JP4433672B2 - 半導体光素子の製造方法 - Google Patents
半導体光素子の製造方法 Download PDFInfo
- Publication number
- JP4433672B2 JP4433672B2 JP2002381339A JP2002381339A JP4433672B2 JP 4433672 B2 JP4433672 B2 JP 4433672B2 JP 2002381339 A JP2002381339 A JP 2002381339A JP 2002381339 A JP2002381339 A JP 2002381339A JP 4433672 B2 JP4433672 B2 JP 4433672B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- coating layer
- active layer
- upper cladding
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の属する技術分野】
この発明は、活性層への電流の注入に応じてレーザ光を生成する半導体光素子の製造方法に関する。
【0002】
【従来の技術】
半導体光素子の分野では、しきい値電流を低減するために、導波路構造として埋め込み型を採用し、電流狭窄を達成することが知られている。しかし、Alを活性層に含む半導体光素子に埋め込み型構造を採用すると、問題が生じる。Alは酸化しやすいため、製造工程においてメサエッチングを行うときに活性層の側面が酸化する。これにより、素子の信頼性が低下してしまう。このため、Alを活性層に含む半導体光素子には、埋め込み型の代わりに、リッジ型の導波路構造が採用されている(例えば、非特許文献1参照)。
【0003】
図7は、従来のリッジ型半導体光素子の一例の構造を示す断面図である。この光素子200は、基板1の上面に順次に設けられた下部クラッド層2、活性層3、上部クラッド層4およびコンタクト層5を備えている。上部クラッド層4の表面およびコンタクト層5の側面は、絶縁膜6によって覆われている。コンタクト層5の上面には、上部電極7が設けられている。基板1の下面には、下部電極8が設けられている。しきい値電流以上の電流が上部電極7および下部電極8を通じて活性層3に注入されると、活性層3でレーザ光が生成され、光素子200から放出される。
【0004】
従来のリッジ型導波路構造では、活性層に十分な電流狭窄構造を形成することが難しいため、しきい値電流が高い。例えば、上記の非特許文献1では、25℃で17mAという比較的高いしきい値電流が報告されている。
【0005】
リッジ型半導体レーザ素子のしきい値電流を低減するため、Znを活性層に拡散させて電流狭窄構造を形成しようとする試みが知られている(例えば、特許文献1参照)。しかし、Zn拡散部の電気抵抗が十分に高くならないため、しきい値電流は依然として高い。
【0006】
【非特許文献1】
ティー・イシカワ(T. Ishikawa)、他7名、「1.3μmAlGaInAs−InP歪多重量子井戸レーザにおける高温特性の良好な井戸厚依存性(Well-Thickness Dependence of High-Temperature Characteristics in 1.3-(m)」、IEEEフォトニクステクノロジーレターズ(IEEE PHOTONICS TECHNOLOGY LETTERS)、第10巻、第12号、1998年12月、p.1703−1705
【特許文献1】
特開平10−150239号公報
【0007】
【発明が解決しようとする課題】
この発明は、より低いしきい値電流を有するリッジ型半導体光素子の提供を課題とする。
【0008】
【課題を解決するための手段】
この発明に係る半導体光素子は、n型半導体から構成される基板と、基板上に設けられた活性層と、活性層上に設けられ、p型半導体から構成される上部クラッド層と、上部クラッド層の上に設けられた上部電極と、基板の下面に設けられた下部電極とを備えている。上部電極および下部電極を通じて活性層に電流が注入されると、活性層でレーザ光が生成される。上部クラッド層には、p型ドーパントとしてZnが含まれている。上部クラッド層は、リッジ部の第1の部分と、リッジ部を除く第2の部分とを有している。当該半導体光素子は、上部クラッド層の上面のうちリッジ部の側方に位置する部分に設けられ、Feを含む被覆層を更に備える。被覆層はリッジ部から離間している。活性層は、リッジ部の直下に位置するノンドープの第1の領域と、第1の領域の側方及び被覆層の直下に位置し、Feを含む第2の領域とを有している。上部クラッド層のうち被覆層の直下に位置する領域にはZn及びFeが含まれる。
【0009】
活性層中の第2領域に含まれるFeは、第2領域の電気抵抗率を効率良く上昇させる。このため、第1領域および第2領域は、良好な電流狭窄構造を形成する。したがって、本発明の半導体光素子は、リッジ型でありながら、従来よりも低いしきい値電流を有する。
【0010】
第2の領域に5×1015cm-3以上の濃度でFeが含まれていると、十分に良好な電流狭窄構造が得られる。
【0011】
上部クラッド層にp型ドーパントとしてZnが含まれていると、上部クラッド層上にFeを含んだ被覆層を形成したときに、ZnとFeとの相互拡散により、被覆層から上部クラッド層および活性層へ効率良くFeが拡散する。したがって、Feドープ被覆層を利用した方法により、本発明の光素子を容易に製造できるようになる。
【0012】
本発明の半導体光素子は、上部クラッド層の上面のうちリッジ部の側方に位置する部分に設けられ、Feを含む被覆層をさらに備えていてもよい。この場合、Feドープ被覆層を利用して本発明の半導体光素子を製造する際に、被覆層を除去する必要がない。このため、本発明の光素子を迅速かつ簡易に製造できるようになる。
【0013】
上部クラッド層は、ZnがドープされたInPから構成されていてもよいし、被覆層は、FeがドープされたInPから構成されていてもよい。この場合、ZnとFeとの相互拡散により、被覆層からFeが効率良く上部クラッド層および活性層へ拡散する。したがって、本発明の光素子を容易に製造できるようになる。また、上部クラッド層および被覆層がともにInPから構成されているので、光の閉じ込めが良好である。
【0014】
被覆層のFe濃度が1×1016cm-3以上であると、半導体光素子の製造中、活性層中の第2領域に十分に高い濃度でFeが拡散しやすい。したがって、本発明の光素子を容易に製造できるようになる。
【0015】
被覆層の厚さおよび上部クラッド層のうち被覆層の直下に位置する部分の厚さは、合計して0.5μm以下であることが好ましい。この場合、リッジ部の側方でクラッドとして機能しうる層の厚さが十分に薄いので、横方向の光の閉じ込めが良好である。
【0016】
本発明に係る半導体光素子の製造方法は、n型半導体から構成される基板上にノンドープの活性層を設ける工程と、活性層の上に、p型半導体から構成される上部クラッド層を設ける工程と、上部クラッド層にリッジ部を形成する工程と、前記リッジ部の周囲に絶縁膜を形成して、前記上部クラッド層の上面のうち前記リッジ部の側方に位置する部分に前記上部クラッド層の露出部を形成する工程と、前記上部クラッド層の前記露出部に、Feを含む被覆層を前記リッジ部から離間して成長する工程と、上部クラッド層の上に上部電極を設けるとともに、前記基板の下面に下部電極を設ける工程とを備えている。前記絶縁膜は、前記被覆層と前記リッジ部との間に介在しており、前記被覆層は、FeがドープされたInGaAsPまたはFeがドープされたInPから構成され、上部クラッド層には、p型ドーパントとしてZnが含まれている。被覆層の成長中に被覆層から活性層へのFeとZnの相互拡散により、活性層のうちリッジ部の直下に位置する領域の側方にFeを上部クラッド層を介して添加する。
【0017】
上部クラッド層の上面に被覆層を設けると、被覆層中のFeは上部クラッド層へ拡散する。Feは、p型半導体中で拡散しやすく、n型半導体中では拡散しにくい。上部クラッド層はp型半導体から構成されているので、Feは上部クラッド層中で効率良く拡散し、活性層に到達する。Feは活性層中でも拡散し、基板の方へ向かう。しかし、基板はn型半導体から構成されているので、Feは活性層から基板へは拡散しにくい。このため、Feは、不必要に広い範囲に拡散することなく、活性層中に高い濃度で含まれる。Feは、活性層のうち主として被覆層の直下の領域に拡散する。Feが拡散した領域の電気抵抗は上昇する。活性層のうちリッジ部の直下の領域には、Feはほとんど拡散しない。このため、活性層中に良好な電流狭窄構造が形成される。この結果、低いしきい値電流を有するリッジ型の半導体光素子が得られる。
【0018】
基板と活性層との間に、活性層よりも低い屈折率を有する下部クラッド層をさらに設けてもよい。この下部クラッド層は、n型半導体から構成されていることが好ましい。この場合、活性層中のFeは下部クラッド層へ拡散しにくい。このため、活性層中のFe濃度の低下を防止できる。
【0019】
被覆層から活性層へのFeの拡散により、活性層のうちリッジ部の直下に位置する領域の側方に5×1015cm-3以上の濃度でFeを添加することが好ましい。この場合、十分に良好な電流狭窄構造が得られる。
【0020】
上部クラッド層には、p型ドーパントとしてZnが含まれていてもよい。この場合、ZnとFeとの相互拡散により、被覆層から上部クラッド層および活性層へ効率良くFeが拡散する。したがって、半導体光素子を迅速かつ容易に製造できる。
【0021】
上部クラッド層は、ZnがドープされたInPから構成されていてもよいし、被覆層は、FeがドープされたInPから構成されていてもよい。この場合、被覆層からFeが効率良く上部クラッド層および活性層へ拡散するので、半導体光素子を容易に製造できる。また、上部クラッド層および被覆層がともにInPから構成されているので、光の閉じ込めが良好な光素子を得ることができる。
【0022】
本発明の製造方法は、被覆層を設けた後に、被覆層を熱処理して被覆層中のFeを活性層へ拡散させる工程をさらに備えていてもよい。この場合、被覆層を低温で形成しても、Feを活性層へ十分に拡散させることができる。このため、被覆層の形成時における活性層の劣化を防ぎ、良好な特性の活性層を得ることができる。この場合、より迅速な半導体光素子の製造が可能である。
【0023】
被覆層を設けた後、上部電極および下部電極を設ける前に、被覆層を除去する工程をさらに備えていてもよい。この場合、リッジ部の側方においてクラッドとして機能しうる層の厚みが低減されるので、横方向の光の閉じ込めが高まる。
【0024】
上部クラッド層は、ZnがドープされたInPから構成されていてもよいし、被覆層は、FeがドープされたInGaAsPから構成されていてもよい。この場合、上部クラッド層をエッチングすることなく、被覆層を選択的にエッチングすることができる。したがって、被覆層を容易に除去できる。
【0025】
被覆層は、気相成長法によって500℃以上800℃以下の成長温度で設けてもよい。成長温度が500℃未満だと、被覆層から活性層へFeが十分に拡散しにくい。また、成長温度が800℃を超えると、活性層が量子井戸構造を有するときにバリア層と井戸層との間で相互拡散が起きるので、好ましくない
【0026】
【発明の実施の形態】
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図示の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。
【0027】
第1実施形態
図1は、本実施形態の半導体光素子100の構成を示す断面図である。光素子100は、リッジ型の屈折率導波路構造を有するファブリペローレーザ素子である。光素子100は、基板1の上面に順次に設けられた下部クラッド層2、活性層3、上部クラッド層4およびコンタクト層5を備えている。上部クラッド層4の表面には、被覆層11および絶縁膜6も設けられている。コンタクト層5の上には、上部電極7が設けられている。基板1の下面には、下部電極8が設けられている。基板1、下部クラッド層2、活性層3、上部クラッド層4、コンタクト層5、被覆層11および絶縁膜6は、紙面に垂直な方向に沿ってほぼ一様に延在している。しきい値電流以上の電流が上部電極7および下部電極8を通じて活性層3に注入されると、活性層3でレーザ光が生成され、光素子100から放出される。
【0028】
基板1は、n型InPからなるウェーハである。基板1の上面には、厚さ1μmの下部クラッド層2が被着されている。下部クラッド層2も、n型InPから構成されている。基板1にはn型ドーパントとしてSnが含まれ、下部クラッド層2にはn型ドーパントとしてSiが含まれている。下部クラッド層2におけるSiの濃度は、1×1018cm-3である。下部クラッド層2は、活性層3よりも低い屈折率を有している。
【0029】
活性層3は、下部クラッド層2の上面に被着されている。活性層3は、ノンドープのAlGaInAsから構成されている。すなわち、活性層3は真性半導体である。活性層3の発光波長は、1.3μmである。活性層3は、複数のウエル層とバリア層が交互に重ねられた多重量子井戸構造を有している。
【0030】
上部クラッド層4は、活性層3が露出しないように、活性層3の上面に被着されている。上部クラッド層4は、活性層3よりも低い屈折率を有している。上部クラッド層4は、p型InPから構成されている。上部クラッド層4には、p型ドーパントとしてZnが含まれている。上部クラッド層4におけるZnの濃度は、1×1018cm-3である。上部クラッド層4の中央部には、リッジ部4aが設けられている。リッジ部4aは、直方体形状を有している。リッジ部4aの上面と上部クラッド層4の下面との間の距離は、1.5μmである。上部クラッド層4のうちリッジ部4aを除く部分の厚さは、0.2μmである。
【0031】
コンタクト層5は、上部クラッド層4のうちリッジ部4aの上面のみに被着されている。コンタクト層5は、p型のGaInAsから構成されている。コンタクト層5におけるp型ドーパントの濃度は、5×1018cm-3である。コンタクト層5の厚さは、0.5μmである。
【0032】
上部クラッド層4の上面のうちリッジ部4aの側方に位置する部分には、半絶縁性の被覆層11が被着されている。被覆層11は、FeがドープされたInPから構成されている。被覆層11におけるFeの濃度は、1×1016cm-3である。被覆層11の厚さは、0.2μmである。被覆層11は、上部クラッド層4とほぼ同じ屈折率を有している。被覆層11は、リッジ部4aとは離間している。
【0033】
リッジ部4aの側面、コンタクト層5の側面および被覆層11の表面には、絶縁膜6が被着されている。絶縁膜6は、SiO2から構成されている。絶縁膜6の厚さは、約0.3μmである。絶縁膜6は、リッジ部4aおよび被覆層11間の間隙を充填している。
【0034】
上部電極7は、コンタクト層5の上面に被着されている。上部電極7は、アノードである。上部電極7は、コンタクト層5から絶縁膜6まで延在している。上部電極7とリッジ部4aおよび被覆層11との間には、絶縁膜6が介在する。したがって、上部電極7とリッジ部4aおよび被覆層11との間の絶縁が確保されている。
【0035】
下部電極8は、基板1の下面に被着されている。下部電極8は、カソードである。
【0036】
本実施形態の特徴は、活性層3のうちリッジ部4aの直下に位置する領域26と、その両側方に位置する領域27および28とで、Feの濃度が大きく異なることである。すなわち、領域26にはFeがほとんど含まれていないのに対し、領域27および28には、Feが高濃度で拡散している。Feは、活性層3中の領域27および28だけでなく、図1に示される領域17および18に含まれている。領域17および18は、活性層3および上部クラッド層4のうち被覆層11の直下に位置する部分である。一方、活性層3および上部クラッド層4のうちリッジ部4aの直下に位置する領域26には、Feはほとんど拡散していない。
【0037】
Feの拡散により、領域17、18、27および28の電気抵抗は、領域16および26の電気抵抗よりも高くなる。すなわち、領域17、18、27および28は、Feによって高抵抗化されている。このように、領域26は、領域26よりも十分に高抵抗の領域27および28によって両側から挟まれている。したがって、活性層3には、電流狭窄構造が形成されている。この電流狭窄構造のため、光素子100では、電極7および8を通じて注入される電流が活性層3中の領域26に良好に閉じこめられる。この結果、しきい値電流が低減される。
【0038】
実際、光素子100のしきい値電流は、25℃の温度のもとで約14mAであり、従来の光素子よりも低い。したがって、光素子100は、高効率かつ高速の駆動が可能である。
【0039】
良好な電流狭窄構造を得るためには、領域27および28の各々におけるFeの濃度が5×1015cm-3以上であることが好ましい。また、実用上は、領域27および28の各々におけるFeの濃度は、1×1018cm-3以下であることが好ましい。
【0040】
被覆層11におけるFe濃度は、1×1016cm-3以上であることが好ましい。この場合、活性層3中の領域27および28へ十分に高い濃度でFeが拡散する。これにより、良好な電流狭窄構造を形成し、しきい値電流を低減することができる。
【0041】
被覆層11の厚さおよび上部クラッド層4のうち被覆層11の直下に位置する部分の厚さは、合計して0.5μm以下であることが好ましい。この場合、横方向の光の閉じ込めが良好になる。
【0042】
次に、図2〜図5を参照しながら、本実施形態の光素子100の製造方法を説明する。図2〜図5は、光素子100の製造工程を示す断面図である。
【0043】
まず、有機金属気相成長法(OMVPE法)によって、基板1の上面に下部クラッド層2、活性層3、上部クラッド層4およびコンタクト層5を順次に形成する。これらの層2〜5は、基板1の上面の全体を覆う。上述のように、上部クラッド層4にはZnがドープされる。
【0044】
次に、図2に示されるように、コンタクト層5の上面の一部分にストライプマスク9を形成する。マスク9は、SiNから構成されている。マスク9の厚さは、0.1μmである。マスク9の形状は、一般的なフォトリソグラフィ技術を用いて得ることができる。
【0045】
続いて、図3に示されるように、上部クラッド層4およびコンタクト層5に反応性イオンエッチング(RIE)を施し、ストライプ構造を形成する。エッチングの深さは、2.0μmである。このエッチングにより、上部クラッド層4にリッジ部4aが設けられる。リッジ部4aおよびコンタクト層5は、マスク9とほぼ同じ幅を有する。
【0046】
この後、図4に示されるように、マスク9を剥離し、続いて、リッジ部4aおよびコンタクト層5を覆うように0.1μmのSiN膜10を形成する。一般的なフォトリソグラフィ技術を用いて、リッジ部4aおよびコンタクト層5の周囲にだけSiN膜10を残す。この結果、上部クラッド層4の上面のうちリッジ部4aの側方に位置する部分のみが露出する。
【0047】
次に、図5に示されるように、OMVPE法を用いて、上部クラッド層4の露出面上に被覆層11を形成する。上述のように、被覆層11は、FeドープのInPである。本実施形態では、Feの原料として、フェロセン(Fe(C5H5)2)を使用する。InおよびPの原料としては、それぞれトリメチルインジウム(In(CH3)3)およびホスフィン(PH3)を使用する。ただし、これらの原料に限定されるわけではない。本実施形態では、フェロセンのモル供給量は、2×10-10(mol/分)である。
【0048】
被覆層11が成長する間、上部クラッド層4のうち被覆層11の直下に位置する領域中のZnと被覆層11中のFeとが相互拡散する。これにより、Feは上部クラッド層4中で効率良く拡散し、活性層3に到達する。上述のように、活性層3は、ノンドープのAlGaInAsから構成されている。また、被覆層11におけるFeの濃度は、1×1016cm-3である。このような高濃度のFeは、ノンドープのAlGaInAs中を容易に拡散する。活性層3の下に位置する下部クラッド層2はn型のInPから構成されている。n型半導体ではFeは拡散しにくいため、活性層3から下部クラッド層2への拡散は抑えられる。この結果、活性層3のうち被覆層11の直下に位置する領域に高濃度のFeが添加される。
【0049】
なお、被覆層11であるFeドープInP層の成長温度は、500℃以上800℃以下であることが好ましい。成長温度が500℃未満だと、活性層3へFeが十分に拡散しにくい。また、成長温度が800℃を超えると、活性層3中のバリア層と井戸層との間で相互拡散が起きるので、好ましくない。本実施形態では、被覆層11の成長温度は、600℃である。
【0050】
この後、SiN膜10を除去し、絶縁膜6、上部電極7および下部電極8を順次に形成すると、本実施形態の光素子100(図1)が得られる。本実施形態の方法では、活性層を直接には加工しないので、活性層の劣化を抑えて、信頼性の高い光素子を製造できる。
【0051】
第2実施形態
以下では、本発明の第2の実施形態について説明する。図6は、本実施形態の半導体光素子101の構成を示す断面図である。図6を図1と比較すると明らかなように、光素子101は、被覆層11を含まない点で第1実施形態の光素子100と異なっている。すなわち、上部クラッド層4の表面およびコンタクト層5の側面には、絶縁膜6が全体的に被着されている。
【0052】
光素子101の他の構成は、光素子100と同じである。第1実施形態と同様に、活性層3および上部クラッド層4のうち被覆層11の直下に位置する領域17、18、27および28には、Feが高濃度で含まれている。これに対し、活性層3および上部クラッド層4のうちリッジ部4aの直下に位置する領域16、26には、Feはほとんど含まれていない。
【0053】
Feの含有により、領域17、18、27および28の電気抵抗は、領域16および26の電気抵抗よりも高くなる。このように、活性層3のうちリッジ部4aの直下に位置する領域26は、領域26よりも十分に高抵抗の領域27および28によって両側から挟まれている。したがって、活性層3には、電流狭窄構造が形成されている。この電流狭窄構造のため、光素子101では、電極7および8を通じて注入される電流が活性層3中の領域26に良好に閉じこめられる。この結果、しきい値電流が低減される。
【0054】
良好な電流狭窄構造を得るためには、領域27および28の各々におけるFeの濃度が5×1015cm-3以上であることが好ましい。また、実用上は、領域27および28の各々におけるFeの濃度は、1×1018cm-3以下であることが好ましい。
【0055】
本実施形態の光素子101は、InPから構成される上部クラッド層4の上にInPからなる被覆層11が存在しない。すなわち、リッジ部4aの側方におけるInP層は、上部クラッド層4だけである。したがって、リッジ部4aの側方においてクラッド層として機能しうるInP層の厚みが、第1実施形態に比べて低減される。この結果、光素子101では、第1実施形態の光素子100に比べて、横方向の光の閉じ込めが向上している。
【0056】
次に、本実施形態の光素子101の製造方法を説明する。まず、第1実施形態と同様の手順で図5に示される構造を形成する。ただし、本実施形態では、被覆層11をFeドープInPではなく、FeドープInGaAsPを用いて形成する。これは、被覆層11を選択的にエッチングできるようにするためである。被覆層11が成長する間、上部クラッド層4のうち被覆層11の直下に位置する領域中のZnと被覆層11中のFeとが相互拡散する。この結果、活性層3のうち被覆層11の直下に位置する領域に高濃度のFeが添加される。
【0057】
この後、被覆層11をエッチングにより除去する。被覆層11はInGaAsPから構成されており、被覆層11が被着されている上部クラッド層4は、InPから構成されている。このように、これらの層は異なる材料から構成されているので、上部クラッド層4をエッチングすることなく、被覆層11のみを選択的にエッチングすることが可能である。エッチャントとしては、例えば、リン酸と過酸化水素水の混合液を使用する。
【0058】
被覆層11を除去した後、図5に示されるSiN膜10を除去し、絶縁膜6、上部電極7および下部電極8を順次に形成すると、本実施形態の光素子101(図6)が得られる。本実施形態の方法では、活性層を直接には加工しないので、活性層の劣化を抑えて、信頼性の高い光素子を製造できる。また、被覆層11を除去するので、リッジ部4aの側方におけるInP層が上部クラッド層4のみとなる。この結果、リッジ部4aの側方においてクラッド層として機能しうる層の厚みが第1実施形態に比べて低減されるので、横方向の光の閉じ込めが向上する。
【0059】
以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
【0060】
上記実施形態では、上部クラッド層にp型ドーパントとしてZnが含まれている。しかし、Znの代わりに他のp型ドーパントを使用してもよい。ただし、Znは拡散速度が大きいので、Feとの相互拡散の点で有利である。すなわち、Znを上部クラッド層4にドープすれば、Znの大きな拡散速度に応じて、Feの拡散速度も大きくなる。
【0061】
第1実施形態では、上部クラッド層4上に残る被覆層11が、FeドープのInPから構成されている。しかし、被覆層は他の半導体から構成されていてもよい。ただし、上部クラッド層がZnドープのInPから構成されている場合は、被覆層はFeドープのInPから構成されていることが好ましい。これは、ZnドープInPとFeドープInPとが、同じ屈折率を有しうるからである。被覆層と上部クラッド層が同じ屈折率を有していると、光素子内で光を良好に閉じ込めることができる。
【0062】
上記実施形態では、リッジ部4aが直方体形状を有している。しかし、リッジ部の形状は、これに限定されない。例えば、リッジ部は、メサ形状の断面を有する柱状体であってもよい。
【0063】
上記の実施形態では、活性層3がAlGaInAsから構成されている。しかし、活性層は、他の半導体材料(例えば、InAlGaP)から構成されていてもよい。本発明のレーザ素子はリッジ型なので、その製造中に活性層を露出させる時間を短くできる。したがって、本発明は、酸化しやすい材料(例えば、Alを含む化合物半導体)から活性層が構成されている場合に特に有利である。
【0064】
上記実施形態では、比較的高い温度で被覆層を成長させることにより、被覆層の成長中にFeを活性層へ拡散させる。しかし、高温の雰囲気中に活性層が置かれるため、活性層の特性が劣化するおそれがある。そこで、被覆層を低温で成長させ、成膜が完了した後に被覆層を熱処理してFeを活性層へ拡散させてもよい。この場合、工程は増えるものの、良好な特性の活性層を得やすいという利点がある。
【0065】
上記実施形態の光素子100は、単一のレーザ素子である。しかし、光素子100は、レーザ素子に他の素子(例えば、光変調器)を組み合わせた構造を有していてもよい。
【0066】
【発明の効果】
本発明の半導体光素子は、リッジ部の直下に位置する領域とこの側方に位置する高抵抗のFe拡散領域からなる電流狭窄構造を有しているので、リッジ型でありながら低いしきい値電流を有する。
【図面の簡単な説明】
【図1】第1実施形態の半導体光素子の構造を示す断面図である。
【図2】半導体光素子の製造工程を示す断面図である。
【図3】半導体光素子の製造工程を示す断面図である。
【図4】半導体光素子の製造工程を示す断面図である。
【図5】半導体光素子の製造工程を示す断面図である。
【図6】第2実施形態の半導体光素子の構造を示す断面図である。
【図7】従来の半導体光素子の構造を示す断面図である。
【符号の説明】
1…基板、2…下部クラッド層、3…活性層、4…上部クラッド層、4a…リッジ部、5…コンタクト層、6…絶縁膜、7…下部電極8…下部電極、11…Feドープ被覆層、16および26…Fe非拡散領域、17、18、27および28…Fe拡散領域。
Claims (7)
- n型半導体から構成される基板上にノンドープの活性層を設ける工程と、
前記活性層の上に、p型半導体から構成される上部クラッド層を設ける工程と、
前記上部クラッド層にリッジ部を形成する工程と、
前記リッジ部の周囲に絶縁膜を形成して、前記上部クラッド層の上面のうち前記リッジ部の側方に位置する部分に前記上部クラッド層の露出部を形成する工程と、
前記上部クラッド層の前記露出部に、Feを含む被覆層を前記リッジ部から離間して成長する工程と、
前記上部クラッド層の上に上部電極を設けるとともに、前記基板の下面に下部電極を設ける工程と
を備え、
前記絶縁膜は、前記被覆層と前記リッジ部との間に介在しており、
前記被覆層は、FeがドープされたInGaAsPまたはFeがドープされたInPから構成され、
前記上部クラッド層には、p型ドーパントとしてZnが含まれており、
前記被覆層の成長中に前記被覆層から前記活性層へのFeと前記Znの相互拡散により、前記活性層のうち前記リッジ部の直下に位置する領域の側方にFeを前記上部クラッド層を介して添加する、半導体光素子の製造方法。 - 前記活性層のうち前記リッジ部の直下に位置する領域の側方に添加されたFe濃度は5×1015cm−3以上である、請求項1に記載の半導体光素子の製造方法。
- 前記上部クラッド層は、ZnがドープされたInPから構成されており、
前記被覆層は、FeがドープされたInPから構成されている請求項1又は請求項2に記載の半導体光素子の製造方法。 - 前記被覆層を設けた後に、前記被覆層を熱処理して前記被覆層中のFeを前記活性層へ拡散させる工程をさらに備える請求項1又は請求項2のいずれかに記載の半導体光素子の製造方法。
- 前記被覆層を設けた後、前記上部電極および前記下部電極を設ける前に、前記被覆層を除去する工程をさらに備える請求項1、請求項2、または請求項4に記載の半導体光素子の製造方法。
- 前記上部クラッド層は、ZnがドープされたInPから構成されており、
前記被覆層は、FeがドープされたInGaAsPから構成されている請求項5に記載の半導体光素子の製造方法。 - 前記被覆層は、気相成長法によって500℃以上800℃以下の成長温度で設けられる、請求項1〜請求項6のいずれかに記載の半導体光素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002381339A JP4433672B2 (ja) | 2002-12-27 | 2002-12-27 | 半導体光素子の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002381339A JP4433672B2 (ja) | 2002-12-27 | 2002-12-27 | 半導体光素子の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004214372A JP2004214372A (ja) | 2004-07-29 |
JP4433672B2 true JP4433672B2 (ja) | 2010-03-17 |
Family
ID=32817291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002381339A Expired - Fee Related JP4433672B2 (ja) | 2002-12-27 | 2002-12-27 | 半導体光素子の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4433672B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4977377B2 (ja) | 2006-02-22 | 2012-07-18 | 日本オプネクスト株式会社 | 半導体発光装置 |
JP2008131022A (ja) * | 2006-11-27 | 2008-06-05 | Hoya Corp | 電極構造 |
-
2002
- 2002-12-27 JP JP2002381339A patent/JP4433672B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004214372A (ja) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2823476B2 (ja) | 半導体レーザおよびその製造方法 | |
US8906721B2 (en) | Semiconductor light emitting device and method for manufacturing the same | |
JP2686764B2 (ja) | 光半導体素子の製造方法 | |
JPH11330605A (ja) | 半導体レーザ | |
JP2008227551A (ja) | 半導体素子の製造方法および半導体素子 | |
JP4057802B2 (ja) | 半導体光素子 | |
JP3682336B2 (ja) | 半導体レーザ装置の製造方法 | |
JP4947778B2 (ja) | 光半導体素子及びその製造方法 | |
JPH0918079A (ja) | 半導体装置の製造方法,及び半導体装置 | |
US20190044306A1 (en) | Vertical cavity surface emitting laser, method for fabricating vertical cavity surface emitting laser | |
JP2006253212A (ja) | 半導体レーザ | |
US20080283852A1 (en) | Light-emitting device and a method for producing the same | |
JP3710329B2 (ja) | 半導体レーザ素子およびその製造方法 | |
CN115133397B (zh) | 脊波导半导体激光器及其制备方法 | |
JP4433672B2 (ja) | 半導体光素子の製造方法 | |
JP5151231B2 (ja) | 半導体光素子及びその製造方法 | |
JP5205901B2 (ja) | 半導体レーザ素子の作製方法および半導体レーザ素子 | |
US6727112B2 (en) | Buried hetero-structure opto-electronic device | |
KR102610391B1 (ko) | 반도체 장치 | |
JPH09148669A (ja) | 埋め込み構造半導体レーザ | |
JP5104054B2 (ja) | 半導体光素子及びその製造方法 | |
JP2002076515A (ja) | 半導体レーザ装置及びその製造方法 | |
JP2005064512A (ja) | 集積光学装置及びその製造方法 | |
TW202324864A (zh) | 半導體雷射及半導體雷射製造方法 | |
JPS6244440B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080318 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090414 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091221 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |