ceramic capacitor in which a reverse voltage of the voltage is applied, a current value I2 is measured, and a reliability of the multilayer ceramic capacitor in a high temperature load environment is evaluated based on a current ratio of the current value I2 to the current value I1 . 誘電体層と内部電極層とが交互に積層されたセラミック素体に外部電極を有する積層セラミックコンデンサを用意し、前記積層セラミックコンデンサに電圧を印加し電流値I1を測定し、次に前記電圧の逆電圧を印加し電流値I2を測定し、前記電流値I1に対する前記電流値I2の電流比を算出し、この電流比を第1の電流比とする工程と、
前記積層セラミックコンデンサと同じ製造方法を有する複数個の積層セラミックコンデンサに電圧を印加し電流値I1aを測定し、次に前記電圧の逆電圧を印加し電流値I2aを測定し、前記電流値I1aに対する前記電流値I2aの電流比を算出し、この電流比を第2の電流比とする工程と、
第2の電流比の平均値aと標準偏差値σを算出しa−k×σ、上値a+k×σ(kは正の値)を求める工程と、
第1の電流比が、第2の電流比の前記下値以上、前記上値以下である前記積層セラミックコンデンサを良品とする選別工程と、
を備える積層セラミックコンデンサの製造方法。
A multilayer ceramic capacitor having an external electrode on a ceramic body in which dielectric layers and internal electrode layers are alternately stacked is prepared, a voltage is applied to the multilayer ceramic capacitor, a current value I1 is measured, and then the voltage Applying a reverse voltage to measure a current value I2, calculating a current ratio of the current value I2 to the current value I1, and setting the current ratio as a first current ratio;
A voltage is applied to a plurality of multilayer ceramic capacitors having the same manufacturing method as the multilayer ceramic capacitor to measure a current value I1a, then a reverse voltage of the voltage is applied to measure a current value I2a, and the current value I1a is measured. Calculating a current ratio of the current value I2a and setting the current ratio as a second current ratio;
Calculating an average value a and a standard deviation value σ of the second current ratio to obtain a−k × σ and an upper value a + k × σ (k is a positive value);
A selection step in which the multilayer ceramic capacitor in which the first current ratio is equal to or higher than the lower value of the second current ratio and equal to or lower than the upper value is a non-defective product;
A method of manufacturing a multilayer ceramic capacitor comprising:
前記積層セラミックコンデンサは前記誘電体層の厚みが2μm以下であり、前記係数kが2.5〜3.2である請求項2に記載の積層セラミックコンデンサの製造方法。 3. The method of manufacturing a multilayer ceramic capacitor according to claim 2, wherein the multilayer ceramic capacitor has a thickness of the dielectric layer of 2 μm or less and the coefficient k is 2.5 to 3.2. 4.
JP2008144470A 2008-06-02 2008-06-02 Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor Pending JP2009295606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144470A JP2009295606A (en) 2008-06-02 2008-06-02 Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144470A JP2009295606A (en) 2008-06-02 2008-06-02 Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2009295606A true JP2009295606A (en) 2009-12-17

Family

ID=41543574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144470A Pending JP2009295606A (en) 2008-06-02 2008-06-02 Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2009295606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212843A (en) * 2018-06-07 2019-12-12 株式会社村田製作所 Quality determination method of multilayer ceramic capacitor
JP2020064975A (en) * 2018-10-17 2020-04-23 株式会社村田製作所 Method for inspecting laminated ceramic capacitor and method for manufacturing laminated ceramic capacitor
JP7147093B1 (en) 2021-10-26 2022-10-04 Yuriホールディングス株式会社 Capacitor inspection method and inspection device used therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837125A (en) * 1994-07-22 1996-02-06 Matsushita Electric Ind Co Ltd Method for screening monolithic ceramic capacitor
JPH08227826A (en) * 1995-02-20 1996-09-03 Matsushita Electric Ind Co Ltd Method for screening laminated ceramic capacitor
JPH10335174A (en) * 1997-05-28 1998-12-18 Taiyo Yuden Co Ltd Monolithic ceramic capacitor
JP2004361253A (en) * 2003-06-05 2004-12-24 Toyo System Co Ltd Secondary cell inspection method and inspection apparatus
JP2005136046A (en) * 2003-10-29 2005-05-26 Kyocera Corp Laminated ceramic capacitor and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837125A (en) * 1994-07-22 1996-02-06 Matsushita Electric Ind Co Ltd Method for screening monolithic ceramic capacitor
JPH08227826A (en) * 1995-02-20 1996-09-03 Matsushita Electric Ind Co Ltd Method for screening laminated ceramic capacitor
JPH10335174A (en) * 1997-05-28 1998-12-18 Taiyo Yuden Co Ltd Monolithic ceramic capacitor
JP2004361253A (en) * 2003-06-05 2004-12-24 Toyo System Co Ltd Secondary cell inspection method and inspection apparatus
JP2005136046A (en) * 2003-10-29 2005-05-26 Kyocera Corp Laminated ceramic capacitor and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212843A (en) * 2018-06-07 2019-12-12 株式会社村田製作所 Quality determination method of multilayer ceramic capacitor
JP7127369B2 (en) 2018-06-07 2022-08-30 株式会社村田製作所 Determination method for quality of multilayer ceramic capacitors
JP2020064975A (en) * 2018-10-17 2020-04-23 株式会社村田製作所 Method for inspecting laminated ceramic capacitor and method for manufacturing laminated ceramic capacitor
JP7110902B2 (en) 2018-10-17 2022-08-02 株式会社村田製作所 Multilayer Ceramic Capacitor Inspection Method and Multilayer Ceramic Capacitor Manufacturing Method
JP7147093B1 (en) 2021-10-26 2022-10-04 Yuriホールディングス株式会社 Capacitor inspection method and inspection device used therefor
WO2023074627A1 (en) * 2021-10-26 2023-05-04 Yuriホールディングス株式会社 Capacitor inspection method and inspection device used in capacitor inspection method
JP2023064684A (en) * 2021-10-26 2023-05-11 Yuriホールディングス株式会社 Capacitor inspection method and inspection device using the same

Similar Documents

Publication Publication Date Title
JP5655036B2 (en) Dielectric ceramics, dielectric ceramic manufacturing method and multilayer ceramic capacitor
JP2014007187A (en) Multilayer ceramic electronic component
US20130222970A1 (en) Dielectric ceramic composition and electronic device
JP4952815B2 (en) Electronic component manufacturing method and electronic component evaluation method
JP5772255B2 (en) Laminated electronic components
JP5672119B2 (en) Dielectric porcelain composition and electronic component
JP2009295606A (en) Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
JP2005159254A (en) Method of manufacturing laminated ceramic electronic component
JP2012166976A (en) Dielectric ceramic composition and ceramic electronic component
CN102222564B (en) Multiplayer ceramic chip capacitor (MLCC) based on internal equilibrium electrode paste and ceramic membrane shrinkage rate
US8885323B2 (en) Multilayered ceramic electronic component and fabricating method thereof
JP2001217137A (en) Laminated ceramic electronic component and manufacturing method therefor
JP6665710B2 (en) Dielectric composition and electronic component
JP3760373B2 (en) Screening method for ceramic electronic components
JP2021061335A (en) Multilayer electronic component and manufacturing method thereof
JP6451293B2 (en) Multilayer ceramic capacitor
JP4483312B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP7127369B2 (en) Determination method for quality of multilayer ceramic capacitors
JP7087816B2 (en) Dielectric compositions and electronic components
JP2008258468A (en) Laminated ceramic capacitor and its manufacturing method
JP5712727B2 (en) Dielectric ceramic slurry and multilayer ceramic electronic component
JP2006344669A (en) Manufacturing method of laminated electronic component
JP2007180322A (en) Laminated ceramic electronic component
JPH10144559A (en) Terminal electrode paste, laminated electronic component and its manufacture
JP2009246269A (en) Analysis method of laminated electronic component

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821