JP4443073B2 - 流体加熱装置 - Google Patents

流体加熱装置 Download PDF

Info

Publication number
JP4443073B2
JP4443073B2 JP2001227849A JP2001227849A JP4443073B2 JP 4443073 B2 JP4443073 B2 JP 4443073B2 JP 2001227849 A JP2001227849 A JP 2001227849A JP 2001227849 A JP2001227849 A JP 2001227849A JP 4443073 B2 JP4443073 B2 JP 4443073B2
Authority
JP
Japan
Prior art keywords
fluid
temperature
heating
heated
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001227849A
Other languages
English (en)
Other versions
JP2003042548A (ja
Inventor
充 三股
潔 野手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kelk Ltd
Original Assignee
Kelk Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kelk Ltd filed Critical Kelk Ltd
Priority to JP2001227849A priority Critical patent/JP4443073B2/ja
Publication of JP2003042548A publication Critical patent/JP2003042548A/ja
Application granted granted Critical
Publication of JP4443073B2 publication Critical patent/JP4443073B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、加熱手段により加熱された加熱流体と加熱手段により加熱されていない非加熱流体を流体混合手段で混合して出力することにより、該混合流体の出口温度を設定温度に制御する流体加熱装置に係わり、詳しくは、混合流体の出口温度がより低い所定の要求温度に設定変更された時に、加熱手段の加熱制御を停止して該加熱手段を冷却するための冷却用流体を排水する排水弁の改良に関する。
【0002】
【従来の技術】
例えば、半導体製造プロセスの中には、半導体ウェーハを薬液を用いて処理するプロセスや、この薬液処理後に半導体ウェーハに付着している薬液を超純水で洗浄するプロセス等があるが、これら薬液や超純水は、予め設定された温度に制御されたうえで該当各プロセスに供給されるのが一般的である。
【0003】
上述した薬液や超純水等の流体を設定温度に制御するための流体加熱装置の中には、加熱手段により加熱された流体と加熱手段により加熱されていない流体とを混合して設定温度に到達せしめるものがある。
【0004】
図6は、この種の従来の流体加熱装置の構成を示す図である。
【0005】
この流体加熱装置は、例えば上記洗浄プロセスで用いる超純水の温度制御を行うものであり、流体入口から流入する流体を、ハロゲンランプ等のランプを組み込んだ複数のボトル(加熱容器11a,12a,13a),(加熱容器11b,12b,13b)から成る加熱部10a,10bで加熱したうえで可変弁50に送り込む一方、流体入口から流入する流体の一部をバイパス管P3でバイパスして可変弁50に送り込み、該可変弁50で加熱部10a,10bからの加熱後の流体(加熱流体)とバイパス管P3からの非加熱流体とを混合し、流体出口へと送り出している。
【0006】
その際、可変弁50の出口側に設けた温度センサ40−4で該可変弁50から送り出される流体の温度(以下、出口温度という)を検出し、この検出温度と予め設定されている設定温度との偏差に応じて可変弁50での加熱流体と非加熱流体の混合比率を可変するように当該可変弁50を制御することにより、流体出口へと送り出される混合流体を速やかに設定温度へ到達させるようにしている。
【0007】
この流体加熱装置では、運転中に、出口温度を現在の設定温度よりも低い例えば入口温度(流体入口より流入した流体の温度)に変更する設定(降温要求設定)があった場合、可変弁50における加熱流体と非加熱流体の混合比率可変制御に移る前に、加熱部10a,10bのランプ加熱を停止させ、該加熱部10a,10bを冷却する制御を行う。
【0008】
これは、以下に述べる過昇温エラーを防止するための対策である。
【0009】
すなわち、上述した状況下で加熱部10a,10bのランプ加熱を停止させると、ランプ残熱により流体が沸騰してボトル(11a,12a,13a),(11b,12b,13b)の温度が上昇する一方で、温度センサ40−2,40−3の設置部の温度が降下いていくが、温度センサ40−2,40−3の設置部は配管が細く熱容量が小さいために温度降下が大きく、ボトル(11a,12a,13a),(11b,12b,13b)の温度と温度センサ40−2,40−3の設置部間に大きな温度差が生じる。
【0010】
このため、次に、出口温度を例えば現在設定中の出口温度よりも高く温度に変更する設定(昇温要求設定)があった場合に、加熱部10a,10bのランプ加熱を開始すると、上記温度差に起因して加熱部10a,10bのランプに電力を加え過ぎて過昇温エラーを生じることになる。
【0011】
この過昇温エラーを回避するための具体的対策として、従来の流体加熱装置では、加熱流体と非加熱流体を混合する可変弁50の後方に排水弁65を設け、加熱部10a,10bの各ボトルに一定時間冷水(加熱されない流体)を流しつつ排水弁65より排水させることにより該ボトル温度を下げ、その後に要求温度の昇温要求があっても加熱部10a,10bのランプに適正電力が加えられるようにしていた。
【0012】
【発明が解決しようとする課題】
このように、従来の流体加熱装置では、加熱部のボトル冷却に用いる流体を排水する排水弁を可変弁の後方に設置していたため、出口温度の降温要求設定があった場合、ボトル温度を下げるために、一定時間、可変弁の開度を固定状態(バイパス側は全閉状態)にしたまま冷却用流体を排水せざるを得ず、出口温度を設定温度に降温させる制御を開始するまでの時間がかかるばかりでなく、冷却用流体の排水量が増大するという問題点があった。
【0013】
本発明は上述の問題点を解消し、出口温度の降温要求設定に際し、出口温度の降温制御開始までの待ち時間を短縮すると共に、排水弁による加熱部冷却用の流体の排水量を節減できる流体加熱装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、加熱手段により加熱された加熱流体と前記加熱手段により加熱されていない非加熱流体を流体混合手段で混合して出力することにより、前記混合流体の出口温度を設定温度に制御する流体加熱装置において、前記混合流体の出口温度が現在設定温度より低い所定の要求温度に設定変更された時に、前記加熱手段の加熱制御を停止して前記加熱手段を冷却するための冷却用流体を排水する排水弁を備え、前記排水弁を前記流体混合手段の前段に設置したことを特徴とする。
【0015】
請求項2記載の発明は、上記請求項1記載の発明において、前記流体混合手段は、流体入口から取り込まれた後に前記加熱手段に送られて加熱される加熱流体を流入する加熱流体流入口と、前記流体入口から取り込まれた後に前記加熱手段を通過せずに前記流体混合手段にバイパスされる非加熱流体を流入する非加熱流体流入口と、前記加熱流体と前記非加熱流体の混合流体を流体出口に流出する混合流体流出口を備えた三方弁から成ることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
【0017】
図1は、本発明に係わる流体加熱装置100の一実施形態を示す図である。
【0018】
この流体加熱装置100は、例えば、半導体製造時の半導体ウェーハ洗浄プロセスに用いる超純水を加熱する超純水加熱装置として用いられるものであり、流体(以下、超純水と読み替え可能)の加熱源として2つの加熱部10a、10bを具備している。
【0019】
加熱部10aは、流体を通過させるための配管と該配管の周囲に配置されたハロゲンランプ等の加熱源(ヒータ)を内部に持つ例えば3つの加熱容器(ボトル)11a,12a,13aを備えて構成され、加熱部10aは、加熱部10bの加熱容器11a,12a,13aと同等の加熱容器11b,12b,13bを備えて構成される。
【0020】
この流体加熱装置100の配管構造としては、流体入口から流体を流入する流入管P11、流入管P11から加熱部10aに流体を流入させる流入管P12、同じく加熱部10bに流体を流入させる流入管P13、加熱部10bから加熱後の流体(加熱流体)を流出させる流出管P21、加熱部10bからの加熱後の流体(加熱流体)を加熱部10aからの加熱流体と合流させて流出させる流出管P22、流入管P22から流入する加熱流体と、後述するバイパス管P3から流入する流体を混合した流体を流体出口に向けて流出する流出管P23、流入管P11を流れる加熱前の流体(非加熱流体)の一部を流出管P22,P23間にパイバスするバイパス管P3、加熱部10a及び加熱部10bに流す冷却用の流体を流出管P22の途中で分岐して排水する排水管P4を具備する。
【0021】
流入管P11,P12,P13に付随する構成要素として、流体入口から加熱部10a,10bに向けて順に、流体入口からの流体の流入量を制御する入口弁20、流入流体の総流量を検出する流量計30−1、流入流体の温度(入口温度)を検出する温度センサ40−1、加熱部10aへの流入流体の流量を検出する流量計30−2、加熱部10bへの流入流体の流量を検出する流量計30−3が備わる。
【0022】
また、流出管P21,P22,P23に付随する構成要素として、加熱部10a,10bから流体出口に向けて順に、加熱部10bの出口の流体(加熱流体)の温度を検出する温度センサ40−3、加熱部10aの出口の流体(加熱流体)の温度を検出する温度センサ40−2、流入管P22から流入する加熱流体とバイパス管P3から流入する非加熱流体を混合して流出管P23に流出する可変弁50、可変弁50から排出管P23に流出される混合流体の温度(出口温度)を検出する温度センサ40−4が備わる。
【0023】
ここで、可変弁50は、例えば、図2に示す如くの構成を有する三方弁により実現される。
【0024】
図2において、可変弁50は、共有内室500を介して相互につながる内室501,502,503と、細軸の両端に太軸が形成され、両端の太軸がそれぞれ内室501と502内を移動可能に上記共有内室500内に細軸を嵌装して成るロッド504と、ロッド504を一方向に付勢するスプリング505と、ロッド504を挟んでスプリング505の反対側に設けられ、エア供給源52から延びる配管に連結されるダイアフラム506を内設して構成される。
【0025】
内室501と内室502は、それぞれ、図1におけるバイパス管P3と流出管P22に連結される。また、内室503は図1における流出管P23に連結される。
【0026】
この可変弁50を制御するには、後述する制御部70から所定の制御指令(弁制御信号)を与え、エアレギュレータ51のエア供給量を変化させる。エアレギュレータ51のエア供給量が変化すると、ダイアフラム506が変形し、この変形に伴ってロッド504が図2に矢印で示すように移動(図2では上下動)する。
【0027】
このロッド504の移動量に応じて、該ロッド504の太軸と共有内室500との間の隙間(最小値は隙間無し)が増減され、この隙間の大きさに見合った量の非加熱流体(バイパス管P3からの加熱前流体)と加熱部10a,10bからの加熱流体がそれぞれ内室501と内室502から流入して共通内室500内で混合され、混合流体として流出管P22に流出される。
【0028】
このように、可変弁50は、加熱部10a,10bから流出管P22を通って送られてくる加熱流体と、バイパス管P3から送られてくる非加熱流体とを混合し、流出管P23を経て流体出口方向へ送り出すと共に、上記三方弁の開度を可変制御することで上記加熱流体と非加熱流体の混合比を適宜調整できるように構成されている。
【0029】
また、図1において、排水管P4の途中には、加熱部10a及び加熱部10bを冷却するために、その中の加熱容器(11a,12a,13a)及び(11b,12b,13c)内を流される冷却用の流体(流入管P12,P13からそれぞれ加熱部10a,10bに取り込まれ、加熱されないまま該加熱部10a,10bを通過して流出管P22に合流流出される流体)を流出管P22の途中、つまり可変弁50の前で分岐して排水するための排水弁60が設けられる。
【0030】
更に、この流体加熱装置100には、上記各流量計30−1,30−2,30−3、上記各温度センサ40−1,40−2,40−3,40−4の検出結果に基づき上記加熱部10a,10bの加熱制御や、入口弁20、可変弁50及び排水弁60の開度制御を行う制御部70が設けられる。
【0031】
次に、この流体加熱装置100の動作について説明する。
【0032】
この流体加熱装置100において、加熱対象の流体は、流体入口から入口弁20を介して入力流体として流入管P11内に取り込まれる。この時、入口弁20の弁開度は制御部70により制御されており、該入力弁20の弁開度に応じた量の流体が取り込まれる。
【0033】
入口弁20を介して取り込まれた流体は、流入管P12,P13を通ってそれぞれ加熱部10a,10bに流入される。この時、流入管P11を通る流体の一部(可変弁50の弁開度に応じた量)が流入管P11よりバイパス管P3にバイパスされ、その残りの流体が流入管P12,P13を通って加熱部10a,10bへとそれぞれ流入する。
【0034】
流入管P12より加熱部10aに流入した流体は、加熱容器11a,12a,13a内を順次通過しながら該当する各ヒータ(ランプ)より与えれる熱エネルギーにより段階的に加熱され、流出管P22に送出される。
【0035】
同様に、流入管P13より加熱部10bに流入した流体は、加熱容器11b,12b,13b内を順次通過しながら該当する各ヒータ(ランプ)より与えれる熱エネルギーにより段階的に加熱され、流出管P21に送出される。
【0036】
流出管P21に送出された加熱部10bからの加熱流体は、流出管P22で加熱部10aからの加熱流体に合流され、可変弁50に送られる。
【0037】
可変弁50では、流出管P22から送り込まれる加熱流体と、バイパス管P3から流入する非加熱流体とを混合し、流出管P23を通じて出力流体として流体出口へ送り出す。
【0038】
上述した一連のプロセスにおいて、流量計30−1は入口弁20を介して流入する流体の全流量を検出し、流量計30−2,30−3は上記全流量のうちのバイパス管P3へバイパスされずに加熱部10a,10bに流入される流体の流量をそれぞれ検出する。これら流量計30−1,30−2,30−3の検出信号はそれぞれ制御部70に入力される。
【0039】
また、温度センサ40−1は非加熱流体の温度(入口温度)を検出し、この検出信号を制御部70に入力する。加熱部10aの流体出口近傍では、温度センサ40−2が該加熱部10aによる加熱流体の温度を検出し、この検出信号を制御部70に入力する。
【0040】
同様に、加熱部10bの流体出口近傍では、温度センサ40−3が該加熱部10bによる加熱流体の温度を検出し、この検出信号を制御部70に入力する。
【0041】
更に、可変弁50の下流側では、温度センサ40−4が加熱流体と非加熱流体を混合して得られる流体の温度(出口温度)を検出し、この検出信号を制御部70に入力する。
【0042】
制御部70は、上記各入力信号に基づき、以下の手順に従って、加熱部10a,10bの加熱制御及び可変弁50並びに排水弁60の開度制御を実施する。
【0043】
まず、加熱制御に関して、制御部70は、流量計30−2による検出流量を把握すると共に、該流量の流体を例えば最大加熱温度(最大設定温度)に加熱するために必要な加熱エネルギーを算出し、この加熱エネルギーに相当する制御信号により加熱部10a内の各加熱容器11a,12a,13aのヒータを発熱駆動する。
【0044】
同様に、制御部70は、流量計30−3による検出流量を把握すると共に、該流量の流体を例えば最大加熱温度(最大設定温度)に加熱するために必要な加熱エネルギーを算出し、この加熱エネルギーに相当する制御信号により加熱部10b内の各加熱容器11b,12b,13bのヒータを発熱駆動する。
【0045】
なお、ここでは、加熱部10a,10bにおいて、流入管P12,P13より流入する流体を最大加熱温度となるように加熱する例を挙げたが、これに限らず、適宜な温度を設定して該設定温度まで加熱するように構成しても良い。
【0046】
加熱部10a,10bでの加熱制御により加熱された流体は、それぞれ流出管P22,P21に送出され、該流出管P22で合流されて可変弁50に到達する。
【0047】
一方、流入管P11を流れる非加熱流体の一部は、可変弁50の開度に応じて当該流入管P11からバイパス管P3を通って可変弁50に流入する。
【0048】
可変弁50では、加熱部10a,10bより流出管P22を通って流入する加熱流体と、バイパス管P3を通って流入する非加熱流体とが混合される。この混合された流体は、可変弁50の下流側の流出管P23に送り出され、流体出口より出力流体として流体供給先(洗浄プロセス)へと供給される。
【0049】
可変弁50により混合された流体が洗浄プロセスへと供給される過程で、当該混合流体の温度(出口温度)が温度センサ40−4により検出され、その検出信号が制御部70に入力される。
【0050】
制御部70は、温度センサ40−4による検出温度と、予め設定されている温度(設定温度)とを比較し、両者の偏差に応じて可変弁50の弁の開度を制御する。
【0051】
具体的な制御手順として、制御部70は、まず、バイパス管P3に流れる流体の流量(バイパス流量)を求める。このバイパス流量は、流量計30−1により検出される流量(装置100に流入する流体の全流量)から流量計30−2により検出される流量(加熱部10aに流入される流体の流量)と流量計30−3により検出される流量(加熱部10bに流入される流体の流量)との和を減算することにより算出できる。
【0052】
次いで、制御部70は、温度センサ40−4による検出温度と上記設定温度との偏差を求め、更に、この偏差を解消するために必要とされる、加熱流体に対する非加熱流体の混合比を現在の加熱流体と非加熱流体の流量から求める。そして、この混合比を満足するような弁制御信号を生成し、該弁制御信号を用いて可変弁50の弁の開度を制御する。
【0053】
これにより、可変弁50では、加熱流体に対して、該可変弁50の弁の開度に応じた量の加熱前の流体が混合され、該混合後の流体(出力流体)の温度が上記設定温度に追従するように制御される。
【0054】
その後、上記設定温度が変更された場合、制御部70では、それまでの設定温度と変更後の設定温度との偏差に応じて、再度、上述した手順に従って可変弁50の弁の開度を可変制御する。
【0055】
これにより、可変弁50では、流出管P22から流入する非加熱流体とバイパス管P3から流入する加熱流体とが、設定温度変更前とは異なる新たな混合比で混合され、該混合後の流体(出力流体)の温度が上記変更後の設定温度に制御される。
【0056】
上記設定温度の変更に伴う可変弁50の弁調整により加熱部10a,10bの加熱容器(11a,12a,13a),(11b,12b,13b)に流れる流体の流量が設定温度変更前と異なった値となるが、こうした流量変化に対しても、制御部70は、加熱容器(11a,12a,13a),(11b,12b,13b)内の流体を最大加熱温度あるいは設定温度になるようにヒータの加熱量を調整する。
【0057】
更に、制御部70は、設定温度との誤差を少なくするように、可変弁50の弁の開度の調整、加熱部10a,10bのヒータの加熱量の微調整の制御を行う。
【0058】
ここで、出口温度に関する設定温度変更の具体例として、例えば、それまで出口温度が35℃に設定されていた状態から入口温度(以下、Rtという)に変更設定される場合(降温変更設定時:冷水ダウンフロー)の動作について説明する。
【0059】
この場合、図示しない操作部での設定変更操作により、制御部70に対して、変更後の設定温度Rtに対応する設定温度信号が入力される。
【0060】
これにより、制御部70は、温度センサ40−3で現在検出されている温度(理想的には35℃)と変更後の設定温度Rtとの偏差を認識し、該偏差が解消されるように、可変弁50から流体出口方向に流出する流体の温度を下げる制御を開始する。
【0061】
この制御において、制御部70は、まず、出口温度に関する設定温度が現在値よりも低くなったとの認識に基づき、加熱部10a,10bの加熱制御を停止すると共に、排水弁60の弁を開ける制御を行う。
【0062】
これにより、流入管P12を通じて加熱部10aに流入する流体(流体温度=入口温度Rt)は該加熱部10aで加熱されないまま通過して流出管P22に流出する一方、流入管P13を通じて加熱部10bに流入する流体(流体温度=入口温度Rt)は該加熱部10bで加熱されないまま通過して流出管P21に流出する。
【0063】
そして、これら加熱部10a,10bから流出された非加熱流体(流体温度=入口温度Rt)は、流出管P22で合流された後、可変弁50の手前で当該流出管P22から排水管P4へと分岐され、排水弁60を通じて排水される。
【0064】
この時、排水弁60を通って排水される流体は、それ以前に加熱部10a,10bを通過する際、これら加熱部10a,10bにおいて、それぞれ、加熱制御停止後の各ランプの残熱を奪う作用(冷却作用)を果たす。
【0065】
この冷却作用により、加熱部10aでは、ランプ加熱停止後、ランプ残熱により流体が沸騰してボトル(加熱容器11a,12a,13a)の温度が上昇する現象が抑えられ、ボトル温度と温度センサ40−2の設置部間の温度差を最小限に維持できる。
【0066】
同様に、加熱部10bにおいても、ランプ加熱停止後、ランプ残熱により流体が沸騰してボトル(加熱容器11b,12b,13b)の温度が上昇する現象が抑えられ、ボトル温度と温度センサ40−3の設置部間の温度差を最小限に維持できる。
【0067】
これにより、その後、出口温度に関する設定温度の変更要求として、例えば、現在設定中の出口温度(Rt)よりも高い温度への変更要求(昇温要求設定:温水アップフロー)があり、加熱部10a,10bのランプ加熱を開始した場合に、それぞれ、温度センサ40−2による検出温度とボトル(加熱容器11a,12a,13a)の温度差,温度センサ40−3による検出温度とボトル(加熱容器11b,12b,13b)の温度差が小さく維持されているために、加熱部10a,10bのランプに電力を加え過ぎることはなくなり、過昇温エラーを防止できる。
【0068】
上述した排水弁60による冷却用の流体の排水開始後、予め設定された一定期間が経過すると、制御部70は排水弁60の弁を閉じる制御を行い、該排水弁60からの加熱部10a,10b冷却用の流体の排水を停止する。
【0069】
また、上記排水弁60による冷却用流体の排水開始後、制御部70は、温度センサ40−4の検出温度と変更後の設定温度(Rt)との偏差に応じ、流出管P22から流入する流体(流体の温度>Rt)に対してバイパス管P3から流入する流体(流体の温度=Rt)の混合比率が次第に増大していくように可変弁50の弁開度の制御を行う。
【0070】
この制御により、可変弁50から流出管P23に流出される混合流体の温度が次第に低下していき、温度センサ40−4の検出温度と変更後の設定温度(Rt)との偏差も次第に小さくなっていく。
【0071】
そして、偏差が無くなるまで上記制御を続けることにより、可変弁50から流出管P23に流出される混合流体の温度(出口温度)を設定温度Rtに到達せしめることができる。制御部70は、上記偏差が無くなった後も、この状態を維持するように可変弁50の弁開度の制御を続ける。
【0072】
以上に述べた降温要求(35℃→Rt)設定時の制御動作からも分かるように、本発明の流体加熱装置100では、設定温度が35℃からRtに変更されることにより、加熱部10a,10bのランプ加熱を停止し、該加熱部10a,10bに流した冷却用の流体を排水管60を介して排水開始させると共に、これと独立して、可変弁50において流出管P22から流入する流体(流体温度>Rt)に対してバイパス管P3から流入する流体(流体温度=Rt)の混合比率を次第に増大させていき、当該可変弁50から流出する混合流体の温度(出口温度)を下げる制御を開始している。
【0073】
つまり、本発明の流体加熱装置100では、排水弁60を可変弁50の前段に設けたことで、該排水弁60による加熱部10a,10bの過昇温エラー防止のための冷却期間を待たずに、出力流体を変更後の設定温度に降下させる動作を開始できる。
【0074】
言い換えれば、本発明の流体加熱装置100では、加熱部10a,10bの温度が過昇温エラーを防止可能な温度まで冷却されるのを待つことなく、設定温度が変更になった時点で、可変弁50による出力流体を設定温度に到達せしめるための温度制御を開始でき、該温度制御を開始するまでの無駄な待ち時間を削減できると共に、加熱部10a,10bを過昇温エラーから防止するための冷却用の流体の排水量を減らすことができる。
【0075】
また、出力流体を設定温度にするための可変弁50の制御と、加熱部10a,10bを冷却するための排水弁60の制御を独立して実施できるため、制御の簡略化が図れる。
【0076】
また、上記加熱部10a,10bの冷却に際し、その後に昇温要求設定を受けるまでの間に、温度センサ40−2による検出温度とボトル(加熱容器11a,12a,13a)の温度差,温度センサ40−3による検出温度とボトル(加熱容器11b,12b,13b)の温度差をそれぞれ過昇温エラーを来さない範囲内に維持できさえすれば、該加熱部10a,10bのボトルを必要以上に冷却する必要はないことから、その後に昇温変更設定がなされた後、加熱部10a,10bにおける所定温度の加熱制御への復帰が素早く行える。
【0077】
図3は、本発明装置100と従来装置(図6参照)の排水弁動作時の出口温度と排水量の時間的な変化を示す特性図である。
【0078】
図3(a)は、排水弁動作時の出口温度の変化特性図であり、線分A1(太線)は本発明装置100の特性に相当し、線分A2(細線)は従来装置の特性に相当する。
【0079】
図3(a)からも分かるように、本発明装置100では、線分A1で示すように、時間t0で降温変更設定(SV1→Rt)がなされた後、可変弁50の前に設けた排水弁60を介して排水が開始されるのと並行して、可変弁50でのバイパス管P3からの非加熱流体(流体温度=Rt)の混合比率を増やしていく制御を開始することで、出口温度が急激に低下していき、排水開始後、時間T1を経て設定温度(Rt)に到達する。
【0080】
これに対して、従来装置(図6参照)では、可変弁50の後方に排水弁65が設けられているため、この可変弁50でバイパス管P3側を全閉とした状態で加熱部10a,10bを通過した冷却用の流体を一定期間排水した後でないと、可変弁50によるバイパス管P3側からの非加熱流体の混合比を増やしていく出口温度制御を開始することができない。
【0081】
これにより、従来装置では、線分A2で示すように、時間t0にて降温変更設定(SV1→Rt)がなされた後、まず、排水弁65による冷却用流体の排水完了までの一定期間内(図中、時間T2)に出口温度が一段階下がり、その後、可変弁50でのバイパス管P3側からの非加熱流体(流体温度=Rt)の混合比率を増やしていく制御に移ることで、出口温度が二段階目として急激に低下していき、排水開始後、時間(T2+α)を経て設定温度(Rt)に到達する。
【0082】
ここで、従来装置における排水弁65による冷却用流体の排水完了までの時間(図中、時間T2)は、加熱部10a,10b内の配管の他、加熱部10a,10bへの流体流入経路(P12,P13)及び加熱部10a,10bからの流出経路(P21→P22→P4)の冷却用流体の通過時間も絡むため、時間T1よりは極めて大きな時間(T1<<T2)となる。
【0083】
これにより、従来装置では、降温変更設定(SV1→Rt)後、出口温度が設定温度(Rt)に到達するまでの時間(T2+α)は、本発明装置100における同時間T1に比べて大幅に長いものとなる。
【0084】
言い換えれば、本発明装置100においては、降温変更設定(SV1→Rt)後、出口温度を設定温度(Rt)に降温させる制御を開始するまでの待ち時間が従来装置に比べて極めて短くて済む。
【0085】
図3(b)は、排水弁動作時の冷却用流体の排水量の時間的な変化を示す特性図であり、線分B1(太線)は本発明装置100の特性に相当し、線分B2(細線)は従来装置の特性に相当する。
【0086】
本発明装置100の排水弁60、従来装置の排水弁65共に排水能力が15L/minであるとすれば、本発明装置100における排水弁動作時の排水量D1、従来装置における排水弁動作時の排水量D2は、それぞれ、
D1=(15×T1)L/min
D2=(15×T2)L/min
となる。
【0087】
ここで、(T1<<T2)であることを考慮すれば、D1<<D2は明らかであり、本発明装置100では、冷却用の流体の無駄な排水を従来装置に比べて大幅〔図3(b)の斜線部領域相当〕に削減可能となる。
【0088】
次に、図3における時間T1及び時間T2を実際の装置における実測値から検証してみる。
【0089】
図4は、本発明に係わる流体加熱装置100(図1参照)をある温度条件で運転した時のボトル温度、偏差(温度センサ40−4の検出温度と設定温度の偏差)、トータル流量、入口温度、出口温度の変化を示すグラフである。
【0090】
また、図5は、従来装置(図6参照:排水弁65が可変弁50の後に設けられる。但し、加熱部10a,10b等の仕様は図4における本発明装置100と同様)をある温度条件で運転した時のボトル温度、偏差(温度センサ40−4の検出温度と設定温度の偏差)、トータル流量、入口温度、出口温度の変化を示すグラフである。
【0091】
図4での本発明装置100の運転においては、時間t11で出口温度の設定温度が(Rt→35℃)に変更され、時間t21で同設定温度が(35℃→Rt)に変更されている(但し、入口温度Rt=25℃)。
【0092】
図4に示す如く、本発明装置100において、時間t21で出口温度が上記条件で降温変更設定されると、温度センサ40−4の検出温度と設定温度の偏差が瞬時に増大し、この偏差を無くすべく、出口温度の降温制御が開始される。
【0093】
この制御では、加熱部10a,10bのランプ加熱を停止し、可変弁50の前に設けた排水弁60を開けて、加熱部10a,10bに流される冷却用の流体を排水させる一方で、可変弁50において、上記偏差に応じて、可変弁50でのバイパス管P3からの非加熱流体(流体温度=Rt)の混合比率を増やしていく制御が行われる。
【0094】
これ以後、上記排水弁60からの排水に伴う冷却作用により、ボトル温度は次第に低下していく。
【0095】
また、可変弁50でのバイパス管P3側からの非加熱流体の混合比率を増やすことで、出口温度が急激に低下しはじめ、これに追従して上記偏差も急激に小さくなる。そして、最終的には、時間t22で上記偏差がほぼ解消され、出口温度が設定温度(Rt)に到達する。
【0096】
この場合(本発明装置100の運転時:図4参照)における時間(t22−t21)が、図3における時間T1に相当する。
【0097】
なお、この場合における上記偏差の変化に関して、本件発明者等は、設定温度(ここではRt:Rt=25℃)の±1℃範囲内となるまでには上記設定変更後から12秒かかり、更に、同±0.3℃範囲内となるまでには上記設定変更後から20秒かかることを確認した。
【0098】
次に、図5での従来装置の運転において、時間t31で出口温度の設定温度が(40℃→Rt)に変更された場合について検証する(但し、入口温度Rt=30℃)。
【0099】
図5に示す如く、従来装置において、時間t31で出口温度が上記条件で降温変更設定されると、温度センサ40−4の検出温度と設定温度の偏差が瞬時に増大し、この偏差を無くすべく、出口温度の降温制御が開始される。
【0100】
この制御では、まず、加熱部10a,10bのランプ加熱を停止し、可変弁50の後方に設けた排水弁65を開けて、加熱部10a,10bに流される冷却用の流体を可変弁50(バイパス管P3側は全閉状態)を経由して一定期間だけ排水させる。
【0101】
この可変弁50を経由した排水弁65からの排水に伴う冷却作用により、ボトル温度は次第に低下していく。
【0102】
ここで、従来装置では、排水弁65が可変弁50の後方に設けられているため、該可変弁50において、上記偏差に応じて、可変弁50でのバイパス管P3からの非加熱流体(流体温度=Rt)の混合比率を増やしていく制御は上記排水に係わる一定期間だけ待たなければならない。
【0103】
従って、従来装置では、時間t31で出口温度の降温設定変更がなされた後、上記一定期間の間、温度センサ40−4の検出温度と設定温度の偏差が変化しないままに維持される。
【0104】
そして、上記一定期間が経過すると、可変弁50において、上記偏差に応じて、可変弁50でのバイパス管P3からの非加熱流体(流体温度=Rt)の混合比率を増やしていく制御が開始される。
【0105】
これにより、上記一定期間経過後から、出口温度が急激に低下しはじめ、これに追従して上記偏差も急激に小さくなる。そして、最終的には、時間t32で上記偏差がほぼ解消され、出口温度が設定温度に到達する。
【0106】
この場合(従来装置運転時:図5参照)における時間(t32−t31)が、図3における時間T2に相当する。
【0107】
なお、この場合における上記偏差の変化に関して、本件発明者等は、設定温度(ここではRt:Rt=30℃)の±1℃範囲内となるまでには上記設定変更後から32秒かかり、更に、同±0.3℃範囲内となるまでには上記設定変更後から38秒かかることを確認した。
【0108】
ここで、本発明装置100(図4参照)において出口温度降温変更設定後から出口温度が設定温度に到達する時間T1と、同じく従来装置(図5参照)において出口温度降温変更設定後から出口温度が設定温度に到達する時間T2とを比べてみると、(T1<<T2)は明らかであり、本発明装置100は、従来装置に比べて降温変更設定時の無駄な待ち時間が小さいことが立証されている。
【0109】
なお、本発明に係わる流体加熱装置の構成は、図1に示す構成に限らず、上述した主旨を逸脱しない範囲内で様々な変形及び応用が可能である。
【0110】
例えば、本発明に係わる流体混合手段(可変弁50)の構成は図2に示す三方弁に限るものではなく、加熱流体と非加熱流体を混合し得るものであれば、ON−OFF弁以外のアナログ弁を用いて構成されたものであっても良く、また、その配置位置も、図1に示すように、本体装置内部に限らず、本体装置の外部であっても良い。
【0111】
また、加熱部の構成に関しても、本実施形態のように2ユニット(加熱部10a,10b)のものに限らず、1ユニットあるいは3ユニット以上を用いるものであっても良い。
【0112】
また、上記各実施形態はいずれも超純水加熱装置への適用例を前提としているが、本発明に係わる流体加熱装置は、半導体製造プロセスで用いる処理薬液や、半導体製造プロセス以外のプロセスで用いる種々の流体を加熱する流体加熱装置全般に適用し得るものである。
【0113】
【発明の効果】
以上説明したように、本発明によれば、加熱手段の加熱制御を停止して該加熱手段を冷却するための冷却用流体を排水する排水弁を、流体混合手段の前段に設置したため、降温変更設定がなされた時点で、加熱手段が冷却されるのを待つことなく、混合流体を設定温度に降温させるための温度制御を開始でき、混合流体の降温制御開始までの待ち時間を短縮できると共に、加熱手段を冷却するため流体の無駄な排水量を減らすことができる。
また、本発明によれば、排水弁と流体混合手段の独立制御が行えることから、制御の簡略化が図れる。
また、本発明によれば、過昇温エラーを防止可能な範囲であれば、加熱手段を必要以上に冷却する必要はないことから、その後に昇温変更設定がなされた後、加熱手段における所定温度の加熱制御への復帰が素早く行える。
【図面の簡単な説明】
【図1】本発明に係わる流体加熱装置の一実施形態を示す図。
【図2】本発明に係わる流体加熱装置の可変弁の構成を示す図。
【図3】本発明に係わる流体加熱装置と従来装置の排水弁動作時の出口温度と排水量の時間的な変化を示す特性図。
【図4】本発明に係わる流体加熱装置をある温度条件で運転した時のボトル温度、偏差、トータル流量、入口温度、出口温度の変化を示すグラフ。
【図5】従来装置をある温度条件で運転した時のボトル温度、偏差、トータル流量、入口温度、出口温度の変化を示すグラフ。
【図6】従来の流体加熱装置の構成を示す図。
【符号の説明】
100 流体加熱装置
10a,10b 加熱部
11a,12a,13a,11b,12b,13b 加熱容器(ボトル)
20 入口弁
30−1,30−2,30−3 流量計
40−1,40−2,40−3,40−4 温度センサ
50 可変弁
500 共有内室
501,502,503 内室
504 ロッド
505 スプリング
506 ダイアフラム
51 エアレギュレータ
52 エア供給源
60,65 排水弁
70 制御部
P11,P12,P13 流入管
P21,P22,P23 流出管
P3 バイパス管
P4 排水管

Claims (2)

  1. 加熱手段により加熱された加熱流体と前記加熱手段により加熱されていない非加熱流体を流体混合手段で混合して出力することにより、前記混合流体の出口温度を設定温度に制御する流体加熱装置において、
    前記混合流体の出口温度が現在設定温度より低い所定の要求温度に設定変更された時に、前記加熱手段の加熱制御を停止して前記加熱手段を冷却するための冷却用流体を排水する排水弁を備え、前記排水弁を前記流体混合手段の前段に設置したことを特徴とする流体加熱装置。
  2. 前記流体混合手段は、流体入口から取り込まれた後に前記加熱手段に送られて加熱される加熱流体を流入する加熱流体流入口と、前記流体入口から取り込まれた後に前記加熱手段を通過せずに前記流体混合手段にバイパスされる非加熱流体を流入する非加熱流体流入口と、前記加熱流体と前記非加熱流体の混合流体を流体出口に流出する混合流体流出口を備えた三方弁から成ることを特徴とする請求項1記載の流体加熱装置。
JP2001227849A 2001-07-27 2001-07-27 流体加熱装置 Expired - Fee Related JP4443073B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227849A JP4443073B2 (ja) 2001-07-27 2001-07-27 流体加熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227849A JP4443073B2 (ja) 2001-07-27 2001-07-27 流体加熱装置

Publications (2)

Publication Number Publication Date
JP2003042548A JP2003042548A (ja) 2003-02-13
JP4443073B2 true JP4443073B2 (ja) 2010-03-31

Family

ID=19060442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227849A Expired - Fee Related JP4443073B2 (ja) 2001-07-27 2001-07-27 流体加熱装置

Country Status (1)

Country Link
JP (1) JP4443073B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6813378B2 (ja) 2017-01-26 2021-01-13 株式会社Kelk 流体加熱装置

Also Published As

Publication number Publication date
JP2003042548A (ja) 2003-02-13

Similar Documents

Publication Publication Date Title
JP3885535B2 (ja) 給湯装置
JP4443073B2 (ja) 流体加熱装置
JP4104805B2 (ja) ヒートポンプ給湯器
US7566430B2 (en) Apparatus for sterilizing, pasteurizing, and/or disinfecting a pumpable or free flowing medium
JPS59126180A (ja) 湯水混合式給湯装置
JP2001110702A (ja) 流体加熱装置
JP5816226B2 (ja) 貯湯式給湯装置
JP4994291B2 (ja) 熱源機
JPH01167554A (ja) 給湯器の熱交換器
JP2565021B2 (ja) バイパス混合制御方式
JP7454181B2 (ja) 給湯装置
JP7052468B2 (ja) 暖房熱源装置
JPH06288636A (ja) 給湯装置
JP3091788B2 (ja) 給湯器
JPH0560337A (ja) 給湯装置
JP3578283B2 (ja) 循環式給湯装置
JPH09126546A (ja) 1缶2水路式給湯機
JP2000205651A (ja) 熱源設備
JP3707747B2 (ja) 給湯器
JP2022185380A (ja) 貯湯式給湯装置
JP4004169B2 (ja) 熱源設備
JPS60259840A (ja) 給湯制御装置
JPH07217916A (ja) 温水供給装置
JPH06249452A (ja) 給湯装置
JPH04103560U (ja) 給湯器の高温出湯防止装置

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees